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We present a support vector regression-based adaptive divided difference filter (SVRADDF) algorithm for improving the low
state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior
knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute
than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the
theoretical and actual covariance of the innovation sequence. Support vector regression (SVR) is employed to generate the
adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves
the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i) an underwater
nonmaneuvering target bearing-only tracking system and (ii) maneuvering target bearing-only tracking in an air-traffic control
system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a
traditional DDF algorithm.

1. Introduction

The problem of state estimation for nonlinear systems has
been a subject of considerable research interest in recent
years, but there is still no single solution that outperforms
all other approaches.Most proposed estimators are nonlinear
extensions of the dominated Kalman filter (see [1]), and each
approach provides a suboptimal trade-off between properties
such as numerical robustness, computational burden, and
estimation accuracy. The extended Kalman filter (EKF),
which linearizes both nonlinear terms of a current estimated
state trajectory, is based on a first-order Taylor series and dis-
plays poor performance if the system is highly nonlinear.The
limitations of EKFs are enumerated in [2]. Another improved
algorithm is the iterated extended Kalman filter (IEKF),
which linearizes the nonlinear model around an updated
state rather than the predicted state (see [3]). Although
IEKFs have been proven to perform better than EKFs in
addition to globally guaranteeing convergence, the algorithm
still requires a Jacobian matrix just like EKFs. However, no
solution exists for the Jacobian matrix in nonlinear systems

for some situations, which limits the potential application of
both EKFs and IEKFs.

In recent years, a new class of filter known as sigma-
point Kalman filter (SPKF) has attracted a great deal of
attention. In SPKFs, the algorithm propagates a cluster of
points centered on the current state instead of linearizing
the system dynamics to improve the approximations of the
conditional mean and covariance. Unscented Kalman filters
(UKF) and divided difference filters (DDF) are two kinds of
SPKFs.

UKFs use a deterministic sampling technique to pick a
minimal set of sample points around the mean to catch the
higher order statistics of the system so as to better estimation
accuracy and convergence characteristics (see [4]). In [5, 6],
a UKF for a class of nonlinear discrete-time systems with
correlated noises was designed to deal with the problem
of nonlinear filtering failure found in conventional UKFs
when system noise is correlated withmeasurement noise.The
proposed UKF breaks the limitation of conventional UKFs
that requires system noise and measurement noise to be
uncorrelatedGauss white noises, thus extending the potential
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application of conventional UKFs. In [7], a UKF filtering
algorithm with colored measurement noise was proposed.
The algorithm was first derived on the basis of augmented
measurement information and minimum mean square error
estimation, and a filtering recursive formula of UKF with
colored noise then added by applying an unscented trans-
formation to calculate the posterior mean and covariance
of the nonlinear state within the optimal framework. The
proposed UKF effectively dealt with the fact that traditional
UKFs fail when measurement noise is colored. In [8], a UKF
was applied to multiple target tracking, with the proposed
UKF shown to have improved performance versus previous
EKF approaches. In [9], the paper discussed an adaptive
multiuser receiver for CDMA systems in which the scaled
unscented filter (SUF) and the square root unscented filter
(SURF) were used for joint estimation and tracking of the
code delays andmultipath coefficients of the received CDMA
signals. The proposed channel estimators were more near-
far resistant than in conventional EKFs and presented lower
complexity than conventional particle filter- (PF-) based
methods. Computer simulation results demonstrated the
superior performance of the proposed channel estimators,
and the proposed estimators were shown to exhibit lower
complexity relative to the PF-based method. Although UKFs
have undergone a significant amount of meaningful theory
innovation and are nowused inmany fields, [10–12] show that
UKF accuracy is lower than that of DDF, while also having a
higher computational cost.

