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There are several cancers for which effective treatment has not yet been identified. Mathematical modelling can nevertheless point
out to clinicians tumour invasion properties that should be targeted to mitigate these cancers. We present a travelling wave analysis
of a tumour-immune interaction model with immunotherapy. We use the geometric treatment of an apt-phase space to establish
the intersection between stable and unstable manifolds. We calculate the minimum wave speed and numerical simulations are
performed to support the analytical results.

1. Introduction

In travelling wave analysis, the medium moves in the direc-
tion of propagation of the wave. Travelling wave analysis is
important in tumour-immune interaction dynamics since if
travellingwaves exist, thenwemay estimate the potential with
which the tumour cells invade healthy tissue [1]. Tumour-
immune interaction studies have revealed a lot of information
regarding cancer and cancer treatments [2–9] including
cancer dormancy, when tumour cells remain in a quies-
cent state for a long period of time without metastasizing.
Cancer dormancy has been attributed to tumour-immune
interactions, particularly tumour infiltrating cytotoxic lym-
phocytes (TICLs) [2]. Travelling wave analysis could lead
to an understanding of the analytical connection between
model parameters and tumour invasion properties.

Most of the standard cell invasion models are related
to the Fisher-Kolmogorov equation. The Fisher-Kolmogorov
equation [10, 11] is the simplest macroscopic reaction-
diffusion evolution equation for modelling cancer invasion
just as seen in [12]. Many authors, for example, [12–14], have
used the Fisher-Kolmogorov equation in modelling diffusive
tumours and the evolution of cancer on a macroscopic scale.
Several studies have shown that this equation exhibits travel-
ling wave solutions and the minimum wave speed for these

models has been estimated (see [15, 16]). The tumour-im-
mune interaction model presented in this paper employs the
Fisher-Kolmogorov equation to model the random move-
ment of cells. The aim of this paper is to investigate the
existence of travelling wave solutions in a tumour-immune
interaction model with and without immunotherapy and to
estimate the minimum wave speed with which tumour cells
invade healthy tissue. In this way we obtain an estimate of
the strength with which a tumour invades immune cells or
the ability of tumour cells to resist invasion by immune cells
and also identify the tumour invasion properties in the form
of parameters that should be targeted to mitigate cancer in
body tissue. The work presented in this paper complements
the analysis done by Mambili-Mamboundou et al. [17]. They
presented similar model equations, analyzed their equilib-
ria, and found numerical solutions. The main objective in
Mambili-Mamboundou et al.’s work [17] was to ascertain
the cause of cancer dormancy and investigate the effect that
immunotherapy has on the response of TICLs to solid tumour
invasion.

2. The Model

The model considered here was derived by Mambili-
Mamboundou et al. [17]. It subdivides the cell population
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Figure 1: Schematic diagram of the local kinetic cell interactions [17].

into local concentrations of primed TICLs 𝐸, tumour cells 𝑇,
interleukin 2 concentration IL2, tumour-immune cell com-
plex 𝐶, a chemokine 𝛼, and resting cells 𝑅. The class IL2
represents a population of cultured immune cells that have
antitumour reactivity with the tumour host. We assume that
IL2 does not necessarily bind with TICLs to form a cell
complex but rather stimulates the TICLs to fight cancer
through lymphocyte activation, growth, and differentiation.
We also assume that IL2 increases the rate of conversion of
resting TICLs to primed TICLs (see [17, 18]). 𝑅 is a class
representing the population of TICLs which have not yet
matured or been activated by antigens. During a tumour
attack on immune cells or any other body tissue infection,
naive or resting TICLs are primed by antigen presenting cells
(APCs) in secondary lymphoid organs such as lymph nodes
and spleen [19]. Figure 1 shows the cells’ local kinetics.

Following the receptor-ligand kinetics theory in [20],
when a tumour cell and an immune cell come into contact,
it may lead to the formation of a tumour-immune complex
at a binding rate 𝑘

1
which later can either lead to tumour cell

death with probability 𝑝 at a rate 𝑘
2
𝑝 or lead to inactivation

of TICLs at a rate 𝑘
2
(1 − 𝑝). In case of the latter, the tumour-

immune complex is dissociated at a rate 𝑘
−1
. 𝑘
2
is a parameter

describing the detachment rate of TICLs from tumour cells,
resulting in an irreversible programming of the tumour cells
for lysis. Complex formation reduces both TICLs and tumour
cell densities and increases the complex density by 𝑘

1
𝐸𝑇.

Similarly the TICLs and tumour cell densities, respectively,
increase by (𝑘

−1
+ 𝑘
2
𝑝)𝐶 and (𝑘

−1
+ 𝑘
2
(1 − 𝑝))𝐶, in case the

tumour or immune cell dies.Thebinding of the primedTICLs
to tumour cells leads to the production of a chemokine 𝛼.
The chemokine gradient defines the migration of the TICLs
towards the tumor by a process known as chemotaxis which
is represented by 𝜒∇ ⋅ (𝐸∇𝛼) in the model, with 𝜒 being
the chemotaxis constant. We assume that the rate of supply
of immune cells into the region of tumour localization is
𝜌𝑅, where 𝜌 is the supply rate. We consider the immune
cells proliferation term to be 𝑓𝐶/(𝑔

