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A mathematical model of human T-cell lymphotropic virus type 1 in vivo with cell-to-cell infection and mitosis is formulated and
studied. The basic reproductive number 𝑅

0
is derived. It is proved that the dynamics of the model can be determined completely

by the magnitude of 𝑅
0
. The infection-free equilibrium is globally asymptotically stable (unstable) if 𝑅

0
< 1 (𝑅

0
> 1). There exists

a chronic infection equilibrium and it is globally asymptotically stable if 𝑅
0
> 1.

1. Introduction

Human T-cell lymphotropic virus type 1 (HTLV-1) is a
pathogenic retrovirus and persists indefinitely in the infected
hosts [1–4]. There are approximately 10–20 million infected
people worldwide [5, 6]. HTLV-1 is associated causatively
with a large number of pathologies. A slowly progressive
neurologic disease HTLV-1 associated myelopathy/tropical
spastic paraparesis (HAM/TSP) [7] and adult T-cell leukemia
(ATL) are two most common forms of the disease [8].
The majority of HTLV-1 infected individuals remain lifelong
asymptomatic carriers (ACs). The remaining 0.25–3% of
infected individuals develop into HAM/TSP [9]. The virus
can be transmitted from mother to child, through sexual
contact, and by needle sharing and contaminated blood
products [5, 9].

In HTLV-1 infection, the initial infection is subclinical.
The virus preferentially integrates into the genome of host
T lymphocytes. Since the virions are almost undetectable
from extracellularmatrix, the viral burden is quantified as the
proportion of peripheral blood mononuclear cells that carry
an integratedHTLV-1 provirus. About 90–95% of the proviral
load in chronic HTLV-1 infection is carried by 𝐶𝐷4+ T cells
and 5–10% by 𝐶𝐷8+ T cells [10–13].

To persist within the host, HTLV-1 requires two routes:
(i) infectious spread to uninfected cells via cell-to-cell contact
known as the virological synapse, cellular conduits, extracel-
lular viral assemblies, and transinfection via dendritic cells
[9] and (ii) clonal expansion, which would actively promote
mitotic proliferation of infected cells, andpass on the provirus
to daughter cells. It is assumed that infection of an individual
with HTLV-1 occurs in two stages; the virus is thought to
initially spread fromT cells to T cells, primarily𝐶𝐷4+ T cells,
and later to persist by clonal expansion of infected cells [12].

It has been observed that HTLV-1 infection has a lower
rate of proviral genetic variation than HIV infection, which
suggests that the vertical transmission through mitotic divi-
sion rather than horizontal transmission through cell-to-cell
contact plays an important role [14, 15]. HTLV-1 succeeds in
causing a persistent infection with a high proviral load and
remains approximately stable in one individual over years. In
order to identify the underlying mechanism of HTLV-1 per-
sistence in vivo and the key factors determining the HTLV-1
provirus load and the disease risk, Asquith and Bangham [1]
have used a combination of mathematical and experimental
techniques to propose amodel ofHTLV-1 persistence.Mitosis
is the main route of viral replication, and the expression of
HTLV-1 proteins, particularly Tax, is required to promote the
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selective expansion of cells that harbour a provirus [5, 16–
18], though the majority of infected cells are not expressing
viral protein. Although the Tax expressing is silenced in the
majority of surviving cells and a small proportion (0.03%–
3%) of infected cells can express Tax, the cells with Tax
expression proliferate more rapidly than silently infected and
uninfected cells, leading to the selective expansion of infected
cells and an increase in proviral load [1].The small proportion
of infected cells that express viral proteins play a crucial
role, and the very high provirus load in HTLV-1 infection is
maintained by proliferation of infected T cells, induced by the
Tax protein of HTLV-1 [19].

It has been observed that the 𝐶𝐷4+ T cells population
from HAM/TSP patients express higher levels of tax mRNA
than 𝐶𝐷4+ T cells from ACs. Tax expression at any given
proviral load is significantly higher in the HAM/TSP patients
than that in the ACs [20]; thus a high rate of viral protein
expression is associatedwith a large increase in the prevalence
of HAM/TSP, and Tax expression is a significant predictor of
the disease [1].

Most of the existing models have considered the persis-
tence and pathogenesis for HTLV-1 infection of𝐶𝐷4+ T cells.
Mathematical models that take into account both infectious
and mitotic routes have also been developed to describe the
interaction in vivo among HTLV-1 [14, 20–22]. Motivated
by the new hypothesis of HTLV-1 infection by Asquith and
Bangham, we construct a model with three compartments,
healthy 𝐶𝐷4+ T cells 𝑥, resting infected 𝐶𝐷4+ T cells 𝑢, and
Tax-expressing infected 𝐶𝐷4+ T cells 𝑦, to investigate the
dynamics of the HTLV-1 infection. The model is formulated
and the required conditions are given in Section 2. The sta-
bility of equilibria is presented in Section 3. The simulations
are done in Section 4. The concluding remarks are given in
Section 5.

2. Model Formulation

In this section, we construct a mathematical model including
the spontaneous HTLV-1 antigen Tax expression, cell-to-cell
contact, and mitotic infectious routes to describe the viral
dynamics. Let 𝑥(𝑡) be the number of healthy 𝐶𝐷4+ T cells
at time 𝑡, let 𝑢(𝑡) be the number of the resting infected
𝐶𝐷4
+ T cells at time 𝑡, and let 𝑦(𝑡) be the number of Tax-

expressing infected 𝐶𝐷4+ T cells at time 𝑡. We consider only
HAM/TSP among nonmalignant HTLV-1 infection diseases;
the dynamics of ATL and other aggressive malignancies may
be very different. Althoughmitosis occurs in all𝐶𝐷4+ T cells
as a natural process, normal homeostatic proliferation occurs
at a very slower rate than that of selective mitotic division in
Tax-expressing infected cells. We ignore the effects of passive
homeostatic proliferation of the healthy and resting infected
𝐶𝐷4
+ T cells to simplify the model.
Healthy 𝐶𝐷4+ T cells are produced in bone marrow at

a constant rate 𝜆 [23, 24]; we assume that the new cells
generated in the bone marrow are uninfected. The infected
𝐶𝐷4
+ T cells can make the healthy 𝐶𝐷4+ T cells get infected

through cell-to-cell contact. The infectious incidence is
described by a bilinear term 𝛽𝑥𝑦, where 𝛽 is the transmission
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Figure 1: The schematic diagram of the HTLV-1 infection in vivo.

coefficient among 𝐶𝐷4+ T cells [25]. The newly infected
cells experience an irreparable destruction by the strong
adaptive immune responses. As a result, a small fraction
𝜎𝛽𝑥𝑦, 𝜎 ∈ (0, 1), survives after the immune attack and
becomes the resting infected cells [14, 22]. Every day, a
small proportion 𝜏 of resting infected cells express Tax with
𝜏 ∈ (0.3%, 3%) [26]. The mitotic transmission of HTLV-1
involving selective clonal expansion of these Tax-expressing
𝐶𝐷4
+ T cells occurs at a rate 𝑠. The newly infected cells from

mitosis to the resting infected cells compartment are 𝜀𝑠𝑦,
𝜀 ∈ (0, 1), with (1−𝜀)𝑠𝑦 staying in the Tax-expressing infected
𝐶𝐷4
+ T-cell compartment. The transfers among those three

compartments are shown in Figure 1.
From the mechanism of the HTLV-1 infection and the

schematic diagram we can have the following model consist-
ing of three differential equations;

𝑑𝑥

𝑑𝑡
= 𝜆 − 𝛽𝑥𝑦 − 𝜇

1
𝑥,

𝑑𝑢

𝑑𝑡
= 𝜎𝛽𝑥𝑦 + 𝜀𝑠𝑦 − 𝜏𝑢 − 𝜇

2
𝑢,

𝑑𝑦

𝑑𝑡
= 𝜏𝑢 + (1 − 𝜀) 𝑠𝑦 − 𝜇

3
𝑦.