The divided difference filter (DDF) first proposed by
Nøgaard et al. (see [13]) linearizes the nonlinear terms
based on Stirling’s interpolation polynomial approximations
formula rather than Taylor’s approximation of nonlinear
terms in an EKF. Conceptually, the implementation principle
resembles that of an EKF; however, the DDF is significantly
simpler as it does not need to calculate the Jacobian matrix
and no derivatives are required. The DDF that Nøgaard
et al. developed works on general discrete-time nonlinear
models in which the noises are not assumed to be additive.
In [14], the paper further formulated a DDF in terms of the
innovation vector approach, the additive process, and the
measurement noise sources. In [15], the paper proposed a new
filter named the maximum likelihood-based iterated divided
difference filter (MLIDDF), which improved the low state
estimation accuracy of nonlinear state estimation that results
from large initial estimation errors and the nonlinearity of
the measurement equations. Simulation results showed that
the MLIDDF algorithm possessed better state estimation
accuracy and a faster convergence rate. In [16], the authors
proposed a novel adaptive version of the DDF that was
applicable to nonlinear systems with a linear output equation.
In order to make the filter robust to modeling errors, upper
bounds on the state covariance matrix were derived. The
parameters of the upper bound were then estimated using
a combination of offline tuning and online optimization
with a linear matrix inequality constraint, which ensured
that the predicted output error covariance was larger than
the observed output error covariance. Simulation results
demonstrated the superior performance of the proposed filter
as compared to the standard DDF. Reference [17] presented

an ensemble-based approach that handled nonlinearity based
on a simplified divided difference approximation through
Stirling’s interpolation formula. The algorithm used Stirling’s
interpolation formula to evaluate the statistics of the back-
ground ensemble during the prediction step, employing the
formula in an ensemble square root filter (EnSRF) at the
filtering step to update the background for analysis. In this
sense, the algorithm is a hybrid of Stirling’s interpolation
formula and theEnSRFmethod,while the computational cost
of the algorithm is less than that of EnSRF.

Different studies have focused on the application of
DDFs to nonlinear state estimation problems. In [18], time
delay and channel gain estimation for multipath fading
code division multiple access (CDMA) signals using a DDF
were investigated, and the simulation results showed that
the DDF was simpler to implement and more resilient to
near-far interference in CDMA networks compared with an
EKF. In [19, 20], the relative kinematic states of a reentry
vehicle obtained from noisy seeker measurements using a
DDF were examined. The results were compared to those
obtained using an EKF and a UKF and showed that the
DDF was more accurate than estimators based on a Taylor
approximation like the EKF. Reference [21] investigated
the possibility of using a DDF for estimating the internal
variables of a synchronous generator, such as the rotor angle
where the data acquired is from a phasor measurement.
The effectiveness of the method was tested on a single
machine infinite bus system, a nine-bus system, and a 68-
bus New England-New York interconnected system. In [22],
a DDF using orientation estimation was considered. The
fourth element of the quaternion error vector was removed
from the system states to alleviate estimated error covariance
matrix divergence. The measurement system was a MARG
sensor, which consisted of a triaxial rate gyro, a triaxial
accelerometer, and a triaxial magnetometer. The nonlinear
measurement model was obtained based on the principals
of operation of the magnetometer and accelerometer and the
properties of the quaternion vector space.Theperformance of
three filters,DDF, EKF, andUKF,was comparedwith different
sampling frequencies. The work showed that the tested DDF
and the UKF were more robust than the EKF under the same
initial angle-error conditions.TheDDF also performed better
than the UKF, although the computational load for the UKF
was less. In [23], a DDF-based data fusion algorithmwas pre-
sented, which utilized the complementary noise profile of rate
gyros and gravimetric inclinometers to extend their limits
and achieve more accurate attitude estimates. In [24], a DDF-
based ballistic target tracking system for the reentry phase
was proposed. The paper compared DDF, EKF, and UKF
algorithms using a Monte Carlo simulation approach, with
the simulation results showing that the DDF outperformed
both the EKF and UKF in terms of estimation accuracy and
filtering credibility. In [25], a DDF with quaternion-based
dynamic process modeling was applied to global positioning
system (GPS) navigation to increase navigation estimation
accuracy at high-dynamic regions while preserving precision
at low-dynamic regions. Some properties and performance
metrics were assessed and compared to those using EKF and
UKF approaches.
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Figure 1: Comparison of first-order Stirling series with first-order Taylor series results.