1
+ 𝑇) and similarly the

chemokine production term to be 𝑓𝐶/(𝑔
3
+ 𝑇), where 𝑓, 𝑔

1
,

and 𝑔
3
are constant parameters derived from experimental

results. 𝑓𝐶/(𝑔
1
+ 𝑇) is a function that explains how tumour

cells proliferate as a result of interaction with immune cells.
We consider that all cell densities diffuse at constant rates.
We thus consider the following system of parabolic nonlinear

partial differential equations (Mambili-Mamboundou et al.
[17]):

𝜕𝐸

𝜕𝑡
= 𝐷

1
∇
2
𝐸 − 𝜒∇ ⋅ (𝐸∇𝛼) + 𝜌𝑅 +

𝑓𝐶

𝑔
1
+ 𝑇

− 𝑑
1
𝐸 − 𝑘

1
𝐸𝑇 + (𝑘

−1
+ 𝑘
2
𝑝)𝐶

+ 𝜔IL
2
⋅ 𝑅 +

𝜃
2
𝐸 ⋅ IL2

𝑔
2
+ IL2

+ 𝑒𝑇,

𝜕𝑇

𝜕𝑡
= 𝐷

2
∇
2
𝑇 + 𝑎

1
𝑇 (1 − 𝑏

1
𝑇) − 𝑘

1
𝐸𝑇

+ (𝑘
−1

+ 𝑘
2
(1 − 𝑝)) 𝐶,

𝜕𝐶

𝜕𝑡
= 𝑘
1
𝐸𝑇 − (𝑘

−1
+ 𝑘
2
) 𝐶,

𝜕𝛼

𝜕𝑡
= 𝐷

3
∇
2
𝛼 +

𝑓𝐶

𝑔
3
+ 𝑇

− 𝑑
3
𝛼,

𝜕IL2
𝑑𝑡

= 𝐷
4
∇
2IL2 + 𝑠

2
− 𝑑
2
IL2,

𝜕𝑅

𝜕𝑡
= 𝐷

5
∇
2
𝑅 + 𝑠

3
+ 𝑎
2
𝑅 (1 − 𝑏

2
𝑅)

− 𝜔IL2 ⋅ 𝑅 − 𝜌𝑅,

(1)

where 𝐷
𝑖
, 𝑖 = 1, 2, . . . , 5, are diffusion coefficients of primed

TICLs, tumour, IL2, 𝛼, and resting cell densities, respectively,
and 𝜔 is the rate of stimulation of resting cells into activated
TICLs as a result of injecting a patient with IL2. The capacity
of IL2 to stimulate the production of antibodies is denoted
by 𝑒𝑇 and 𝜃

2
𝐸 ⋅ IL2/(𝑔2 + IL2) is a proliferation term also

considered by Kirschener and Panetta [3]. It models the
stimulation of TICLs by IL2 and is of the Michaelis-Menten
form (see [3]). 𝑎

1
𝑇(1 − 𝑏

1
𝑇) and 𝑎

2
𝑅(1 − 𝑏

2
𝑅) are logistic

growth terms, respectively, modelling tumour and resting
cells’ growth, where 𝑎

𝑖
and 𝑏

−1

𝑖
, 𝑖 = 1, 2, are, respectively, the

growth rates and carrying capacities, 𝑠
2
is the IL2 supply, and

𝑑
2
, 𝑑
3
are, respectively, the deactivation rates of IL2 and 𝛼.

𝑠
3
, 𝑎
2
, and 𝑏

−1

2
are, respectively, the resting cells supply rate,

growth rate, and carrying capacity.
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We consider a one-dimensional spatial domain on the
interval [0, 𝑥

0
] and assume that there are two regions in

this interval, one fully occupied by tumour cells and the
other fully occupied by TICLs (both activated and resting).
We propose that the initial interval of tumour localization
is [0, 𝐿], where 𝐿 = 0.2𝑥

0
[2]. In our model, we do not

include the Heaviside function since we consider a resting
cell class. We further assume that these resting cells can
be recruited into the activated cell class. The boundary and
initial conditions therefore are

n ⋅ ∇𝐸 = n ⋅ ∇𝑇 = n ⋅ ∇IL2 = n ⋅ ∇𝑅

= n ⋅ ∇𝐶 = n ⋅ ∇𝛼 = 0 at 𝑥 = 0, 𝑥 = 𝑥
0
,

𝐸 (𝑥, 0) = {
0, 0 ≤ 𝑥 ≤ 𝐿,

𝐸
0
[1 − exp (−1000(𝑥 − 𝐿)

2
)] , 𝐿 ≤ 𝑥 ≤ 𝑥

0
,

𝑅 (𝑥, 0) = {
0, 0 ≤ 𝑥 ≤ 𝐿,

𝑅
0
[1 − exp (−1000(𝑥 − 𝐿)

2
)] , 𝐿 ≤ 𝑥 ≤ 𝑥

0
,

IL2 (𝑥, 0) = IL20 , ∀𝑥 ∈ [0, 𝑥
0
] ,

𝐶 (𝑥, 0) = 𝐶
0
, ∀𝑥 ∈ [0, 𝑥

0
] ,

𝛼 (𝑥, 0) = 0, ∀𝑥 ∈ [0, 𝑥
0
] ,

𝑇 (𝑥, 0) = {
𝑇
0
[1 − exp (−1000(𝑥 − 𝐿)

2
)] , 0 ≤ 𝑥 ≤ 𝐿,

0, 𝐿 ≤ 𝑥 ≤ 𝑥
0
.