(1)

In model (1), 𝜇
1
, 𝜇
2
, and 𝜇

3
are the removal rate of healthy

𝐶𝐷4
+ T cells, resting infected 𝐶𝐷4

+ T cells, and Tax-
expressing infected𝐶𝐷4+ T cells, respectively. From epidemi-
ological background, it is natural to assume that the initial
values of these variables and parameters are nonnegative.

We define the basic reproductive number of model (1) by
the next generation matrix approach given in [27]. Let

𝐹 = [
0 𝜎𝛽𝑥 + 𝜀𝑠

0 𝑠 − 𝜀𝑠
] , 𝑉 = [

𝜏 + 𝜇
2
0

−𝜏 𝜇
3

] . (2)

The calculation shows that the spectral radius (the basic
reproductive number) of 𝐹𝑉−1 is

𝑅
0
= 𝜌 (𝐹𝑉

−1
) =

𝜎𝛽𝜏𝜆

(𝜏 + 𝜇
2
) 𝜇
1
𝜇
3

+
𝜏𝜀𝑠

(𝜏 + 𝜇
2
) 𝜇
3

+
(1 − 𝜀) 𝑠

𝜇
3

.

(3)

The basic reproductive number,𝑅
0
, gives the average number

of the secondary infections caused by a single Tax-expressing
infected 𝐶𝐷4

+ T cell during its whole infectious period.
The secondary infection caused by a single Tax-expressing
infected 𝐶𝐷4+ T cell through horizontal transmission is 𝜎𝛽 ⋅
(𝜆/𝜇
1
) ⋅(𝜏/(𝜏+𝜇

2
)) ⋅(1/𝜇

3
); the secondary infection caused by
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a single Tax-expressing infected 𝐶𝐷4+ T cell through mitotic
transmission is 𝜀𝑠 ⋅ (𝜏/(𝜏 + 𝜇

2
)) ⋅ (1/𝜇

3
) + (1 − 𝜀)𝑠 ⋅ (1/𝜇

3
).

Throughout the paper, we use the assumption

𝑠 <
(𝜏 + 𝜇

2
) 𝜇
3

𝜏 + 𝜇
2
(1 − 𝜀)

. (A1)

The inequality (A1) is equivalent to that 𝜏𝜀𝑠/(𝜏 + 𝜇
2
)𝜇
3
+

(1 − 𝜀)𝑠/𝜇
3
< 1, which requires that the average number of

the secondary infections by a single Tax-expressing infected
𝐶𝐷4
+ T cell through mitosis should not be larger than one.

If the inequality in (A1) does not hold, then the number
of the infected cells may increase to infinity. The biological
interpretation of (A1) is to keep the solutions of the model
bounded. From condition (A1), we have 𝑠 < 𝜇3/(1 − 𝜀); that
is, 𝜇
3
> (1 − 𝜀)𝑠. We can get the following nonnegative and

bounded conclusions on the solutions of model (1).

Theorem 1. The solutions (𝑥(𝑡), 𝑢(𝑡), 𝑦(𝑡)) of model (1)
with the nonnegative initial conditions are nonnegative and
bounded for all 𝑡 > 0 if (A1) holds.

Proof. It is easy to have

𝑑𝑥(𝑡)

𝑑𝑡

𝑥=0

= 𝜆 > 0,

𝑑𝑢(𝑡)

𝑑𝑡

𝑢=0

= 𝜎𝛽𝑥𝑦 + 𝜀𝑠𝑦 ≥ 0,

𝑑𝑦(𝑡)

𝑑𝑡

𝑦=0

= 𝜏𝑢 ≥ 0.

(4)

From Lemma 2 in [28], we know that any solutions of model
(1) with nonnegative initial conditionswill be nonnegative for
all 𝑡 > 0.

It follows from the first equation of model (1) that

𝑑𝑥

𝑑𝑡
= 𝜆 − 𝛽𝑥𝑦 − 𝜇

1
𝑥 ≤ 𝜆 − 𝜇

1
𝑥, (5)

which leads to lim
𝑡→+∞

sup𝑥 ≤ 𝜆/𝜇
1
. Let 𝐿 = 𝑥 + 𝑢 + ((𝜏 +

𝜇
2
)/𝜏)𝑦; from model (1) we can obtain

𝑑𝐿

𝑑𝑡
=
𝑑𝑥

𝑑𝑡
+
𝑑𝑢

𝑑𝑡
+
𝜏 + 𝜇
2

𝜏

𝑑𝑦

𝑑𝑡

= 𝜆 + (𝜎 − 1) 𝛽𝑥𝑦 − 𝜇
1
𝑥 − 𝐺𝑦 ≤ 𝜆 − 𝜇

1
𝑥 − 𝐺𝑦,

(6)

where𝐺 = ((𝜏+𝜇
2
)/𝜏)(𝜇

3
−(1−𝜀)𝑠)−𝜀𝑠 > 0 since (A1) holds.

The inequality in (6) implies that 𝐿 = 𝑥+𝑢+((𝜏+𝜇
2
)/𝜏)𝑦will

decrease along the solutions curve of model (1) if 𝜇
1
𝑥 + 𝐺𝑦 >

𝜆. Geometrically, all solution trajectories of model (1) will go
through the plane 𝑥 + 𝑢 + ((𝜏 + 𝜇

2
)/𝜏)𝑦 = 𝐿 from outside to

inside if 𝜇
1
𝑥 + 𝐺𝑦 > 𝜆.

Let 𝐿
0
be the maximal value of the function 𝑥 + ((𝜏 +

𝜇
2
)/𝜏)𝑦 on the bounded domain

𝐺
0
= {(𝑥, 𝑦) | 𝑥 ≥ 0, 𝑦 ≥ 0, 𝜇

1
𝑥 + 𝐺𝑦 ≤ 𝜆} , (7)

and let𝑀
0
be the maximal value of the function 𝜎𝛽𝑥𝑦 + 𝜀𝑠𝑦

on the bounded domain

𝐺
1
= {(𝑥, y) | 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 +

𝜏 + 𝜇
2

𝜏
𝑦 ≤ 𝐿

0
} . (8)

When 𝑥 + ((𝜏 + 𝜇
2
)/𝜏)𝑦 ≤ 𝐿

0
holds, the second equation of

model (1) yields
𝑑𝑢

𝑑𝑡
= 𝜎𝛽𝑥𝑦 + 𝜀𝑠𝑦 − 𝜏𝑢 − 𝜇

2
𝑢 ≤ 𝑀

0
− (𝜏 + 𝜇

2
) 𝑢. (9)

From the comparison principle and (9), it follows that there
exists a positive 𝑢

𝑚
= 𝑀
0
/(𝜏 + 𝜇

2
), such that 𝑑𝑢/𝑑𝑡 ≤ 0 when

𝑢 > 𝑢
𝑚
and 𝑥 + ((𝜏 + 𝜇

2
)/𝜏)𝑦 ≤ 𝐿

0
.

