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Recently, Basha (2013) addressed a problem that amalgamates approximation and optimization in the setting of a partially ordered
set that is endowed with a metric. He assumed that if 𝐴 and 𝐵 are nonvoid subsets of a partially ordered set that is equipped
with a metric and 𝑆 is a non-self-mapping from 𝐴 to 𝐵, then the mapping 𝑆 has an optimal approximate solution, called a best
proximity point of themapping 𝑆, to the operator equation 𝑆𝑥 = 𝑥, when 𝑆 is a continuous, proximallymonotone, ordered proximal
contraction. In this note, we are going to obtain his results by omitting ordering, proximal monotonicity, and ordered proximal
contraction on 𝑆.

1. Introduction

Let 𝑆 be a non-self-mapping from 𝐴 to 𝐵, where 𝐴 and 𝐵 are
nonempty subsets of ametric space𝑋. Clearly, the set of fixed
points of 𝑆 can be empty. In this case, one often attempts to
find an element 𝑥 that is in some sense closest to 𝑆(𝑥). Best
approximation theory and best proximity point analysis are
applicable for solving such problems. The well-known best
approximation theorem, due to Fan [1], asserts that if 𝐴 is a
nonempty, compact, and convex subset of a normed linear
space 𝑋 and 𝑆 is a continuous function from 𝐴 to 𝑋, then
there exists a point 𝑥 in 𝐴 such that the distance of 𝑥 to 𝑆(𝑥)
is equal to the distance of 𝑆(𝑥) to 𝐴. Such a point 𝑥 is called
a best approximation point of 𝑆 in 𝐴. A point 𝑥 in 𝐴 is said
to be a best proximity point for 𝑆, if the distance of 𝑥 to 𝑆(𝑥)
is equal to the distance of 𝐴 to 𝐵. The aim of best proximity
point theory is to provide sufficient conditions that assure
the existence of best proximity points. Investigation of several
variants of contractions for the existence of a best proximity
point can be found in [1–15]. In most of the papers on the
best proximity, the ordering, proximal monotonicity, and
ordered proximal contraction on the mapping 𝑆 play a key
role. A natural question arises that it is possible that we can
have other ways that may not require the ordering as well as
proximal monotonicity and ordered proximal contraction on
the mapping 𝑆. Very recently, Basha [5] addressed a problem

that amalgamates approximation and optimization in the
setting of a partially ordered set that is endowed with a
metric. He assumed that if 𝐴 and 𝐵 are nonvoid subsets of
a partially ordered set that is equipped with a metric and 𝑆 is
a non-self-mapping from 𝐴 to 𝐵, then the mapping 𝑆 has an
optimal approximate solution, called a best proximity point
of the mapping 𝑆, to the operator equation 𝑆𝑥 = 𝑥, when
𝑆 is a continuous, proximally monotone, ordered proximal
contraction. In this note, we are going to obtain his results
by omitting ordering, proximal monotonicity, and ordered
proximal contraction on 𝑆.

2. Preliminary Results

Let 𝑋 be a nonempty set and let 𝑑 be a metric on 𝑋. Unless
otherwise specified, it is assumed throughout this paper
that 𝐴 and 𝐵 are nonempty subsets of 𝑋. We recollect the
following notations and preliminary results:

𝑑 (𝐴, 𝐵) := inf {𝑑 (𝑥, 𝑦) | 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} ,

𝐴
0
:= {𝑥 ∈ 𝐴 | 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑦 ∈ 𝐵} ,

𝐵
0
:= {𝑦 ∈ 𝐵 | 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑥 ∈ 𝐴} .

(1)

Proposition 1. Let𝐴 and 𝐵 be two compact subsets of a metric
space (𝑋, 𝑑). Then both 𝐴

0
and 𝐵

0
are nonempty sets.
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Proof. Suppose that both 𝐴 and 𝐵 are two compact subsets
of a metric space (𝑋, 𝑑). Let {(𝑎

𝑛
, 𝑏
𝑛
)} ⊆ 𝐴 × 𝐵 such that

𝑑(𝑎
𝑛
, 𝑏
𝑛
) → 𝑑(𝐴, 𝐵) as 𝑛 → ∞. Since 𝐴 and 𝐵 are compact,

𝐴×𝐵 is also compact.There exists {(𝑎
𝑛𝑘
, 𝑏
𝑛𝑘
)} ⊆ {(𝑎

𝑛
, 𝑏
𝑛
)} such

that

(𝑎
𝑛𝑘
, 𝑏
𝑛𝑘
) → (𝑎, 𝑏) ∈ 𝐴 × 𝐵 as 𝑘 → ∞. (2)