(2)

It has been shown that chemotaxis does not influence the
existence of travelling wave solutions (see, e.g., [1]). We
therefore do the travelling wave analysis without the effect
of chemotaxis. Assuming that the formation of cellular
conjugates occurs on a time scale of a few hours while that
of tumour cells as well as the influx of immune cells into
the spleen occurs on a much slower time scale, probably
tens of hours, and nondimensionalizing the above system
of (1) by taking 𝐸, 𝑇, IL2, and 𝑅 as fractions of their initial
concentrations with 𝑡

0
= 𝑥

0
/𝐷
1
and 𝑥

0
= 1 cm give

𝜕𝐸

𝜕𝑡
= ∇

2
𝐸 + 𝜙

1
𝑅 +

𝜃
1
𝐸𝑇

𝜂
1
+ 𝑇

− 𝜓𝐸 − ]𝐸𝑇

+ 𝜔
1
IL2 ⋅ 𝑅 +

𝜃
2
𝐸 ⋅ IL2

𝜂
2
+ IL2

+ 𝑒𝑇,

𝜕𝑇

𝜕𝑡
= 𝜙∇

2
𝑇 + 𝛽

1
𝑇 (1 − 𝛽

2
𝑇) − 𝜇

1
𝐸𝑇,

𝜕IL2
𝜕𝑡

= 𝜉∇
2IL2 + 𝜎

2
− 𝜇
2
IL2,

𝜕𝑅

𝜕𝑡
= 𝜁∇

2
𝑅 + 𝜎

3
+ 𝛼
1
𝑅 (1 − 𝛼

2
𝑅)

− 𝜔
2
IL2 ⋅ 𝑅 − 𝜙

2
𝑅,

(3)

where

𝜃
1
= 𝜃
1
𝑡
0
, 𝜓 = 𝑑

1
𝑡
0
, 𝜃

2
= 𝜃
2
𝑡
0
,

𝑒 =
𝑒𝑇
0
𝑡
0

𝐸
0

, 𝜔
1
=

𝜔𝑅
0
IL
20
𝑡
0

𝐸
0

,

𝜂
1
=

𝑔

𝑇
0

, 𝜂
2
= 𝑔

2
𝑡
0
, 𝛽

1
= 𝑎
1
𝑡
0
,

𝛽
2
= 𝑏
1
𝑇
0
, 𝜇

1
= 𝑚𝐸

0
𝑡
0
,

𝜎
3
=

𝑠
3
𝑡
0

𝑅
0

, ] = 𝑙𝑇
0
𝑡
0
, 𝜙 = 𝐷

2
𝑡
0
,

𝜉 = 𝐷
4
𝑡
0
, 𝜂

3
= 𝑔

3
𝑡
0
,

𝜙
1
=

𝜌𝑅
0
𝑡
0

𝐸
0

, 𝜎
2
=

𝜎
2
𝑡
0

IL
20

,

𝜁 = 𝐷
5
𝑡
0
, 𝜇

2
= 𝜇

2
𝑡
0
,

𝜔
2
= 𝜔IL

20
𝑡
0
, 𝛼

1
= 𝑎
2
𝑡
0
,

𝛼
2
= 𝑏
2
𝑅
0
, 𝜙

2
= 𝜌𝑡

0
,

𝑙 = 𝐾𝑘
2
(1 − 𝑝) , 𝜃

1
= 𝑓𝐾,

𝑚 = 𝐾𝑘
2
𝑝, 𝐾 =

𝑘
1

(𝑘
−1

+ 𝑘
2
)
.

(4)

The boundary and initial conditions are, respectively,

𝜕𝐸

𝜕𝑥
(0, 𝑥) =

𝜕IL2
𝜕𝑥

(0, 𝑡) =
𝜕𝑅

𝜕𝑡
(0, 𝑥) =

𝜕𝑇

𝜕𝑥
(0, 𝑡) = 0,

𝜕𝐸

𝜕𝑥
(1, 𝑡) =

𝜕𝑅

𝜕𝑥
(1, 𝑡) =

𝜕IL2
𝜕𝑥

(1, 𝑡) =
𝜕𝑇

𝜕𝑥
(1, 𝑡) = 0,

𝐸 (𝑥, 0) = {
0, 0 ≤ 𝑥 ≤ 𝐿,

[1 − exp (−1000(𝑥 − 𝐿)
2
)] , 𝐿 ≤ 𝑥 ≤ 1,

𝑅 (𝑥, 0) = {
0, 0 ≤ 𝑥 ≤ 𝐿,

[1 − exp (−1000(𝑥 − 𝐿)
2
)] , 𝐿 ≤ 𝑥 ≤ 1,

IL2 (𝑥, 0) = IL20 , ∀𝑥 ∈ [0, 1] ,

𝑇 (𝑥, 0) = {
[1 − exp (−1000(𝑥 − 𝐿)

2
)] , 0 ≤ 𝑥 ≤ 𝐿,

0, 𝐿 ≤ 𝑥 ≤ 1.