For any given initial values 𝑥(0) = 𝑥
0
≥ 0, 𝑢(0) = 𝑢

0
≥

0, and 𝑦(0) = 𝑦
0
≥ 0, there exists a plane 𝑃, given by the

equation

𝑃 : 𝑥 + 𝑢 +
𝜏 + 𝜇
2

𝜏
𝑦 = 𝐿

0
+ 𝑢
𝑚
+ 𝑥
0
+ 𝑢
0
+
𝜏 + 𝜇
2

𝜏
𝑦
0
, (10)

such that the point (𝑥
0
, 𝑢
0
, 𝑦
0
) locates inside the domain with

the boundaries 𝑥 = 0, 𝑢 = 0, 𝑦 = 0, 𝑢 = 𝑢
𝑚
+ 𝑥
0
+ 𝑢
0
+

((𝜏 + 𝜇
2
)/𝜏)𝑦
0
, and 𝑃. It is not difficult to verify that those

two planes 𝑢 = 𝑢
𝑚
+ 𝑥
0
+ 𝑢
0
+ ((𝜏 + 𝜇

2
)/𝜏)𝑦
0
and 𝑃 have the

intersection line 𝑥 + ((𝜏 + 𝜇
2
)/𝜏)𝑦 = 𝐿

0
. The equations in (6)

and (9) imply that
𝑑𝑢

𝑑𝑡
≤ 0, if 𝑢 = 𝑢

𝑚
+ 𝑥
0
+ 𝑢
0
+
𝜏 + 𝜇
2

𝜏
𝑦
0
≥ 𝑢
𝑚
,

𝑥 +
𝜏 + 𝜇
2

𝜏
𝑦 ≤ 𝐿

0
,

𝑑𝐿

𝑑𝑡
≤ 0 if 𝑥 +

𝜏 + 𝜇
2

𝜏
𝑦 ≥ 𝐿

0
.

(11)

Those inequalities imply that the domainwith the boundaries
𝑥 = 0, 𝑢 = 0, 𝑦 = 0, 𝑢 = 𝑢

𝑚
+ 𝑥
0
+ 𝑢
0
+ ((𝜏 + 𝜇

2
)/𝜏)𝑦
0
,

and 𝑃 is positively invariant for solutions of model (1). That
is, any solution of model (1) with nonnegative initial value is
bounded.

With a similar argument as used in the proof of
Theorem 1, we know that the domain

Γ = {(𝑥, 𝑢, 𝑦) | 0 ≤ 𝑥 ≤
𝜆

𝜇
1

, 0 ≤ 𝑢 ≤ 𝑢
𝑚
,

𝑦 ≥ 0, 𝑥 + 𝑢 +
𝜏 + 𝜇
2

𝜏
𝑦 ≤ 𝐿

0
+ 𝑢
𝑚
}

(12)

is positively invariant with respect to model (1). In fact, the
solutions of model (1) located on the boundary planes of Γ,
𝑥 = 𝜆/𝜇

1
, or 𝑢 = 𝑢

𝑚
, or 𝑥 + 𝑢 + ((𝜏 + 𝜇

2
)/𝜏)𝑦 = 𝐿

0
+ 𝑢
𝑚
, will

enter Γ0, where Γ0 is the interior of Γ. From (5), (6), and (9)
we can prove that all the solutions of model (1) with positive
initial values will enter Γ when the time is large enough. We
will investigate the dynamic behavior of model (1) on Γ in the
rest of the paper.

The straightforward calculation shows that model (1) has
two equilibria: the infection-free equilibrium 𝑃

0
= (𝑥
0
, 0, 0),

located on the boundary of Γ, where 𝑥
0
= 𝜆/𝜇

1
, and the

chronic infection equilibrium 𝑃
1
= (𝑥
1
, 𝑢
1
, 𝑦
1
), where

𝑥
1
=

𝜆

𝛽𝑦
1
+ 𝜇
1

, 𝑢
1
=
(𝜇
3
− (1 − 𝜀) 𝑠) 𝑦

1

𝜏
,

𝑦
1
=
𝜇
1

𝛽
(𝑅
0
− 1)

(𝜏 + 𝜇
2
) 𝜇
3

(𝜏 + 𝜇
2
) 𝜇
3
− 𝜏𝑠 − 𝜇

2
(1 − 𝜀) 𝑠

.

(13)
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𝑥
1
, 𝑢
1
, and 𝑦

1
are positive if and only if 𝑅

0
> 1 and (A1)

holds. We have the following conclusion on the existence of
the equilibrium of model (1).

Theorem 2. If 𝑅
0
≤ 1, then 𝑃

0
= (𝜆/𝜇

1
, 0, 0) is the only

equilibrium of model (1). If 𝑅
0
> 1 and (A1) holds, then

𝑃
1
= (𝑥
1
, 𝑢
1
, 𝑦
1
) is the unique chronic infection equilibrium.

3. Stability Analysis of Equilibria

3.1. Stability of Infection-Free Equilibrium. Intuitively, if 𝑅
0
<

1, then a Tax-expressing infected 𝐶𝐷4+ T cell will produce
less than one secondary infection on average in its lifetime.
This fact may lead to the extinction of the infection. We
will try to prove the global stability of the infection-free
equilibrium when 𝑅

0
< 1.

Theorem 3. If 𝑅
0
< 1, then the infection-free equilibrium 𝑃

0

of model (1) is stable, and it is unstable if 𝑅
0
> 1.

Proof. We use the linearized system of model (1) to discuss
the stability of 𝑃

0
. The characteristic equation of the matrix

of the linearized system of model (1) at the infection-free
equilibrium 𝑃

0
is

(𝜌 + 𝜇
1
) (𝜌
2
+ 𝑏
0
𝜌 + 𝑐
0
) = 0, (14)

where 𝑏
0
= 𝜇
3
(1 − 𝑅

0
+ (𝜎𝛽𝜏𝑥

0
+ 𝜏𝜀𝑠)/(𝜏 + 𝜇

2
)𝜇
3
) + 𝜏 + 𝜇

2
,

𝑐
0
= (1 − 𝑅

0
)(𝜏 + 𝜇

2
)𝜇
3
. From the Routh-Hurwitz criterion,

it is easy to know that all the roots of (14) have negative real
parts if 𝑅

0
< 1, and (14) has at least one root with positive real

part if 𝑅
0
> 1. This completes the proof.

Theorem 4. If 𝑅
0
< 1, then the infection-free equilibrium 𝑃

0

of model (1) is globally asymptotically stable in Γ.

Proof. We consider a Lyapunov function 𝐿 = 𝜏𝑢 + (𝜏 + 𝜇
2
)𝑦.

Calculating the derivative of 𝐿 along the solutions of model
(1) gives

𝑑𝐿

𝑑𝑡

(1)

= 𝜏
𝑑𝑢

𝑑𝑡
+ (𝜏 + 𝜇

2
)
𝑑𝑦

𝑑𝑡

= 𝑦 (𝜏𝜎𝛽𝑥 + 𝜏𝜀𝑠 + (𝜏 + 𝜇
2
) (1 − 𝜀) 𝑠 − (𝜏 + 𝜇

2
) 𝜇
3
)

≤ 𝑦(𝜏𝜎𝛽
𝜆

𝜇
1

+ 𝜏𝜀𝑠 + (𝜏 + 𝜇
2
) (1 − 𝜀) 𝑠 − (𝜏 + 𝜇2) 𝜇3)

= 𝑦𝜇
3
(𝜏 + 𝜇

2
) (𝑅
0
− 1) .