Despite their recent popularity, DDF algorithms require
that both the system model and the stochastic information
must be accurate. However, this condition cannot be satisfied
in many practical situations, which forces the filter to adapt
itself to changing conditions. One of the problems with this
requirement is that any change in the process introducesmea-
surement noise covariance. In this work, we make use of the
theoretical and actual covariance of the innovation sequence,
employing SVR to generate the scale factor to tune the noise
covariance at each sampling instant when the measurement
update step is executed to adapt the filtering algorithm. This
paper is organized as follows. Section 2 briefly introduces
DDF theory and the proposed SVR-based adaptive strategy.
Passive target tracking is then carried out to evaluate the
performance of DDF and SVRADDF algorithms using a
Monte Carlo simulation in Section 3. Finally, conclusions are
provided in Section 4.

2. Development of the Support Vector
Regression-Based Adaptive Divided
Difference Filter

2.1. Divided Difference Filter. Consider the nonlinear func-
tion

y = f (x) , (1)

where x ∈ R𝑛𝑥 and y ∈ R𝑛𝑦 . If the function is analytic, then
the first-order Taylor series expanded about some point x = x
becomes

y = (f (x + Δx) = f (x) +D
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with (2) truncated after the first-order term. Note that (2)
can achieve a better local approximation if more terms are
included. However, such an expanded Taylor series requires
derivatives and cannot be fulfilled in some situations. Stir-
ling’s interpolation formula is based on a finite number of

evaluations of the function and does not require derivatives,
with the first-order approximation yielding
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where ℎ denotes a selected interval length and 𝛿 and 𝜇 are
determined by
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with e
𝑖
being the 𝑖th unit vector.

Figure 1 compares the results found by using (2) and (3).
The function example is 𝑓(𝑥) = 𝑒

𝑥, where ℎ = 0.56. From
the figure, we can see that Stirling’s interpolation provides
better accuracy than the Taylor series under the same order
approximations.

We now assume that the variable x has a Gaussian
density with mean x and covariance Px. We can introduce
a transformation matrix Sx which we select as a square
Cholesky factor of Px, such that Px = SxS𝑇x . To illustrate how
others can be derived, we introduce the linear transformation
of x:

z = S−1x x. (5)

This linear transformation results in a stochastic decou-
pling of x as the elements of z become mutually uncorrelated
(see [13]). This changes (3) to

y = f (Sxz) = ̃f (z) = ̃f (z) + ̃D
Δz
̃f , (6)

where ̃D
Δz
̃f is determined by
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The mean y, covariance Pyy, and cross covariance Pxy of
y are obtained from

y = E [y] = E [̃f (z) + ̃D
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where sx,𝑖 is the 𝑖th column of the matrix Sx.
Consider the following nonlinear dynamic system with

states to be estimated:

x
𝑘+1

= f (x
𝑘
) + 𝜔
𝑘

y
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𝑘
) + ^
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,

(9)

where 𝜔
𝑘
and ^
𝑘
are assumed to be independent and identi-

cally distributed and independent of current and past states,
such that 𝜔

𝑘
∼ N(o,Q

𝑘
) and ^

𝑘
∼ N(0,R

𝑘
).

TheDDF takes the same predictor-corrector structures in
the EKF and can be described as follows.

Step 1 (initialization). Suppose the state distribution at 𝑘

instant is x
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𝑘
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𝑘
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Step 2 (square Cholesky factorizations). Consider the follow-
ing:
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where sx,𝑖 is the 𝑗th column of Sx.

Step 3 (state and covariance propagation). One has
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where x̂−
𝑘+1

is the predicted state and P−
𝑘+1

is the predicted
covariance matrix.

Step 4 (observation and innovation covariance propagation).
Consider

ŷ−
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where ŷ−
𝑘+1

is the predicted observation vector, P^^
𝑘+1

is the
innovation covariance matrix, and Pxy

𝑘+1
is the cross correla-

tion matrix.