(5)

3. Travelling Wave Solutions

In this sectionwe investigate whethermodel (3) exhibits trav-
elling wave solutions or not. We use the geometric treatment
of an apt-phase space to establish the intersection between
stable and unstable manifolds, a method also employed by
Bellomo et al. [1] in investigating travelling wave solutions.
The gist of this method is to establish the presence of a
heteroclinic orbit joining two different equilibrium points in
the phase space. We specify a travelling coordinate 𝑧 = 𝑥−𝑐𝑡,
where 𝑐 the travelling wave speed is greater than zero (𝑐 > 0),
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and let 𝐸(𝑧) = 𝐸(𝑥, 𝑡), �̃�(𝑧) = 𝑇(𝑥, 𝑡), ĨL2(𝑧) = IL2(𝑥, 𝑡),
and �̃�(𝑧) = 𝑅(𝑥, 𝑡). For simplicity, we drop the tildes and the
system (3) is transformed into

− 𝑐
𝑑𝐸

𝑑𝑧
=

𝑑
2
𝐸

𝑑𝑧2
+ 𝜙
1
𝑅 +

𝜃
1
𝐸𝑇

𝜂
1
+ 𝑇

− 𝜓𝐸 − ]𝐸𝑇

+ 𝜔
1
IL2𝑅 +

𝜃
2
𝐸IL2

𝜂
2
+ IL2

+ 𝑒𝑇,

− 𝑐
𝑑𝑇

𝑑𝑧
= 𝜙

𝑑
2
𝑇

𝑑𝑧2
+ 𝛽
1
𝑇 (1 − 𝛽

2
𝑇) − 𝜇

1
𝐸𝑇,

− 𝑐
𝑑IL2
𝑑𝑧

= 𝜉
𝑑
2IL2
𝑑𝑧2

+ 𝜎
2
− 𝜇
2
IL2,

− 𝑐
𝑑𝑅

𝑑𝑧
= 𝜁

𝑑
2
𝑅

𝑑𝑧2
+ 𝜎
3
+ 𝛼
1
𝑅 (1 − 𝛼

2
𝑅)

− 𝜔
2
IL2𝑅 − 𝜙

2
𝑅.

(6)

For simple phase space analysis, we define variables

𝐸
1
=

𝑑𝐸

𝑑𝑧
, 𝑇

1
=

𝑑𝑇

𝑑𝑧
,

IL21 =
𝑑IL2
𝑑𝑧

, 𝑅
1
=

𝑑𝑅

𝑑𝑧
,

(7)

and (6) are transformed into a system of autonomous first
order differential equations as follows:

𝑑𝑋

𝑑𝑧
= 𝑓 (𝑋) , where 𝑋 =

(
(
(
(

(

𝐸
1

𝐸

𝑇
1

𝑇

IL21
IL2
𝑅
1

𝑅

)
)
)
)

)

∈ R
8
, (8)

𝑓 (𝑋)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑐𝐸
1
− 𝜙
1
𝑅 −

𝜃
1
𝐸𝑇

𝜂
1
+ 𝑇
+ 𝜓𝐸 + ]𝐸𝑇 − 𝜔

1
IL2𝑅 −

𝜃
2
𝐸IL2

𝜂
2
+ IL2

− 𝑒𝑇

𝐸
1

1

𝜙
(−𝑐𝑇
1
− 𝛽
1
(1 − 𝛽

2
𝑇) + 𝜇

1
𝐸𝑇)

𝑇
1

1

𝜉
(−𝑐IL21 − 𝜎2 + 𝜇2IL2)

IL21
1

𝜁
(−𝑐𝑅
1
− 𝜎
3
− 𝛼
1
𝑅(1 − 𝛼

2
𝑅) + 𝜔

2
IL2𝑅 + 𝜙2𝑅)

𝑅
1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(9)

with boundary conditions

lim
𝑧→−∞

(𝐸
1
, 𝐸, 𝑇

1
, 𝑇, IL21, IL2, 𝑅1, 𝑅)

= 𝑋
0
= (0, 𝐸, 0, 0, 0, IL2, 0, 𝑅) ,

Table 1: Dimensional parameter values for model (1).

Parameter Estimated value Units Source
𝑎 0.18 day−1 [2]
𝑘
1

1.3 × 10
−7 day cells−1 cm [2]

𝑘
2

7.2 day−1 [2]
𝑑
1

0.0412 day−1 [2]
𝑔 2.02 × 10

7 cells cm−1 [2]
𝑏 2.0 × 10

−9 cells−1 cm [2]
𝑘
−1

24 day−1 [2]
𝑝 0.9997 Dimensionless [2]
𝑓 0.2988 × 10

8 day−1 cells cm−1 [2]
𝑠 1.36 × 10

4 day−1 cells cm−1 [2]
𝐷
1

10
−6 cm2 day−1 [2]

𝐷
2

10
−6 cm2 day−1 [2]

𝜃
2

0.1245 day−1 [3]
𝑒 0 ≤ 𝑐 ≤ 0.005 day−1 [3]
𝑔
2

10
7 cm3 [3]

𝑑
2

10 day−1 [18]
𝑎
2

0.0245 day−1 [18]
𝑏
2

1

107
cell−1 [18]

𝜌 6.4 × 10
−6 cells−1 day−1 [18]

lim
𝑧→+∞

(𝐸
1
, 𝐸, 𝑇

1
, 𝑇, IL21, IL2, 𝑅1, 𝑅)