(15)

Therefore, 𝑅
0
< 1 implies that (𝑑𝐿/𝑑𝑡)|

(1)
≤ 0 for all 𝑡 > 0,

and (𝑑𝐿/𝑑𝑡)|
(1)

= 0 only if 𝑦 = 0. From the inequality in
(15) we can have that lim

𝑡→∞
𝑦(𝑡) = 0, lim

𝑡→∞
𝑢(𝑡) = 0. By

using the limiting theory for ordinary differential equations
we can have lim

𝑡→∞
𝑥(𝑡) = 𝜆/𝜇

1
. That is, the infection-free

equilibrium 𝑃
0
attracts all solutions of model (1) with initial

values in Γ. The global stability conclusion of Theorem 4 is
proved.

3.2. Stability of the Chronic Infection Equilibrium

Theorem5. Assume that (A1) holds; if𝑅0 > 1, then the unique
chronic infection equilibrium 𝑃

1
of model (1) is stable.

Proof. The characteristic equation of the matrix of the lin-
earized system of model (1) at the chronic infection equilib-
rium 𝑃

1
is

𝜌
3
+ 𝑏
1
𝜌
2
+ 𝑐
1
𝜌 + 𝑑
1
= 0, (16)

where

𝑏
1
= 𝜇
3
− (1 − 𝜀) 𝑠 + 𝜏 + 𝜇

2
+ 𝛽𝑦
1
+ 𝜇
1
,

𝑐
1
= (𝜏 + 𝜇

2
) (𝜇
3
− (1 − 𝜀) 𝑠)

+ (𝛽𝑦
1
+ 𝜇
1
) (𝜇
3
− (1 − 𝜀) 𝑠)

+ (𝛽𝑦
1
+ 𝜇
1
) (𝜏 + 𝜇

2
) − (𝜎𝛽𝜏𝑥

1
+ 𝜀𝜏𝑠) ,

𝑑
1
= (𝛽𝑦

1
+ 𝜇
1
) (𝜏 + 𝜇

2
) (𝜇
3
− (1 − 𝜀) 𝑠)

− 𝜀𝜏𝑠𝛽𝑦
1
− 𝜎𝛽𝜏𝜇

1
𝑥
1
− 𝜇
1
𝜀𝜏𝑠.

(17)

Since 𝛽𝑦
1
+ 𝜇
1
= 𝜆/𝑥

1
, 𝜎𝛽𝜏𝑥

1
+ 𝜀𝜏𝑠 = (𝜏 + 𝜇

2
)(𝜇
3
− (1 − 𝜀)𝑠),

we have 𝑐
1
= (𝜆
2
/𝑥
1
)𝑏
0
> 0, 𝑑

1
= 𝜇
1
𝜇
3
(𝜏 + 𝜇

2
)(𝑅
0
− 1). The

straightforward calculation yields 𝑏
1
𝑐
1
− 𝑑
1
> 0. According

to the Routh-Hurwitz criterion, we can see that all the roots
of (16) have negative real parts if 𝑅

0
> 1. This completes the

proof of Theorem 5.

The following two lemmas, which can be found in [29],
are used for the study of the uniform persistence of model
(1). We show that the disease persists when 𝑅

0
> 1; that is,

the infected proportion of the 𝐶𝐷4+ T cells persists above a
certain positive level for sufficiently large 𝑡.

Let 𝑓 : 𝑋 → 𝑋 be a continuous map and 𝑋
0
⊂ 𝑋 an

open set. Define 𝜕𝑋
0
= 𝑋/𝑋

0
and𝑀

𝜕
:= {𝑥 ∈ 𝜕𝑋

0
| 𝑓
𝑛
(𝑥) ∈

𝜕𝑋
0
, 𝑛 ≥ 0}.

Lemma 6 (see [29]). If 𝑓 : 𝑋 → 𝑋 is compact and point
dissipative, then there is a connected global attractor A that
attracts each bounded set in X.

Lemma 7 (see [29]). Let 𝑓 : 𝑋 → 𝑋 be a continuous map
and 𝑋

0
⊂ 𝑋 an open set. Assume that

(C1) 𝑓(𝑋
0
) → 𝑋

0
and 𝑓 has a global attractor 𝐴;

(C2) the maximal compact invariant set 𝐴
𝜕
= 𝐴 ∩𝑀

𝜕
of 𝑓

in 𝜕𝑋
0
, possibly empty, admits a Morse decomposition

{𝑀
1
, . . . ,𝑀

𝐾
} with the following properties:

(a) 𝑀
𝑖
is isolated in𝑋;

(b) 𝑊𝑠(𝑀
𝑖
) ∩ 𝑋
0
= 𝜙 for each 1 ≤ 𝑖 ≤ 𝑘.

Then there exists 𝜌 > 0 such that, for any compact internally
chain transitive set 𝐿 with 𝐿 ̸⊂ 𝑀

𝑖
for all 1 ≤ 𝑖 ≤ 𝑘, we have

inf
𝑥∈𝐿
𝑑(𝑥, 𝜕𝑋

0
) > 𝜌.

We deal with the uniform persistence of model (1) now.
Let 𝑋 = {(𝑥, 𝑢, 𝑦) | 𝑥 ≥ 0, 𝑢 ≥ 0, 𝑦 ≥ 0}, 𝑋

0
= {(𝑥, 𝑢, 𝑦) |
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𝑥 ≥ 0, 𝑢 > 0, 𝑦 > 0}; define 𝜕𝑋
0
= 𝑋/𝑋

0
, and 𝑀

𝜕
=

{(𝑥(0), 𝑢(0), 𝑦(0)) ∈ 𝜕𝑋
0
| Φ
𝑡
(𝑥(0), 𝑢(0), 𝑦(0)) ∈ 𝜕𝑋

0
, 𝑡 ≥ 0},

where Φ
𝑡
: 𝑋 → 𝑋 is the semiflow defined by model (1).

Proposition 8. One has𝑀
𝜕
= {(𝑥, 0, 0) | 𝑥 ≥ 0}.

Proof. We first show that 𝑀
𝜕
⊂ {(𝑥, 0, 0) | 𝑥 ≥ 0}; that is,

if (𝑥(0), 𝑢(0), 𝑦(0)) ∈ 𝑀
𝜕
, then 𝑢(0) = 𝑦(0) = 0. Due to the

definition of𝑀
𝜕
, we can getΦ

𝑡
(𝑥(0), 𝑢(0), 𝑦(0)) ∈ 𝜕𝑋

0
for all

𝑡 ≥ 0, especially, Φ
0
(𝑥(0), 𝑢(0), 𝑦(0)) = (𝑥(0), 𝑢(0), 𝑦(0)) ∈

𝜕𝑋
0
. If𝑀
𝜕
⊂ {(𝑥, 0, 0) | 𝑥 ≥ 0} does not hold, then at least one

of 𝑢(0), 𝑦(0) is greater than zero. Without loss of generality,
we assume that 𝑢(0) > 0. When 𝑢(0) > 0 we can prove that
𝑢(𝑡) and 𝑦(𝑡) are all greater than zero for 𝑡 ∈ [0, 1]. In fact,
from the second equation of model (1) we have

𝑑𝑢

𝑑𝑡
= 𝜎𝛽𝑥𝑦 + 𝜀𝑠𝑦 − 𝜏𝑢 − 𝜇

2
𝑢 ≥ − (𝜏 + 𝜇

2
) 𝑢, 𝑡 ∈ [0, 1] .