Note that (2) is equivalent to

𝑎
𝑛𝑘
→ 𝑎 ∈ 𝐴, 𝑏

𝑛𝑘
→ 𝑏 ∈ 𝐵 as 𝑘 → ∞. (3)

Let us consider

𝑑 (𝐴, 𝐵) ≤ 𝑑 (𝑎, 𝑏)

≤ 𝑑 (𝑎, 𝑎
𝑛𝑘
) + 𝑑 (𝑎

𝑛𝑘
, 𝑏
𝑛𝑘
) + 𝑑 (𝑏

𝑛𝑘
, 𝑏)

≤ 𝑑 (𝑎, 𝑎
𝑛𝑘
) + 𝑑 (𝐴, 𝐵) + 𝑑 (𝑏𝑛𝑘

, 𝑏) .

(4)

By employing (3) and letting 𝑘 → ∞ in (4), we obtain
𝑑(𝑎, 𝑏) = 𝑑(𝐴, 𝐵). Hence 𝐴

0
̸= ⌀ and 𝐵

0
̸= ⌀. This completes

the proof.

Proposition 2. Let𝐴 be a compact and let 𝐵 be a closed subset
of the Euclidian spaceR𝑛 with norm ‖ ⋅ ‖. Then both𝐴

0
and 𝐵

0

are nonempty set.

Proof. Suppose that 𝐴 is compact and 𝐵 is closed subset of
the Euclidian space (R𝑛, ‖ ⋅ ‖). Let {(𝑎

𝑛
, 𝑏
𝑛
)} ⊆ 𝐴×𝐵 such that

‖𝑎
𝑛
− 𝑏
𝑛
‖ → 𝑑(𝐴, 𝐵) as 𝑛 → ∞. Since 𝐴 is compact, there

exists {𝑎
𝑛𝑘
} ⊆ {𝑎

𝑛
} such that

𝑎
𝑛𝑘
→ 𝑎 ∈ 𝐴 as 𝑘 → ∞. (5)

Note that

𝑏
𝑛𝑘


≤

𝑏
𝑛𝑘
− 𝑎
𝑛𝑘


+

𝑎
𝑛𝑘


≤ 𝑑 (𝐴, 𝐵) +


𝑎
𝑛𝑘


, (6)

for all 𝑘 ∈ N.Thismeans that {𝑏
𝑛𝑘
} is bounded. It follows from

the Bolzano-Weierstrass theorem and the closeness of 𝐵 that
there exists {𝑏

𝑛𝑘𝑗
} ⊆ {𝑏
𝑛𝑘
} such that

𝑏
𝑛𝑘𝑗

→ 𝑏 ∈ 𝐵 as 𝑗 → ∞. (7)

Let us consider

𝑑 (𝐴, 𝐵) ≤ ‖𝑎 − 𝑏‖

≤


𝑎 − 𝑎
𝑛𝑘𝑗


+


𝑎
𝑛𝑘𝑗

− 𝑏
𝑛𝑘𝑗


+


𝑏
𝑛𝑘𝑗

− 𝑏



≤


𝑎 − 𝑎
𝑛𝑘𝑗


+ 𝑑 (𝐴, 𝐵) +


𝑏
𝑛𝑘𝑗

− 𝑏


.

(8)

By employing (5) and (7) and letting 𝑗 → ∞ in (8), we obtain
‖𝑎 − 𝑏‖ = 𝑑(𝐴, 𝐵). Hence 𝐴

0
̸= ⌀ and 𝐵

0
̸= ⌀. This completes

the proof.

Proposition 3. Let 𝐴 and 𝐵 be two nonempty subsets of a
metric space (𝑋, 𝑑). Then the following are satisfied.

(i) If 𝐵 is compact and 𝐴 is closed, then 𝐴
0
is a closed

subset of𝑋.

(ii) If𝐴 is compact and𝐵 is closed, then𝐵
0
is a closed subset

of𝑋.

(iii) If both 𝐴 and 𝐵 are compact, then 𝐴
0
and 𝐵

0
are

nonempty and closed.