= 𝑋
1
= (0, 𝐸, 0, 𝑇, 0, IL2, 0, 𝑅) ,

(10)

where𝑋0 and𝑋
1 correspond to the equilibrium points of the

system (8).
The system (8) can be regarded as an eigenvalue problem

because the wave velocity 𝑐 is unknown. We take 𝑐 = 20, a
value that numerically gives rise to travelling wave solutions.
We chose this value after simulating the system of (3). There
are several other values of 𝑐 that can give rise to travelling
wave solutions. In the next section,we calculate a critical wave
speed below which travelling wave solutions do not exist. We
find a heteroclinic connection between 𝑋

0 and 𝑋
1, where,

after substituting parameter values in Table 1,

𝑋
0
≈

(
(
(
(

(

0

0.0001

0

0

0

0.7968

0

0.001

)
)
)
)

)

, 𝑋
1
≈

(
(
(
(

(

0

5.8934

0

0.7986

0

0.7968

0

0.0002

)
)
)
)

)

. (11)

Here,𝑋0 and𝑋
1 are equilibriumpoints of the system (8). Our

interest is to establish the existence of an orbit 𝑋con(𝑧) that
satisfies

lim
𝑧→−∞

𝑋con (𝑧) = 𝑋
0
, lim

𝑧→+∞
𝑋con (𝑧) = 𝑋

1
. (12)
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The existence of such an orbit would imply that travelling
wave solutions do exist [1].

We consider the linearization

𝑑𝑋

𝑑𝑧
= 𝐷𝑓 (𝑋

0
)𝑋,

𝑑𝑋

𝑑𝑧
= 𝐷𝑓 (𝑋

1
)𝑋, (13)

of the vector field 𝑓 at the equilibrium points 𝑋
0 and 𝑋

1,
respectively. From the Jacobian

𝐷𝑓 (𝑥)

=

(
(
(
(
(
(
(
(
(
(

(

−𝑐 𝐴
1

0 𝐴
2

0 𝐴
3

0 −𝐼𝜔
1

−𝜙
1

1 0 0 0 0 0 0 0

0
𝑇𝜇
1

𝜙
−
𝑐

𝜙
𝐴
4

0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 −
𝑐

𝜉
𝜇
2

0 0

0 0 0 0 1 0 0 0

0 0 0 0 0
𝜔
2

𝜉
−
𝑐

𝜉
𝐴
5

0 0 0 0 0 0 1 0

)
)
)
)
)
)
)
)
)
)

)

,

(14)

where

𝐴
1
= 𝑇] −

𝑇𝜃
1

𝑇 + 𝜂
1

−
𝐼𝜃
2

𝐼 + 𝜂
2

+ 𝜓,

𝐴
2
= 𝐸𝑒 + 𝐸] −

𝐸𝜂
1
𝜃
1

(𝑇 + 𝜂
1
)
2
,

𝐴
3
=

𝐸𝜂
2
𝜃
2

(𝐼 + 𝜂
2
)
2
,

𝐴
4
=

2𝑇𝛽
1
𝛽
2

𝜙
+

𝐸𝜇
1

𝜙
−

𝛽
1

𝜙
− 𝑅𝜔

1
,

𝐴
5
=

2𝑅𝛼
1
𝛼
2

𝜉
+

𝐼𝜔
2
+ 𝜙
2

𝜉
−

𝛼
1

𝜉
,

(15)

we determine the spectrum of the matrices 𝐷𝑓(𝑋
0
) and

𝐷𝑓(𝑋
1
). For parameter values in Table 1, 𝐷𝑓(𝑋

0
) has eight

real eigenvalues (213.22, 27.11, 20, 15.68, −5.35 × 10
−9
,

−7.11, −15.48, −193.22), four positive and four negative.
The four positive eigenvalues imply the existence of a
4-dimensional unstable manifold 𝑊

𝑢
(𝑋
0
). Similarly,

𝐷𝑓(𝑋
1
) has eight eigenvalues (213.2, 27.11, 20, −15.68,

−0.0002, −7.11,−15.48, −193.22), three positive and five
negative, implying the existence of a 5-dimensional stable
manifold𝑊

𝑠
(𝑋
1
). From this result, we note that

dim (𝑊
𝑢
(𝑋
0
)) + dim (𝑊

𝑠
(𝑋
1
)) = dimR

8
+ 1. (16)

Equation (16) suggests that𝑊𝑢
(𝑋
0
) and𝑊

𝑠
(𝑋
1
) intersect

transversally along a one-dimensional curve in the eight-
dimensional phase space. This is because the solutions of the
system (8) lie in eight dimensions (8D) but the summation
of the dimension of the stable and unstable manifolds is nine

(9D) just as shown in (16) (see [1, 21]). If this is the case, then
this curve would define a generic heteroclinic connection [1].
This therefore confirms that the system (1) exhibits travelling
wave solutions for certain parameter values.