(18)

It follows that

𝑢 (𝑡) ≥ 𝑢 (0) exp [− (𝜏 + 𝜇
2
)] ≜ 𝑀

1
> 0. (19)

From the third equation of model (1) we have

𝑑𝑦

𝑑𝑡
= 𝜏𝑢 + (1 − 𝜀) 𝑠𝑦 − 𝜇

3
𝑦 ≥ 𝜏𝑀

1
+ (1 − 𝜀) 𝑠𝑦 − 𝜇

3
𝑦; (20)

then, for 𝑡 ∈ [0, 1], we can have

𝑦 (𝑡) ≥
𝜏𝑀
1

𝜇
3
− (1 − 𝜀) 𝑠

[1 − exp [− (𝜇
3
− (1 − 𝜀) 𝑠) 𝑡]]

+ 𝑦 (0) exp [− (𝜇
3
− (1 − 𝜀) 𝑠) 𝑡]

≥
𝜏𝑀
1

𝜇
3
− (1 − 𝜀) 𝑠

[1 − exp [− (𝜇
3
− (1 − 𝜀) 𝑠)]] > 0.

(21)

The inequalities 𝑢(𝑡) ≥ 𝑀
1
> 0 and 𝑦(𝑡) ≥ (𝜏𝑀

1
/(𝜇
3
− (1 −

𝜀)𝑠))[1 − exp[−(𝜇
3
− (1 − 𝜀)𝑠)]] > 0 for 𝑡 ∈ [0, 1] imply that

(𝑥(𝑡), 𝑢(𝑡), 𝑦(t)) ∈ 𝑋
0
for 𝑡 ∈ [0, 1]. From the definition of

𝑀
𝜕
and (𝑥(𝑡), 𝑢(𝑡), 𝑦(𝑡)) ∈ 𝑋

0
for 𝑡 ∈ [0, 1] we know that

Φ
0
(𝑥(0), 𝑢(0), 𝑦(0)) ∉ 𝜕𝑋

0
if 𝑢(0) > 0. This contradiction

implies that (𝑥(0), 𝑢(0), 𝑦(0)) ∈ 𝑀
𝜕
only if 𝑢(0) = 𝑦(0) = 0;

that is,𝑀
𝜕
⊂ {(𝑥, 0, 0) | 𝑥 ≥ 0}.

On the other hand, for any initial values (𝑥(0), 0, 0) ∈
{(𝑥, 0, 0) | 𝑥 ≥ 0}, we have 𝑑𝑢/𝑑𝑡 = 0, 𝑑𝑦/𝑑𝑡 = 0, and
𝑢(𝑡) = 𝑦(𝑡) = 0 for 𝑡 ≥ 0, {(𝑥, 0, 0) | 𝑥 ≥ 0} ⊂ 𝑀

𝜕
. The

proposition is proved.

From Proposition 8, we can get the conclusion that 𝑀
𝜕

is the maximal invariant set in 𝜕𝑋
0
. Next we show that

the solutions with the initial values in 𝑋
0
cannot go to the

boundary.

Proposition 9. Assume that (A1) holds. If 𝑅
0
> 1, then

there exists a 𝛿 > 0 such that the solution of model
(1) with initial value (𝑥(𝑡

0
), 𝑢(𝑡
0
), 𝑦(𝑡
0
)) ∈ 𝑋

0
satisfies

lim
𝑡→+∞

supmax{𝑢(𝑡), 𝑦(𝑡)} > 𝛿.

Proof. If the conclusion in Proposition 9 does not hold, then,
for any 𝛿 > 0, there exists a 𝑇 such that 𝑢(𝑡) ≤ 𝛿 and 𝑦(𝑡) ≤ 𝛿
for all 𝑡 > 𝑇. Consider the following equation:

𝑑𝑥

𝑑𝑡
= 𝜆 − 𝛽𝛿𝑥 − 𝜇

1
𝑥. (22)

The solution of (22) with the any initial value 𝑥(𝑡
0
) > 0 is

𝑥 (𝑡) =
𝜆

𝛽𝛿 + 𝜇
1

[1 − exp [(𝛽𝛿 + 𝜇
1
) (𝑡
0
− 𝑡)]]

+ 𝑥 (𝑡
0
) exp [(𝛽𝛿 + 𝜇

1
) (𝑡
0
− 𝑡)] ,

(23)

and lim
𝑡→+∞

𝑥(𝑡) = 𝜆/(𝛽𝛿 + 𝜇
1
). For 𝜀

1
> 0, there exists a

𝑇
1
> 𝑇, such that 𝑥(𝑡) > 𝜆/(𝛽𝛿 + 𝜇

1
) − 𝜀
1
holds when 𝑡 ≥ 𝑇

1
.

𝑥
1
(𝛿) = 𝜆/(𝛽𝛿 + 𝜇

1
) is an equilibrium of (22). The fact that

lim
𝛿→0

𝑥
1
(𝛿) = 𝜆/𝜇

1
= 𝑥
0
implies that 𝑥

1
(𝛿) ≥ 𝑥

0
− 𝜀
1
when

𝛿 is small enough. By the comparison principle, we can have
𝑥(𝑡) ≥ 𝑥(𝑡) and 𝑥(𝑡) ≥ 𝑥

0
− 2𝜀
1
, for 𝑡 > 𝑇

1
.

Consider the following linear system:

𝑑�̂�

𝑑𝑡
= 𝜎𝛽 (𝑥

0
− 2𝜀
1
) 𝑦 + 𝜀𝑠𝑦 − 𝜏�̂� − 𝜇

2
�̂�,

𝑑𝑦

𝑑𝑡
= 𝜏�̂� + (1 − 𝜀) 𝑠𝑦 − 𝜇

3
𝑦.

(24)

The characteristic equation is

𝜌
2
+ 𝑏
2
𝜌 + 𝑐
2
= 0, (25)

where 𝑏
2
= 𝜏 + 𝜇

2
+ 𝜇
3
− (1 − 𝜀)𝑠 > 0, 𝑐

2
= (1 − 𝑅

0
)(𝜏 +

𝜇
2
)𝜇
3
+2𝜏𝜎𝛽𝜀

1
. From the expression of 𝑐

2
we see that 𝑐

2
< 0 if

𝑅
0
> 1 and 𝜀

1
is small enough. Let 𝜌

1
and 𝜌
2
be the two roots

of 𝜌2 + 𝑏
2
𝜌 + 𝑐
2
= 0 and 𝜌

1
> 0 > 𝜌

2
. The solution of model

(24) with the initial value (�̂�(0), 𝑦(0)) > 0 satisfies

(�̂� (𝑡) , 𝑦 (𝑡))
𝑇
= 𝑑
1
𝜉
1
exp (𝜌

1
𝑡) + 𝑑

2
𝜉
2
exp (𝜌

2
𝑡) , (26)

where 𝜉
1
and 𝜉
2
are the eigenvectors corresponding to 𝜌

1
and

𝜌
2
, respectively. 𝑑

1
and 𝑑

2
are two constants depending on

(�̂�(0), 𝑦(0)). The solution expression of model (24) indicates
that max {�̂�(𝑡), 𝑦(𝑡)} → ∞ as 𝑡 → ∞. For the same initial
values, the comparison principle implies that 𝑢(𝑡) > �̂�(𝑡) and
𝑦(𝑡) > 𝑦(𝑡), where 𝑢(𝑡) and𝑦(𝑡) are the solutions ofmodel (1).
Subsequently, we have 𝑢(𝑡) → ∞ or 𝑦(𝑡) → ∞ as 𝑡 → ∞.
The contradiction shows that Proposition 9 holds true.