Step 5 (update). Consider the following:

𝜅
𝑘+1

= Pxy
𝑘+1

(P^^
𝑘+1

)

−1

P+
𝑘+1

= P−
𝑘+1

− 𝜅
𝑘+1

P^^
𝑘+1
𝜅
𝑇

𝑘+1

𝜐
𝑘+1

= y
𝑘+1

− ŷ−
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where 𝜅
𝑘+1

is the gain, P+
𝑘+1

is the updated covariance
matrix, 𝜐

𝑘+1
is the innovation vector, and x̂+

𝑘+1
is the updated

estimated state.

2.2. Adaptive DDF Algorithm. As stated previously, the DDF
algorithm assumes a complete prior knowledge of the process
and the measurement noise statistics Q

𝑘
and R

𝑘
. However,

Q
𝑘
and R

𝑘
are unknown in most applications, and incorrect

priori noise statistics can lead to performance degradation or
even divergence for the solution. One of the effective ways
to overcome this weakness is to use an algorithm to adapt
the noise statistics. In this paper, we propose using a support
vector regression adaptive scheme of the DDF to adjust Q

𝑘

and R
𝑘
, respectively.

2.2.1. Support Vector Regression. The principles underlying
support vector regression (SVR) developed byVapnik and are
presented in several works (see [26, 27]).
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Given the train set 𝑇𝑆 = {(x
1
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problem can be defined as solving for the nonlinear function
𝑔(x) about x ∈ R𝑛 to construct a relationship between the
output and an arbitrary input x:
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In [26], the author shows that changing the regression
estimate minimizes the risk functional by using the following
form:
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where 𝛼
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and 𝛼
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are Lagrange multipliers that satisfy the
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function that satisfies Mercer’s condition. In this paper,
we use a translation invariant Gaussian kernel, that is, =
exp(−‖x

𝑖
− x‖2/2𝜎2).

2.2.2. Adaptive Scheme Based on SVR (Q
𝑘
Is Fixed). The

covariancematrixR
𝑘
represents the accuracy of themeasure-

ment instrument. If we assume that the noise covariance Q
𝑘

is completely known, then we can derive the SVR algorithm
to estimate the measurement noise covarianceR

𝑘
by defining

an adaptive factor Δ𝑟
𝑘
to get the form:
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= Δ𝑟
𝑘
R, (21)

where R is the constant noise covariance matrix.
This work uses such an SVR algorithm to derive the

adaptive factor at time instant 𝑘, so as to estimate the value
of R
𝑘
during the algorithm’s execution.

The innovation sequence 𝜐
𝑘+1

has a theoretical covariance
P^^
𝑘+1

, as (16) shows.The actual residual covarianceP^^
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approximated using its sample covariance by averaging inside
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If C
𝑘
differs from P^^
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possible. The size of this difference is given by
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where the function diag denotes the diagonal elements of the
matrix. If the elements of DOM
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covariance matrix R
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2.2.3. Adaptive Scheme Based on SVR (R
𝑘
Is Fixed). Assum-

ing that the noise covariance R
𝑘
is completely known, we can

derive an SVR algorithm to estimate the measurement noise
covariance Q

𝑘
. From (13), (14), and (16), we can deduce that

a change in Q
𝑘
will affect the covariance matrix P^^

𝑘+1
; if we

increaseQ
𝑘
, then P^^

𝑘+1
also increases.We can adjustQ
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and C
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.
We first define an adaptive factor Δ𝑟

𝑘
, where R

𝑘
has the

following form:

Q
𝑘
= Δ𝑞
𝑘
Q, (25)

whereQ is the constant noise covariance matrix.
We can then define the SVR train set 𝑇𝑆

Δ𝑞
as 𝑇𝑆
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{(DOM
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solution process is the same as for solving Δ𝑟
𝑘
.

3. Monte Carlo Simulation
Results and Discussion

In this section, we report the experimental results obtained
by applying SVRADDF to the nonlinear state estimation of
a nonmaneuvering target in an underwater tracking control
scenario and a maneuvering target in an air-traffic control
scenario. To demonstrate the performance of the SVRADDF
algorithm, we compare its performance against a DDF algo-
rithm.