4. Minimum Wave Speed

In the previous section, we established that (3) exhibits
travelling wave solutions. In this section, we calculate the
minimum wave speed for model (3) with (IL2 ̸= 0) and
without (IL2 = 0) treatment connecting the tumour-free
equilibrium point to the cancer dormant equilibrium point.
In this section we seek the minimum wave speed 𝑐. We apply
the same technique used by Chahrazed [22] and Maidana
and Yang [23] in determining 𝑐. This technique involves
analyzing the phase space by characterizing the equilibrium
points of the autonomous system. The minimum wave speed
corresponds to a change in the eigenvalues of the travelling-
wave differential equations at the equilibrium point ahead of
the wave.

To calculate the minimum wave speed, we impose a
condition that 𝑋

0, the tumour-free equilibrium point of
(8), must not oscillate. In other words, the eigenvalues 𝜆

𝑖

corresponding to this equilibrium point must have real
values; that is, 𝜆

𝑖
∈ R. We seek the travelling wave speed both

with and without immunotherapy.

4.1. No Treatment Case. With IL2 = 0, the tumour-free
equilibrium point of the system (8) is

𝑋
0
= (0, 𝐸

∗
, 0, 0, 0, 𝑅

∗
) , where

𝐸
∗
=

(𝛼
1
− 𝜙
2
+ √4𝛼

1
𝛼
2
𝜎
3
+ (𝛼

1
− 𝜙
2
)
2

)𝜙

2𝛼
1
𝛼
2
𝜓

,

𝑅
∗
=

𝛼
1
− 𝜙
2
+ √4𝛼

1
𝛼
2
𝜎
3
+ (𝛼

1
− 𝜙
2
)
2

2𝛼
1
𝛼
2

.

(17)

For the equilibrium point 𝑋0 to be biologically meaningful,
𝐸
∗ and 𝑅

∗ must be positive. 𝐸∗ and 𝑅
∗ are positive provided

that

𝛼
1
+ √4𝛼

1
𝛼
2
𝜎
3
+ (𝛼

1
− 𝜙
2
)
2

≥ 𝜙
2
. (18)

The eigenvalues 𝜆
𝑖
, 𝑖 = 1, 2, . . . , 6, corresponding to𝑋

0 are

𝜆
1
= −

1

2
𝑐 +

1

2
√𝑐2 + 4𝜓, (19)

𝜆
2
= −

1

2
𝑐 −

1

2
√𝑐2 + 4𝜓, (20)

𝜆
3
= −

𝑐 + √𝑐2 + 4 (√4𝛼
1
𝛼
2
𝜎
3
+ (𝛼

1
− 𝜙
2
)
2

) 𝜉

2𝜁
,

(21)
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𝜆
4
= −

𝑐 − √𝑐2 + 4 (√4𝛼
1
𝛼
2
𝜎
3
+ (𝛼

1
− 𝜙
2
)
2

) 𝜉

2𝜁
,

(22)

𝜆
5

=−(𝛼
1
𝛼
2
𝑐𝜓

+√2√(4𝛼
1
𝛼
2
𝜎
3
+ (𝛼

1
− 𝜙
2
)
2

)𝛼
1
𝛼
2
𝜇
1
𝜙2𝜓 − 𝐶 + 𝐷)

× (2𝛼
1
𝛼
2
𝜙𝜓)

−1

,

(23)

𝜆
6

=−(𝛼
1
𝛼
2
𝑐𝜓

−√2√(4𝛼
1
𝛼
2
𝜎
3
+ (𝛼

1
− 𝜙
2
)
2

)𝛼
1
𝛼
2
𝜇
1
𝜙2𝜓 − 𝐶 + 𝐷)

× (2𝛼
1
𝛼
2
𝜙𝜓)

−1

,

(24)

where

𝐶 = (4𝛼
2

1
𝛼
2

2
𝛽
1
𝜙 − 𝛼

2

1
𝛼
2

2
𝑐
2
) 𝜓
2
,

𝐷 = 2 (𝛼
2

1
𝛼
2
𝜇
1
𝜙
2
− 𝛼
1
𝛼
2
𝜇
1
𝜙
2
𝜙
2
) 𝜓.

(25)

Thefirst four eigenvalues (19)–(22) are real.Therefore (23)
or (24) should determine theminimumwave speed which we
obtain by setting

√2√(4𝛼
1
𝛼
2
𝜎
3
+ (𝛼

1
− 𝜙
2
)
2

)𝛼
1
𝛼
2
𝜇
1
𝜙2𝜓 − 𝐶 + 𝐷 = 0, (26)

since we require 𝜆
5,6

to be real. Solving for 𝑐 in (26) gives

𝑐 = (4𝛽
1
𝜙 +

2𝜇
1
𝜙
2
𝜙
2

𝛼
1
𝛼
2
𝜓

−
2𝜇
1
𝜙
2

𝛼
2
𝜓

−

2√4𝛼
1
𝛼
2
𝜎
3
+ 𝛼
2

1
− 2𝛼

1
𝜙
2
+ 𝜙
2

2
𝜇
1
𝜙
2

𝛼
1
𝛼
2
𝜓

)

1/2

.

(27)

Substituting parameter values from Table 1 into (27) gives
𝑐 ≥ 4.176. This indicates that the minimum wave speed
𝑐min for the tumour-immune interaction model without
immunotherapy is approximately 4.176.