By using Propositions 8 and 9, we can get the uniform
persistence of model (1).

Theorem 10. Assume that (A1) holds. If 𝑅
0

> 1,
then model (1) is uniformly persistent with respect to
(𝑋
0
, 𝜕𝑋
0
); that is, there exists a positive number 𝜂 such that

min{lim
𝑡→∞

inf 𝑥(𝑡), lim
𝑡→∞

inf 𝑢(𝑡), lim
𝑡→∞

inf 𝑦(𝑡)} ≥

𝜂.

Proof. 𝑋 and 𝑋
0
are positively invariant for model (1). Φ

𝑡
is

point dissipative and compact. By Lemma 6 we know that
there is a connected global attractor𝐴 forΦ

𝑡
that attracts each

bounded set in𝑋.
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From the discussion of Proposition 8, we know that𝑀
𝜕
is

the maximal compact invariant set in 𝜕𝑋
0
. Since we choose

the Morse decomposition of 𝑀
𝜕
as {𝑃
0
} and ∪

𝑥∈𝑀𝜕
𝜔(𝑥) =

{𝑃
0
}, the set {𝑃

0
} is isolated. Proposition 9 shows that the

solutions of model (1) with initial values in 𝑋
0
cannot go to

the boundary, which implies that𝑊𝑠(𝑃
0
) ∩𝑋
0
= 𝜙. It follows

from Lemma 7 that model (1) is uniformly persistent with
respect to (𝑋

0
, 𝜕𝑋
0
).

The following lemmas in [30–32] are used to study the
global stability of the chronic infection equilibrium 𝑃

1
. We

will show that all the solutions of model (1) in Γ0 converge to
𝑃
1
if 𝑅
0
> 1.

Let 𝑥 → 𝑓(𝑥) ∈ 𝑅
𝑛 be a 𝐶1 function for 𝑥 in an open set

𝐷 ⊂ 𝑅
𝑛. Consider the system of differential equations

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥) . (27)

Let 𝑥(𝑡, 𝑥
0
) be the solution of model (27) satisfying 𝑥(0, 𝑥

0
) =

𝑥
0
.
A set 𝐾 is said to be absorbing in 𝐷 for model (27) if

𝑥(𝑡, 𝐾
1
) ⊂ 𝐾 for each compact 𝐾

1
⊂ 𝐷 and sufficiently large

𝑡. We make the following two basic assumptions.

(𝐻
1
) There exists a compact absorbing set𝐾 ⊂ 𝐷.

(𝐻
2
) System (27) has a unique equilibrium 𝑥 in𝐷.

System (27) is said to have the Poincaré-Bendixson
Property if any nonempty compact omega limit set that
contains no equilibrium is a closed orbit [31]. It is known that
a three-dimensional competitive system has the Poincaré-
Bendixson property in a convex region.

Lemma 11 (see [30]). Let𝐷 ∈ 𝑅
𝑛 be convex. The autonomous

system 𝑑𝑥/𝑑𝑡 = 𝑓(𝑥), 𝑥 ∈ 𝐷, is cooperative in 𝐷 if there
exists a diagonal matrix 𝑃 = diag(𝛼

1
, . . . , 𝛼

𝑛
) (𝛼
𝑖
= −1 or

1, 𝑖 = 1, 2, . . . , 𝑛), such that 𝑃(𝜕𝑓
𝑖
/𝜕𝑥
𝑗
)(𝑥)𝑃 ≥ 0, for 𝑖 ̸= 𝑗,

𝑥 ∈ 𝐷; that is, all off-diagonal entries of 𝑃(𝜕𝑓/𝜕𝑥)(𝑥)𝑃 are
nonnegative. It is competitive in 𝐷 if there exists a diagonal
matrix 𝑃 = diag(𝛼

1
, . . . , 𝛼

𝑛
) (𝛼
𝑖
= −1 or 1, 𝑖 = 1, 2, . . . , 𝑛),

such that 𝑃(𝜕𝑓
𝑖
/𝜕𝑥
𝑗
)(𝑥)𝑃 ≤ 0, for 𝑖 ̸= 𝑗, 𝑥 ∈ 𝐷; that is, all

off-diagonal entries of 𝑃(𝜕𝑓/𝜕𝑥)(𝑥)𝑃 are nonpositive.

Lemma 12 (see [32]). Assume that 𝑛 = 3 and 𝐷 is convex;
suppose that model (27) is competitive in𝐷; then it satisfies the
Poincaré-Bendixson property [32].

Lemma 13 (see [31]). Assume that the following conditions
hold.

(1) Assumptions (𝐻
1
) and (𝐻

2
) hold;

(2) model (27) satisfies the Poincaré-Bendixson property;
(3) for each periodic solution 𝑥 = 𝑝(𝑡) with 𝑝(0) ∈ 𝐷,

model (27) is asymptotically stable;
(4) (−1)𝑛 det((𝜕𝑓/𝜕𝑥)(𝑥)) > 0.

Then the unique equilibrium 𝑥 is globally asymptotically
stable in 𝐷.

Next, we show that model (1) is a competitive system
which implies that model (1) has the Poincaré-Bendixson
property.

Theorem 14. Model (1) is competitive in Γ.

Proof. The Jacobian matrix of model (1) is

𝐽 (𝑥, 𝑢, 𝑦) = [

[

−𝛽𝑦 − 𝜇
1

0 −𝛽𝑥

𝜎𝛽𝑦 −𝜏 − 𝜇
2

𝜎𝛽𝑥 + 𝜀𝑠

0 𝜏 (1 − 𝜀) 𝑠 − 𝜇
3

]

]

. (28)

Choose 𝑃 = diag(1, −1, 1); we can obtain

𝑃𝐽𝑃 = [

[

−𝛽𝑦 − 𝜇
1

0 −𝛽𝑥

−𝜎𝛽𝑦 −𝜏 − 𝜇
2

−𝜎𝛽𝑥 − 𝜀𝑠

0 −𝜏 (1 − 𝜀) 𝑠 − 𝜇3

]

]

. (29)

All off-diagonal entries of𝑃𝐽𝑃 are nonpositive. It follows from
Lemma 11 that model (1) is competitive in the convex region
Γ.

Now, we are ready to prove the global stability of the
unique chronic infection equilibrium 𝑃

1
of model (1).

Theorem 15. Assume that (A1) holds. If 𝑅
0
> 1, then the

unique chronic infection equilibrium 𝑃
1
of model (1) is globally

asymptotically stable in Γ0.

Proof. From Theorem 10 and Lemma 6, we know that Φ
𝑡

is compact and point dissipative, and there is a global
attractor 𝐴 for Φ

𝑡
. Subsequently, model (1) satisfies (𝐻

1
).

FromTheorem 2, model (1) satisfies (𝐻
2
). ByTheorem 14 and

Lemma 12, model (1) has the Poincaré-Bendixson property.
Thus conditions (1) and (5) of Lemma 13 hold.

The second compound system of the linearized system
along a periodic solution (𝑥(𝑡), 𝑢(𝑡), 𝑦(𝑡)) of model (1) is

𝑑𝑋

𝑑𝑡
= − (𝛽𝑦 + 𝜇

1
+ 𝜏 + 𝜇

2
)𝑋 + (𝜎𝛽𝑥 + 𝜀𝑠) 𝑌 + 𝛽𝑥𝑍,

𝑑𝑌

𝑑𝑡
= 𝜏𝑋 − (𝛽𝑦 + 𝜇

1
− (1 − 𝜀) 𝑠 + 𝜇3) 𝑌,

d𝑍
𝑑𝑡

= 𝜎𝛽𝑦𝑌 − (𝜏 + 𝜇
2
− (1 − 𝜀) 𝑠 + 𝜇

3
) 𝑍.