3.1. Underwater Nonmaneuvering Target Bearing-Only Track-
ing Control Scenario. We consider a bearing-only tracking
control scenario, where an underwater target executes a
uniform motion in a horizontal plane but unknown velocity,
while a passive sonar platform performs a uniform circular
motion in a horizontal plane. Figure 2 shows a representative
trajectory of the target and the passive sonar platform. The
kinematics of the relative motion between the target and the
platform can be modeled using the following linear process
equation:

x
𝑘+1

=

[

[

[

[

1 0 𝑇 0

0 1 0 𝑇

0 0 1 0

0 0 0 1

]

]

]

]

x
𝑘
+ w
𝑘
. (26)
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Figure 2: Target trajectory (I-initial position and F-final position) and sonar trajectory.

Here, the state of the equation is x = [𝑥 𝑦 𝑥̇ ̇𝑦], where
𝑥 and 𝑦 denote position and 𝑥̇ and ̇𝑦 denote velocity in
the 𝑥 and 𝑦 directions, respectively, and 𝑇 is the time interval
between two consecutive measurements and the process
noise w

𝑘
∼ 𝑁(0,Q) with a nonsingular covariance where

Q = 𝑞
1
×

[

[

[

[

[

[

[

[

[

[

𝑇

2

2

𝑇

2

2

𝑇

𝑇

]

]

]

]

]

]

]

]

]

]

. (27)

In (27), the parameter 𝑞
1
is related to process noise

intensities. The measurement equation is written as follows:

y
𝑘
= 𝜃
𝑘
= tan−1 (

𝑦
𝑘

𝑥
𝑘

) + 𝜐
𝑘
, (28)

where the measurement noise 𝜐
𝑘
∼ 𝑁(0, 𝑅) with a nonsingu-

lar covariance.
Given the following initial conditions:

𝑇 = 1 s
𝑞
1
= 0.0001m2 s−3

𝑅 = 0.02mrad,

(29)

the true initial state is

x
0
= [0m 1500m 0ms−1 0ms−1]𝑇 (30)

and the associated covariance is

P
0
= diag [100m2 2000m2 1m2 s−2 1m2 s−2] . (31)

The initial estimate state x̂
0
was chosen randomly from

𝑁(x
0
,P
0
) in each run, and the total number of scans per run

was 1000.
To provide a fair comparison, we performed 50 inde-

pendent Monte Carlo runs. To track the underwater target,
we used both the SVRADDF and the DDF algorithms and
compared their performance. The adaptive factor was set to
Δ𝑞
𝑘
= Δ𝑟
𝑘
= 0.1. Both of the filters were initialized with the

same initial conditions for each run.
Performance metrics: to compare the nonlinear perfor-

mance of the filters, we used the root mean square error
(RMSE) of the target position and velocity.TheRMSE yields a
combinedmeasure of the bias and variance of a filter estimate.
The RMSE of the position at time 𝑘 was found using

RSMEpos (𝑘) = √

1

𝑁

𝑁

∑

𝑖=1

((𝑥

𝑖

k − 𝑥

𝑖

𝑘
)

2

+ (𝑦

𝑖

𝑘
− 𝑦

𝑖

𝑘
)

2

),
(32)

where (𝑥𝑖
𝑘
, 𝑦

𝑖

𝑘
) and (𝑥

𝑖

𝑘
, 𝑦

𝑖

𝑘
) are the true and estimated posi-

tions, respectively, in the 𝑖th Monte Carlo run. The form for
the RMSE of the velocity is similar.

Figures 3 and 4 show the estimated RMSE in target
position and velocity. The SVRADDF uses SVR to adjust the
adaptive factor during algorithm execution, which leads to a
marginally better performance compared to the DDF, as seen
in the figures.

3.2. Maneuvering Target Tracking in the Air-Traffic Control
Scenario. A typical air-traffic control scenario was consid-
ered next, where an aircraft executes a maneuvering turn
in a horizontal plane at a constant and known turn rate Ω.
Figure 5 shows a representative trajectory of the aircraft.



Journal of Applied Mathematics 7

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

Po
sit

io
n 

RM
SE

DDF
SVRADDF

Figure 3: RMSE in position for DDF and SVRADDF.
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Figure 4: RMSE in velocity for DDF and SVRADDF.