4.2. Treatment Case. With IL2 ̸= 0, the tumour-free equilib-
rium points of the system (8) are

𝑋
0
= (0, 𝐸, 0, 0, 0, IL2, 0, 𝑅) , where

𝐸

=

(𝜇
2
𝜙
1
+𝜔
1
𝜎
2
) (𝜂

2
𝜇
2
+𝜎
2
) (𝑝

1
− 𝑝
2
+√(𝐴 + 𝑃) − (𝐵 + 𝑄))

2 (𝜂
2
𝜇
2
𝜓 + 𝜓𝜎

2
− 𝜎
2
𝜃
2
) 𝛼
1
𝛼
2
𝜇
2

2

≥ 0,

IL2 =
𝜎
2

𝜇
2

,

𝑅 =
𝑝
1
− 𝑝
2
+ √(𝐴 + 𝑃) − (𝐵 + 𝑄)

2𝛼
1
𝛼
2
𝜇
2

≥ 0,

provided (𝐴 + 𝑃) ≥ (𝐵 + 𝑄) , (𝜂
2
𝜇
2
+ 𝜎
2
) 𝜓 > 𝜎

2
𝜃
2
,

𝑝
1
+ √(𝐴 + 𝑃) − (𝐵 + 𝑄) ≥ 𝑝

2
, where

𝐴 = 4𝛼
1
𝛼
2
𝜇
2

2
𝜎
3
+ 𝛼
2

1
𝜇
2

2
, 𝐵 = 2𝛼

1
𝜇
2

2
𝜙
2
,

𝑃 = 𝜇
2

2
𝜙
2

2
+ 𝜔

2

2
𝜎
2

2
, 𝑄 = 2 (𝛼

1
𝜇
2
𝜔
2
− 𝜇
2
𝜔
2
𝜙
2
) 𝜎
2
,

𝑝
1
= 𝛼

1
𝜇
2
, 𝑝

2
= 𝜇

2
𝜙
2
+ 𝜔

2
𝜎
2
.

(28)

The eigenvalues 𝜆
𝑖
, 𝑖 = 1, 2, . . . , 8, corresponding to 𝑋

0

(with immunotherapy) are

𝜆
1
= −

𝑐 + √4𝜇
2
𝜉2 + 𝑐2

2𝜉
,

(29)

𝜆
2
= −

𝑐 − √4𝜇
2
𝜉2 + 𝑐2

2𝜉
,

(30)

𝜆
3
= −

𝑐𝜇
2
+ √𝑐2𝜇

2

2
+ 4√(𝐴 + 𝑃) − (𝐵 + 𝑄)𝜇

2
𝜉

2𝜇
2
𝜉

,
(31)

𝜆
4
= −

𝑐𝜇
2
− √𝑐2𝜇

2

2
+ 4√(𝐴 + 𝑃) − (𝐵 + 𝑄)𝜇

2
𝜉

2𝜇
2
𝜉

,
(32)

𝜆
5

=−(𝑐𝜂
2
𝜇
2
+ 𝑐𝜎

2

+ ((𝜂
2
𝜇
2
+ 𝜎
2
)

× (𝑐
2
𝜂
2
𝜇
2
+ 4𝜂

2
𝜇
2
𝜓+(𝑐

2
+4𝜓) 𝜎

2
+ 4𝜎

2
𝜃
2
))
1/2

)

× 2(𝜂
2
𝜇
2
+ 𝜎
2
)
−1

,

(33)
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Figure 2: Travelling wave solutions of the system (3) for different travelling wave coordinates without treatment.

𝜆
6

=−(𝑐𝜂
2
𝜇
2
+ 𝑐𝜎

2

− ((𝜂
2
𝜇
2
+ 𝜎
2
)

× (𝑐
2
𝜂
2
𝜇
2
+ 4𝜂

2
𝜇
2
𝜓+(𝑐

2
+4𝜓) 𝜎

2
+ 4𝜎

2
𝜃
2
))
1/2

)

× 2(𝜂
2
𝜇
2
+ 𝜎
2
)
−1

,

(34)

𝜆
7
= −

−Γ
1
+ √(𝐴 + 𝑃) − (𝐵 + 𝑄) − 𝐶 + 𝐷 + Γ

2
𝛼
1
𝛼
2

2 (𝛼
1
𝛼
2
𝜂
2
𝜇
2

2
𝜙𝜓 + 𝛼

1
𝛼
2
𝜇
2
𝜙𝜓𝜎

2
− 𝛼
1
𝛼
2
𝜇
2
𝜙𝜎
2
𝜃
2
)
,

(35)

𝜆
8
= −

−Γ
1
− √(𝐴 + 𝑃) − (𝐵 + 𝑄) − 𝐶 + 𝐷 + Γ

2
𝛼
1
𝛼
2

2 (𝛼
1
𝛼
2
𝜂
2
𝜇
2

2
𝜙𝜓 + 𝛼

1
𝛼
2
𝜇
2
𝜙𝜓𝜎

2
− 𝛼
1
𝛼
2
𝜇
2
𝜙𝜎
2
𝜃
2
)
,

(36)

where

Γ
1
= −𝛼

1
𝛼
2
𝑐𝜂
2
𝜇
2

2
𝜓 + 𝛼

1
𝛼
2
𝑐𝜇
2
𝜓𝜎
2
− 𝛼
1
𝛼
2
𝑐𝜇
2
𝜎
2
𝜃
2
,

Γ
2
= 𝐽 (4𝐴 + 𝛼

2

1
𝜇
2

2
− 2𝛼

1
𝜇
2

2
𝜙
2
+ 𝜇
2

2
𝜙
2

2
+ 𝜔

2

2
𝜎
2

2

− 2 (𝛼
1
𝜇
2
𝜔
2
− 𝜇
2
𝜔
2
𝜙
2
) 𝜎
2
)
1/2

,

(37)

where 𝐽 = 2(𝜂
2
𝜇
1
𝜇
2

2
𝜙𝜙
1
+ 𝜇
1
𝜔
1
𝜙𝜎
2

2
+ (𝜂

2
𝜇
1
𝜇
2
𝜔
1
𝜙 + 𝜇

1
𝜇
2
𝜙𝜙
1
)