Proof. (i) It is trivial in the case of 𝐴
0
= ⌀. Suppose that

𝐴
0

̸= ⌀ and let {𝑎
𝑛
} ⊆ 𝐴

0
such that

𝑎
𝑛
→ 𝑎 ∈ 𝑋 as 𝑛 → ∞. (9)

Note that 𝐴
0
⊆ 𝐴 and 𝐴 is closed, so we have 𝑎 ∈ 𝐴. Since

𝑎
𝑛
∈ 𝐴
0
, there is 𝑏

𝑛
∈ 𝐵 such that 𝑑(𝑎

𝑛
, 𝑏
𝑛
) = 𝑑(𝐴, 𝐵). It

follows from the compactness of 𝐵 that there exists {𝑏
𝑛𝑘
} ⊆

{𝑏
𝑛
} such that

𝑏
𝑛𝑘
→ 𝑏 ∈ 𝐵 as 𝑘 → ∞. (10)

Now, let {𝑎
𝑛𝑘
} ⊆ {𝑎

𝑛
} and consider

𝑑 (𝐴, 𝐵) ≤ 𝑑 (𝑎, 𝑏)

≤ 𝑑 (𝑎, 𝑎
𝑛𝑘
) + 𝑑 (𝑎

𝑛𝑘
, 𝑏
𝑛𝑘
) + 𝑑 (𝑏

𝑛𝑘
, 𝑏)

≤ 𝑑 (𝑎, 𝑎
𝑛𝑘
) + 𝑑 (𝐴, 𝐵) + 𝑑 (𝑏

𝑛𝑘
, 𝑏) .

(11)

By employing (9) and (10) and letting 𝑘 → ∞ in (11), we
obtain 𝑑(𝑎, 𝑏) = 𝑑(𝐴, 𝐵). This implies that 𝑎 ∈ 𝐴

0
and, hence,

𝐴
0
is closed. This completes the proof.
The proof of (ii) is obvious from (i) and also the proof (iii)

follows from Proposition 1 and (i) and (ii).

The next result extends Proposition 3.1 of [10] from
normed linear spaces to metrizable topological vector spaces.

Proposition 4. Let 𝑋 be real topological vector space whose
topology is induced by translation invariant metric 𝑑 with the
property

𝑑 (𝑡𝑥, 𝑥) = (1 − 𝑡) 𝑑 (𝑥, 0
𝑋
) , ∀ (0 < 𝑡 < 1, 𝑥 ∈ 𝑋) , (∗)

where 0
𝑋
denotes the zero vector of𝑋. Let𝐴 and𝐵 be two closed

subsets of𝑋 such that 𝑑(𝐴, 𝐵) > 0. Then

𝐴
0
⊆ 𝑏𝑑 (𝐴) , 𝐵

0
⊆ 𝑏𝑑 (𝐵) , (12)

where 𝑏𝑑(𝐴) and 𝑏𝑑(𝐵) are denoted by the boundary of 𝐴 and
𝐵, respectively.

Proof. Let 𝑎 ∈ 𝐴
0
. Then there exists 𝑏 ∈ 𝐵 such that 𝑑(𝑎, 𝑏) =

𝑑(𝐴, 𝐵) > 0. It is obvious that 𝐴 = int𝐴 ∪ 𝑏𝑑(𝐴). Let on the
contrary 𝑎 ∈ int𝐴. Then, there is closed neighborhood of the
0
𝑋
(the zero vector) and especially positive number 𝜀 such

that 𝑎 + 𝑡(𝑏 − 𝑎) ∈ 𝐴, for all 𝑡 ∈ [0, 𝜀]. Let

𝑡
0
= max {𝑡 ∈ [0, 1] : 𝑎 + 𝑡 (𝑏 − 𝑎) ∈ 𝐴} . (13)
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It is clear from 𝐴 ∩ 𝐵 = 0 and the closeness of 𝐴 and 𝐵 with
𝑏 ∈ 𝐵 that 0 < 𝑡

0
< 1 and 𝑎 + 𝑡

0
(𝑏 − 𝑎) ∈ 𝐴. Hence, it follows

from the translation invariant property and (∗) that

0 < 𝑑 (𝑎, 𝑏) = 𝑑 (𝐴, 𝐵)

≤ 𝑑 (𝑎 + 𝑡
0
(𝑏 − 𝑎) , 𝑏)

= 𝑑 (𝑎 + 𝑡
0
(𝑏 − 𝑎) − 𝑎, 𝑏 − 𝑎)

= 𝑑 (𝑡
0
(𝑏 − 𝑎) , 𝑏 − 𝑎) = (1 − 𝑡

0
) 𝑑 ((𝑏 − 𝑎) , 0

𝑋
)

= (1 − 𝑡
0
) 𝑑 ((𝑏 − 𝑎 + 𝑎) , 0

𝑋
+ 𝑎)

= (1 − 𝑡
0
) 𝑑 (𝑎, 𝑏) < 𝑑 (𝑎, 𝑏) ,

(14)

which is a contradiction. This completes the proof.