(30)

In order to verify that model (30) is asymptotically stable, we
define a Lyapunov function

𝑉 (𝑋, 𝑌, 𝑍; 𝑥, 𝑢, 𝑦) = sup{|𝑋| , 𝑢
𝑦
(|𝑌| +

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

|𝑍|)} .

(31)

From the uniformpersistence, we know that the orbitO of
the periodic solution (𝑥(𝑡), 𝑢(𝑡), 𝑦(𝑡)) has a positive distance
from the boundary of Γ. There exists a constant 𝑐 > 0 such
that

𝑉 (𝑋, 𝑌, 𝑍; 𝑥, 𝑢, 𝑦) ≥ 𝑐 sup {|𝑋| , |𝑌| , |𝑍|} . (32)
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For all (𝑋, 𝑌, 𝑍) ∈ 𝑅
3 and (𝑥, 𝑢, 𝑦) ∈ O, we have

the following estimates on the right derivatives along the
solutions (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡)) of model (30):

𝐷
+ (|𝑋|) =

𝑋

|𝑋|
(− (𝛽𝑦 + 𝜇

1
+ 𝜏 + 𝜇

2
)𝑋

+ (𝜎𝛽𝑥 + 𝜀𝑠) 𝑌 + 𝛽𝑥𝑍)

≤ − (𝛽𝑦 + 𝜇
1
+ 𝜏 + 𝜇

2
) |𝑋|

+ (𝜎𝛽𝑥 + 𝜀𝑠) |𝑌| + 𝛽𝑥 |𝑍|

= − (𝛽𝑦 + 𝜇
1
+ 𝜏 + 𝜇

2
) |𝑋|

+ (𝜎𝛽𝑥 + 𝜀𝑠)
𝑦

𝑢
⋅
𝑢

𝑦
(|𝑌| +

𝛽𝑥

𝜎𝛽𝑥 + 𝜀𝑠
|𝑍|)

= − (𝛽𝑦 + 𝜇
1
+ 𝜏 + 𝜇

2
) |𝑋|

+ (𝜎𝛽𝑥 + 𝜀𝑠)
𝑦

𝑢
⋅
𝑢

𝑦
(|𝑌| +

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

|𝑍|) ;

𝐷
+
(|𝑌|) =

𝑌

|𝑌|
(𝜏𝑋 − (𝛽𝑦 + 𝜇

1
− (1 − 𝜀) 𝑠 + 𝜇

3
) 𝑌)

≤ 𝜏 |𝑋| − (𝛽𝑦 + 𝜇1 − (1 − 𝜀) 𝑠 + 𝜇3) |𝑌| ;

𝐷
+
(|𝑍|) =

𝑍

|𝑍|
(𝜎𝛽𝑦𝑌 − (𝜏 + 𝜇

2
− (1 − 𝜀) 𝑠 + 𝜇

3
) 𝑍)

≤ 𝜎𝛽𝑦 |𝑌| − (𝜏 + 𝜇2 − (1 − 𝜀) 𝑠 + 𝜇3) |𝑍| .

(33)

From (33) we have

𝐷
+
(
𝑢

𝑦
(|𝑌| +

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

|𝑍|))

=
𝑢

𝑦 − 𝑢𝑦



𝑦2
(|𝑌| +

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

|𝑍|)

+
𝑢

𝑦
(𝐷
+ |𝑌| +

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

𝐷
+ |𝑍|)

≤ (
𝑢


𝑢
−
𝑦


𝑦
) ⋅

𝑢

𝑦
(|𝑌| +

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

|𝑍|)

+
𝑢

𝑦
(𝜏 |𝑋| − (𝛽𝑦 + 𝜇1 − (1 − 𝜀) 𝑠 + 𝜇3) |𝑌|)

+
𝑢

𝑦
⋅

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

× (𝜎𝛽𝑦 |𝑌| − (𝜏 + 𝜇2 − (1 − 𝜀) 𝑠 + 𝜇3) |𝑍|)

= (
𝑢


𝑢
−
𝑦


𝑦
) ⋅

𝑢

𝑦
(|𝑌| +

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

|𝑍|)

+
𝑢

𝑦
⋅

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

|𝑍| (−𝜏 − 𝜇2 + (1 − 𝜀) 𝑠 − 𝜇3)

+
𝑢

𝑦
𝜏 |𝑋| +

𝑢

𝑦
|𝑌| ( − 𝜇1 + (1 − 𝜀) 𝑠 − 𝜇3 − 𝛽𝑦

+
𝜎𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

𝛽𝑦)

≤ (
𝑢


𝑢
−
𝑦


𝑦
) ⋅

𝑢

𝑦
(|𝑌| +

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

|𝑍|) +
𝑢

𝑦
𝜏 |𝑋|

+
𝑢

𝑦
|𝑌| (−𝜇1 + (1 − 𝜀) 𝑠 − 𝜇3)

+
𝑢

𝑦
⋅

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

|𝑍| (−𝜏 − 𝜇2 + (1 − 𝜀) 𝑠 − 𝜇3)

≤
𝑢

𝑦
𝜏 |𝑋| + (

𝑢


𝑢
−
𝑦


𝑦
+ (1 − 𝜀) 𝑠

−𝜇
3
−min {𝜇

1
, 𝜏 + 𝜇

2
} )

×
𝑢

𝑦
(|𝑌| +

𝛽𝜆

𝜎𝛽𝜆 + 𝜀𝑠𝜇
1

|𝑍|) .

(34)

The inequalities in (33) and (34) lead to

𝐷
+
𝑉 (𝑡) ≤ max {𝑔

1
(𝑡) , 𝑔
2
(𝑡)} 𝑉 (𝑡) , (35)

where

𝑔
1
(𝑡) = − (𝛽𝑦 + 𝜇

1
+ 𝜏 + 𝜇

2
) + (𝜎𝛽𝑥 + 𝜀𝑠)

𝑦

𝑢
,

𝑔
2
(𝑡) =

𝑢

𝑦
𝜏 +

𝑢


𝑢
−
𝑦


𝑦
+ (1 − 𝜀) 𝑠 − 𝜇

3
−min {𝜇

1
, 𝜏 + 𝜇

2
} .

(36)

After rewriting the last two equations of model (1), we find
that

(𝜎𝛽𝑥 + 𝜀𝑠) ⋅
𝑦

𝑢
=
𝑢


𝑢
+ 𝜏 + 𝜇

2
,

𝑦


𝑦
=
𝑢

𝑦
𝜏 + (1 − 𝜀) 𝑠 − 𝜇

3
.

(37)

From (36) and (37), we obtain

max {𝑔
1 (𝑡) , 𝑔2 (𝑡)} ≤

𝑢


𝑢
−min {𝜇

1
, 𝜏 + 𝜇

2
} ,

∫

𝜔

0

max {𝑔
1 (𝑡) , 𝑔2 (𝑡)} 𝑑𝑡

≤ ∫

𝜔

0

(
𝑢


𝑢
−min {𝜇

1
, 𝜏 + 𝜇

2
}) 𝑑𝑡

= ln 𝑢(𝑡)|𝜔
0
− 𝜔min {𝜇

1
, 𝜏 + 𝜇

2
}

= −𝜔min {𝜇
1
, 𝜏 + 𝜇

2
} .