𝜎
2
).
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Figure 3: Travelling wave solutions of the system (3) for different travelling wave coordinates with immunotherapy.

The first six eigenvalues (29)–(34) are real provided
that the conditions we have imposed for positivity of
the tumour-free equilibrium point are fulfilled. Equation
(35) or (36) should therefore determine the conditions for
the existence of a minimum wave speed. We set Γ

1
−

√(𝐴 + 𝑃) − (𝐵 + 𝑄) − 𝐶 + 𝐷 + Γ
2
𝛼
1
𝛼
2

= 0 and substituted
parameter values in Table 1. The result gave the value 𝑐 ≥

4.176 as in the case without treatment. This implies that the
minimumwave speed formodel (3) for bothwith andwithout
treatment is the same. In other words, immunotherapy may
possibly not influence the strength with which the tumour
cells attack immune cells because the minimum wave speed
with or without clinical treatment is the same. Fisher’s

equation exhibits travelling wave solutions for 𝑐 ≥ 2 [24].The
minimum wave velocity which we obtained is greater than
two and therefore not a violation of theminimumwave speed
for Fisher’s equation.

5. Numerical Simulations

Using the parameter values in Table 1, we simulate model (3).
These parameter values were obtained from data where the
murine B cell lymphoma was used as an experimental model
of tumour dormancy in mice [25]. The kinetic parameter
values that were obtained in this experiment are shown
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in Table 1. We assumed that 𝑅 and IL2 diffuse at the same
rate as TICLs (i.e., 𝐷

1
= 𝐷

4
= 𝐷

5
= 10

−6) and used the
diffusivity value 10

−6 for immune cells by Matzavinos et al.
[2]. We took the travelling wave speed to be 𝑐 = 20 and
implemented the simulations in python using a Runge-
Kutta numerical method. The numerical simulations (see
Figures 2 and 3) indicate that the system of (3) exhibits
travelling wave solutions for certain parameter values. This
supports the analytical results on the existence of travelling
waves in Section 3. Figures 2 and 3, respectively, show the
numerical travelling wave solutions for model (3) without
and with clinical treatment, and for different travelling wave
coordinates. They depict solutions that are periodic and
oscillating around a stable equilibrium state. These solutions
describe heterogeneous cell distributions with a relatively low
tumour cell density. The travelling wave solutions indicate
that tumour cells invade immune cells at a high potential.
The minimum wave speed obtained in the previous section
indicated that themodel exhibits travelling wave solutions for
𝑐 ≥ 4. This is consistent with our numerical simulations for
which we used 𝑐 = 20.

6. Conclusions

Many biological and physical phenomena can be described by
reaction-diffusion equations. However not many nonlinear
reaction-diffusion equations are integrable. It is therefore
imperative to find other quantitative methods for tackling
such nonlinear systems.The objective of this study was to use
a quantitative method to investigate travelling wave solutions
of a tumour-immune interaction model and also identify
the tumour invasion properties in the form of parameters
that should be targeted to mitigate cancer by estimating
the minimum wave speed. We investigated the existence of
travelling wave solutions and estimated the minimum wave
speed of the wave solutions by analyzing the model phase
space. The existence of travelling wave solutions confirmed
that a tumour attacks immune cells at full potential. The
expression from which the minimum wave speed was cal-
culated determined the parameters that need to be targeted
to eradicate cancer in body tissue. We simulated model (3)
and compared the results to analytical results. The numerical
travelling wave solutions depicted periodic cell densities with
a low tumor level, oscillating about a stable equilibrium
state. These solutions depict cancer dormancy which has
been observed in several cancers, for example, osteogenic
sarcomas, basal-cell carcinoma, and breast cancers, and they
also imply that the tumour cells attack the immune cells at
their full potential.

Equation (27) highlights the main parameters (𝛽
1
, 𝛼
1
, 𝛼
2
,

𝜎
3
, 𝜙, 𝜙

1
, 𝜇
1
) involved in tumour invasion corresponding to

tumour growth rate, resting TICLs’ growth rate, carrying
capacity of the resting TICLs, resting cells’ supply, diffusion
rate of the tumour cells, and the local kinetic interaction
parameters (tumour cell death and inactivation of TICLs).

The results obtained in this paper are similar to those in
Matzavinos and Chaplain [26]. In their work, they performed
a travelling wave analysis of a model describing the growth

of a tumour in the presence of an immune system response.
Their results showed that indeed a tumor attacks immune
cells at full potential since their model exhibited travelling
wave solutions. In the future, we hope to consider diffusion in
higher dimension due to the fact that body tissue geometry is
highly intricate.
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