The kinematics of the turning motion can be modeled
using the following nonlinear process equation:

x
𝑘
=

[

[

[

[

[

[

[

[

[

[

[

1

sinΩ𝑇

Ω

0 −

1 − cosΩ𝑇

Ω

0 cosΩ𝑇 0 − sinΩ𝑇

0

1 − cosΩ𝑇

Ω

1

sinΩ𝑇

Ω

0 sinΩ𝑇 0 cosΩ𝑇

]

]

]

]

]

]

]

]

]

]

]

× x
𝑘−1

+ w
𝑘−1

.

(33)

The state of the aircraft is given by x = [𝑥 𝑥̇ 𝑦 ̇𝑦]

𝑇,
where 𝑥 and 𝑦 denote position and 𝑥̇ and ̇𝑦 denote velocity
in the 𝑥 and 𝑦 directions, respectively, and 𝑇 is the time

interval between two consecutive measurements and the
process noise w

𝑘
∼ 𝑁(0,Q) with a nonsingular covariance,

where

Q = 𝑞
1
×

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑇

3

3

𝑇

2

2

0 0

𝑇

2

2

𝑇 0 0

0 0

𝑇

3

3

𝑇

2

2

0 0

𝑇

2

2

𝑇

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (34)

The parameter 𝑞
1
related to process noise intensities. A

passive radar is fixed at the origin and equipped to measure
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Figure 6: RMSE in position for DDF and SVRADDF.

the bearing 𝜃. The measurement equation is written as
follows:

y
𝑘
= 𝜃
𝑘
= tan−1 (

𝑦
𝑘

𝑥
𝑘

) + 𝜐
𝑘
, (35)

where the measurement noise 𝜐
𝑘
∼ 𝑁(0, 𝑅).

The parameters used in this simulation were
𝑇 = 1 s, Ω = −3

∘ s−1, 𝑞
1

= 0.1m2 s−3, and
𝑅 = √10mard. The true initial state of the aircraft
was x

0
= [1000m 300ms−1 1000m 0ms−1]𝑇

and the associated covariance matrix was P
0

=

diag[100m2 10m2 s−2 100m2 10m2 s−2]. The initial
state x̂

0
for the filters was chosen randomly from 𝑁(x

0
,P
0
)

in each Monte Carlo run, and the simulation time per run
was 1000.

For a fair comparison, we performed 100 independent
Monte Carlo runs for each filter. To track the maneuvering
aircraft,we used both the SVRADDFand theDDFalgorithms
and compared their performance.The adaptive factor was set
to Δ𝑞
𝑘
= 0.3 and Δ𝑟

𝑘
= 0.5. Both filters were initialized with

the same initial conditions for each run.
Figures 6 and 7 show the estimate RMSE in target

position and velocity for the SVRADDF and DDF filters. Not
surprisingly, both filters exhibit divergence due to amismatch
between the initial filter design assumption and the Gaussian
noise nature of the problem. The SVRADDF filter exhibits
marginally better performance compared to the DDF since it
was able to adjust the statistical properties of the noise during
execution.
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4. Conclusions

This work has proposed and developed an innovation-based
SVRADDF algorithm. The algorithm introduces an adaptive
factor estimated using SVR, which allows for estimation of
the noise statistical characteristics of nonlinear stochastic
systems. The SVRADDF algorithm avoids instability and
divergence in the solution which is caused by incorrect
statistical characteristics of the noise.MonteCarlo simulation
results of an underwater nonmaneuvering bearing-only tar-
get tracking system and a maneuvering target bearing-only
tracking system in an air-traffic control setting showed that
the SVRADDF algorithm provides better state estimation
accuracy than a traditional DDF algorithm.

Although the SVRADDF algorithm has showed better
performance under Monte Carlo simulation, there are still
several challenging issues to be considered for future study.
To improve its feasibility and effectiveness in the complex
environment, more comprehensive and detailed studies are
still needed to solve under the nonlinear and non-Gaussian
noise conditions. Since the algorithm has only been tested
under Monte Carlo simulation, the following work might be
testing the algorithm under trial data to approve its better
performance online.
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