(38)
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Figure 2: Global stability of the infection-free equilibrium 𝑃
0
when 𝑅

0
< 1.

The inequalities in (35) and (38) imply that 𝑉(𝑡) → 0 as
𝑡 → ∞, which leads to (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡)) → 0 as 𝑡 → ∞

because of (32). As a result, the second compound system
(30) is asymptotically stable. This verifies condition (6) of
Lemma 13.

Let 𝐽(𝑃
1
) be the Jacobian matrix of model (1) at 𝑃

1
. Then

we have

(−1)
3 det(

𝜕𝑓

𝜕𝑥
(𝑃
1
))

= −[

[

−𝛽𝑦
1
− 𝜇
1

0 −𝛽𝑥
1

𝜎𝛽𝑦
1

−𝜏 − 𝜇
2

𝜎𝛽𝑥
1
+ 𝜀𝑠

0 −𝜏 (1 − 𝜀) 𝑠 − 𝜇
3

]

]

= (𝛽𝑦
1
+ 𝜇
1
) ((𝜇
3
− (1 − 𝜀) 𝑠) (𝜏 + 𝜇

2
) + 𝜀𝑠𝜏)

+ 𝜎𝛽𝜏𝜇
1
𝑥
1
> 0.

(39)

Condition (9) of Lemma 13 holds. The chronic infection
equilibrium 𝑃

1
of model (1) is globally asymptotically stable

in Γ0 since all conditions of Lemma 13 are satisfied.

4. Numerical Simulation

Numerical simulations are done to demonstrate the results in
Section 3.The sensitive analysis is given to show the effects of
the model parameters on the solutions.

In numerical simulations, the time scale is a day. The rate
of healthy𝐶𝐷4+ helper T cells produced in the bone marrow,
𝜆, is 15–25 cells/mm3/day.The coefficient of infectious trans-
missibility, 𝛽, is 0.0005–0.003mm3/cell/day. The proportion
of infected cells expressing Tax, 𝜏, is (0.003–0.03)/day. The
removal rates of healthy 𝐶𝐷4+ T cells, resting infected 𝐶𝐷4+
T cells, and Tax-expressing infected 𝐶𝐷4+ T cells, 𝜇

1
, 𝜇
2
, and

𝜇
3
, are taken to be the value 0.01–0.05/day. The death rate

of the Tax-expressing infected 𝐶𝐷4+ T cells is considerably
shorter than the natural lifespan of 𝐶𝐷4+ T cells [33].

In Figure 2, we use the following set of parameters: 𝜆 =
20, 𝛽 = 0.001, 𝜇

1
= 𝜇
2
= 1/30, 𝑠 = 0.05, 𝜎 = 0.01, 𝜀 = 0.9,

𝜏 = 0.03, 𝜇
3
= 0.05, and 𝑅

0
= 0.5832 < 1. All solutions

converge to the infection-free equilibrium 𝑃
0
.

In Figure 3, we use the following set of parameters: 𝜆 =
20, 𝛽 = 0.001, 𝜇

1
= 1/30, 𝜇

2
= 0.02, 𝑠 = 0.1, 𝜎 = 0.1, 𝜀 = 0.8,
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Figure 3: Global stability of the infection-free equilibrium 𝑃
1
when 𝑅

0
> 1.
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Figure 4: Sensitivity analysis of 𝑅
0
with the parameters came from

LHS sampling.

𝜏 = 0.03, 𝜇
3
= 0.09, and 𝑅

0
= 1.1556 > 1. All solutions

converge to the chronic infection equilibrium 𝑃
1
.

Table 1: PRCC results and 𝑃 value.

Parameters 𝛽 𝜏 𝑠 𝜇
1

𝜇
2

𝜇
3

PRCC 0.8597 0.3421 0.0214 −0.0575 −0.0813 −0.0610

𝑃 value 0.0000 0.0000 0.4994 0.0696 0.0103 0.0545

A sensitivity analysis quantifies how changes in the values
of the input parameters alter the value of the outcome
variable [34]. The sensitivity analysis is performed to explore
the behavior of model (1) by calculating the partial rank
correlation coefficients (PRCC) for each input parameter,
which are sampled by the Latin hypercube sample (LHS)
and 𝑅

0
(Table 1). Figure 4 shows that a significantly strong

positive correlation exists between parameters 𝛽 and 𝑅
0

(PRCC = 0.8597; 𝑃 value = 0 < 0.01). The second sensitive
parameter to 𝑅

0
is 𝜏 (PRCC = 0.3421; 𝑃 value = 0 < 0.01). The

result indicates that the cell-to-cell contact transmission and
Tax expression contribute a lot to the viral infection.

The sensitivity analysis result shows that 𝛽 and 𝜏 are
two significant parameters for the infection. We illustrate the
impact of 𝛽 and 𝜏 on the magnitude of the chronic infection
equilibrium 𝑃

1
by numerical simulations. The curves in

Figures 5(a) and 5(b) show the dependence of 𝑢
1
and 𝑦

1
on

the parameters 𝛽 and 𝜏, respectively. The surfaces in Figures
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Figure 5: The impact of 𝛽 and 𝜏 on the magnitude of the chronic infection equilibrium 𝑃
1
.

5(c) and 5(d) give the values of 𝑢
1
or 𝑦
1
as the functions of

𝛽 and 𝜏, respectively. Those curves and surfaces in Figure 5
indicate that 𝑢

1
and 𝑦

1
will increase with 𝛽 and 𝜏. For any

given 𝜏, 𝑢
1
or 𝑦
1
increases very fast for small 𝛽 and quite slow

for large 𝛽.

5. Concluding Remarks

We have formulated and studied a mathematical model of
HTLV-1 in vivo including the spontaneous HTLV-1 antigen
Tax expression, cell-to-cell contact, and mitotic infectious
route to the viral dynamics. The persistence of the model
is discussed. Sufficient conditions are established for the
global asymptotic stability of the infection-free equilibrium
and chronic infection equilibrium.The sensitivity analysis by
PRCC with the LHS sample is presented to show the impact
of the parameters on the model dynamics.

As we know, infected cells from HAM/TSP patients have
a significantly higher probability of expressing Tax protein
than infected cells from ACs. When an infected individual

has settled at a chronic infection state, the proportion of
Tax-expressing cells in infected cells is 𝑦/(𝑢 + 𝑦), where
𝑢 = ((𝜇

3
− (1 − 𝜀)𝑠)/𝜏)𝑦. Hence (𝜕/𝜕𝜏)(𝑦/(𝑢 + 𝑦)) =

(𝜇
3
− (1 − 𝜀)𝑠)/(𝜇

3
− (1 − 𝜀)𝑠 + 𝜏)

2
> 0. That is, a faster

rate of spontaneous expression of the Tax results in a higher
proportion of 𝑦 in infected 𝐶𝐷4+ T cells which influence the
risk of HAM/TSP.

It follows from our sensitivity analysis that 𝛽 and 𝜏 are
significantly sensitive to the reproduction number 𝑅

0
. In

particular, increasing the rate of Tax expression results in a
reduction of the proportion of proviral cell at the equilibrium
state. This conclusion implies that Tax expression should be
controlled in the therapeutic intervention in order to reduce
the risk of HAM/TSP.

Our conclusions are based on a simple model; with the
recent progress in HTLV-1 pathogenesis and new findings
in immune reactions against HTLV-1 infection and Tax
expression, more factors should be investigated in improved
models.
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