The following example shows that there are metrizable
topological vector spaces with the properties cited in the
previous proposition which are not normable.

Example 5. Let 𝑋 be a real vector space and A = {𝑃
𝑛
}
𝑛∈𝑁

a countable family of seminorms on 𝑋 which separates the
nonzero points of 𝑋 from 0

𝑋
(the zero vector of 𝑋). For

each 𝑦 ∈ 𝑋 and each index 𝑛 ∈ 𝑁, define 𝑔
𝑦,𝑛
(𝑥) =

𝑃
𝑛
(𝑥 − 𝑦). Let 𝜏 be the topology on 𝑋 generated by the

family {𝑔}
(𝑦,𝑛)∈𝑋×𝑁

. One can see that (𝑋, 𝜏) is a topological
vector space (even locally convex space). One can verify
the topology 𝜏 induced by the translation invariant meter
𝑑(𝑥, 𝑦) = ∑

∞

𝑛=1
2
−𝑛min(𝑃

𝑛
(𝑥 − 𝑦), 1). Moreover, for each

positive enough small number 𝑡, we have 𝑑(𝑡𝑥, 𝑥) = (1 −

𝑡)𝑑(𝑥, 0
𝑋
) for each 𝑥 ∈ 𝑋. However,𝑋 is not normable.

3. Main Results

In this section, we provide an existence result for the best
proximity point of the mapping 𝑆 on the metric space 𝑋
by omitting ordering, proximal monotonicity, and ordered
proximal contraction on 𝑆.

We begin with an example which shows that it is possible
in the finite dimensional Euclidean space that the proximity
points set for even a linear mapping (here projection) be
empty.

Example 6. Let 𝑋 = R2, 𝐴 = {(𝑥, 1/𝑥) | 𝑥 > 0}, and 𝐵 =

{(𝑥, 0) | 𝑥 ⩾ 0}. Define function 𝑆 : 𝐴 → 𝐵 by

𝑆 (𝑥,
1

𝑥
) = (𝑥, 0) , ∀ (𝑥,

1

𝑥
) ∈ 𝐴. (15)

It is clear that 𝑆 is continuous (since it is projection). It is not
hard to verify that

(i) both 𝐴 and 𝐵 are closed subset of𝑋;
(ii) 𝑑(𝐴, 𝐵) = 0;
(iii) there is no 𝑥∗ ∈ 𝑋 such that 𝑑(𝑥∗, 𝑆𝑥∗) = 𝑑(𝐴, 𝐵)

(i.e., there is no best proximity point).

To achieve understanding in Example 6, let us see
Figure 1.
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Proposition 7. Let 𝐴 be a compact subset and let 𝐵 be a
nonvoidsubset of a metric space (𝑋, 𝑑). Let 𝑆 : 𝐴 → 𝐵 be
continuous with the property that there exists 𝐵 ∈ B such that
𝐵 ⊆ 𝑆(𝐴), where

B = {{𝑏
𝑛
} ⊆ 𝐵 | ∃ {𝑎

𝑛
} ⊆ 𝐴 such that 𝑑 (𝑎

𝑛
, 𝑏
𝑛
) ↓ 𝑑 (𝐴, 𝐵)} .

(16)

Then, there exists an element 𝑥∗ in 𝐴 such that

𝑑 (𝑥
∗
, 𝑆𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (17)

Proof. Pick {𝑏
𝑛
} = 𝐵 ∈ B such that {𝑏

𝑛
} = 𝐵 ⊆ 𝑆(𝐴). Then

there exists {𝑎
𝑛
} ⊆ 𝐴 such that 𝑑(𝑎

𝑛
, 𝑏
𝑛
) ↓ 𝑑(𝐴, 𝐵) and 𝑏

𝑛
=

𝑆𝑎
𝑛
. Since 𝐴 is compact, there exists {𝑎

𝑛𝑖
} ⊆ {𝑎

𝑛
} such that

𝑎
𝑛𝑖
→ 𝑥
∗ as 𝑖 → ∞. (18)

By using the continuity of 𝑆, we can conclude that

𝑑 (𝑥
∗
, 𝑆𝑥
∗
) = lim
𝑖→∞

𝑑 (𝑎
𝑛𝑖
, 𝑆𝑎
𝑛𝑖
)

= lim
𝑖→∞

𝑑 (𝑎
𝑛𝑖
, 𝑏
𝑛𝑖
) = 𝑑 (𝐴, 𝐵) .

(19)

This completes the proof.

The following result establishes an existence result in
order to be nonempty best proximity point set for the
mapping 𝑆 without assuming any ordering, proximal mono-
tonicity, and ordered proximal contraction on the 𝑆. It is
worth noting that it is only an existence result without
applying any iteration method (see Theorem 3.1 of [5]).

Theorem 8. Let 𝐴 and 𝐵 be nonvoidclosed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonvoidand 𝐴 is

totally bounded. Let 𝑆 : 𝐴 → 𝐵 and 𝑔 : 𝐴 → 𝐴 satisfy the
following conditions:

(a) 𝑆 and 𝑔 are continuous;
(b) 𝑆(𝐴

0
) ⊆ 𝐵
0
and 𝐴

0
⊆ 𝑔(𝐴

0
).

Then, there exists an element 𝑥∗ in 𝐴
0
such that

𝑑 (𝑔𝑥
∗
, 𝑆𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (20)
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Proof. Suppose that 𝐴
0

̸= ⌀. Let 𝑥
0

∈ 𝐴
0
and note that

𝑆(𝐴
0
) ⊆ 𝐵
0
. Then, we have

𝑆𝑥
0
∈ 𝑆 (𝐴

0
) ⊆ 𝐵
0

= {𝑦 ∈ 𝐵 | 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑥 ∈ 𝐴} .
(21)

So, we have 𝑆𝑥
0
∈ 𝐵 and there exists

𝑥


0
∈ 𝐴 such that 𝑑 (𝑥

0
, 𝑆𝑥
0
) = 𝑑 (𝐴, 𝐵) . (22)

Equation (22) indicates that𝑥
0
∈ 𝐴
0
. Since𝐴

0
⊆ 𝑔(𝐴

0
), there

exists 𝑥
1
∈ 𝐴
0
such that 𝑥

0
= 𝑔𝑥
1
. Thus

𝑑 (𝑔𝑥
1
, 𝑆𝑥
0
) = 𝑑 (𝐴, 𝐵) . (23)

In the next step, since 𝑥
1
∈ 𝐴
0
, we obtain 𝑆𝑥

1
∈ 𝑆(𝐴

0
) ⊆ 𝐵
0
.

Then, we have 𝑆𝑥
1
∈ 𝐵 and there exists

𝑥


1
∈ 𝐴 such that 𝑑 (𝑥

1
, 𝑆𝑥
1
) = 𝑑 (𝐴, 𝐵) . (24)

Equation (24) indicates that𝑥
1
∈ 𝐴
0
. Since𝐴

0
⊆ 𝑔(𝐴

0
), there

exists 𝑥
2
∈ 𝐴
0
such that 𝑥

1
= 𝑔𝑥
2
. Thus

𝑑 (𝑔𝑥
2
, 𝑆𝑥
1
) = 𝑑 (𝐴, 𝐵) . (25)

Following by this way, we can produce the sequence {𝑥
𝑛
} ⊆

𝐴
0
such that

𝑑 (𝑔𝑥
𝑛+1

, 𝑆𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) , ∀𝑛 ∈ N. (26)

Since 𝐴
0

⊆ 𝐴 and 𝐴 is totally bounded, there exists
a subsequence {𝑥

𝑛𝑖
} ⊆ {𝑥

𝑛
} such that {𝑥

𝑛𝑖
} is a Cauchy

sequence. By using the completeness of𝑋, we have

𝑥
𝑛𝑖
→ 𝑥
∗ as 𝑖 → ∞. (27)

Applying the continuity of 𝑆 and 𝑔, we obtain

𝑑 (𝑔𝑥
∗
, 𝑆𝑥
∗
) = lim
𝑖→∞

𝑑 (𝑔𝑥
𝑛𝑖+1

, 𝑆𝑥
𝑛𝑖
) = 𝑑 (𝐴, 𝐵) . (28)

This completes the proof.

If 𝑔 = 𝐼 (the identity mapping), then Theorem 8 reduces
to the following corollary.

Corollary 9. Let 𝐴 and 𝐵 be nonvoidclosed subsets of a
complete metric space (𝑋, 𝑑) such that 𝐴

0
is nonvoidand 𝐴 is

totally bounded. Let 𝑆 : 𝐴 → 𝐵 be a continuous function such
that 𝑆(𝐴

0
) ⊆ 𝐵

0
. Then, there exists an element 𝑥∗ in 𝐴

0
such

that

𝑑 (𝑥
∗
, 𝑆𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (29)

If𝐴 = 𝐵, then𝐴 = 𝐴
0
= 𝐵
0
= 𝐵.Then, by Corollary 9, we

obtain the following corollary which says that the fixed points
set of the mapping 𝑆 is nonempty.

Corollary 10. Let 𝐴 be a nonvoidclosed and totally bounded
subset of a complete metric space (𝑋, 𝑑). Let 𝑆 : 𝐴 → 𝐴 be
continuous. Then, 𝐹(𝑆) ̸=⌀, where 𝐹(𝑆) denotes the set of all
fixed points of 𝑆.

In the following result, we are going to relax the continuity
of the mappings 𝑆 and 𝑔 (see conditions (a) and (c) of
Theorem 3.1 in [5]).

Theorem 11. Let 𝐴 be a nonvoidcompact subset and let 𝐵 be a
nonvoidsubset of a complete metric space (𝑋, 𝑑). Let 𝑆 : 𝐴 →

𝐵 and 𝑔 : 𝐴 → 𝐴 and define 𝑔 ⊗ 𝑆 : 𝐴 → 𝐴 × 𝐵 by

(𝑔 ⊗ 𝑆) (𝑥) = (𝑔𝑥, 𝑆𝑥) , ∀𝑥 ∈ 𝐴. (30)

Suppose that (𝑔 ⊗ 𝑆)(𝐴) = 𝐴 × 𝐵 and 𝑑 ∘ (𝑔 ⊗ 𝑆) is lower
semicontinuous where 𝑑 is the distance function of the metric
space (𝑋, 𝑑). Then, there exists an element 𝑥∗ in 𝐴 such that

𝑑 (𝑔𝑥
∗
, 𝑆𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (31)

Proof. By the assumption, we notice that

{(𝑎, 𝑏) | (𝑎, 𝑏) ∈ 𝐴 × 𝐵} = 𝐴 × 𝐵

= (𝑔 ⊗ 𝑆) (𝐴)

= {(𝑔 ⊗ 𝑆) (𝑎) | 𝑎 ∈ 𝐴} .

(32)

Then, we have

𝑑 (𝐴, 𝐵) = inf {𝑑 (𝑎, 𝑏) | (𝑎, 𝑏) ∈ 𝐴 × 𝐵}

= inf {𝑑 ((𝑔 ⊗ 𝑆) (𝑎)) | 𝑎 ∈ 𝐴}

= inf {(𝑑 ∘ (𝑔 ⊗ 𝑆)) (𝑎) | 𝑎 ∈ 𝐴} .

(33)

By using the lower semicontinuity of (𝑑 ∘ (𝑔 ⊗ 𝑆)), we have
that there exists 𝑥∗ ∈ 𝐴 such that

𝑑 (𝑔𝑥
∗
, 𝑆𝑥
∗
) = (𝑑 ∘ (𝑔 ⊗ 𝑆)) (𝑥

∗
)

= min {(𝑑 ∘ (𝑔 ⊗ 𝑆)) (𝑎) | 𝑎 ∈ 𝐴}

= inf {(𝑑 ∘ (𝑔 ⊗ 𝑆)) (𝑎) | 𝑎 ∈ 𝐴}

= 𝑑 (𝐴, 𝐵) .

(34)

This completes the proof.

Corollary 12. Let 𝐴 be a nonvoidcompact subset and let 𝐵 be
a nonvoidsubset of a complete metric space (𝑋, 𝑑). Let 𝑆 : 𝐴 →

𝐵 and 𝑔 : 𝐴 → 𝐴 be continuous and surjective. Define 𝑔 ⊗ 𝑆 :
𝐴 → 𝐴 × 𝐵 by

(𝑔 ⊗ 𝑆) (𝑥) = (𝑔𝑥, 𝑆𝑥) , ∀𝑥 ∈ 𝐴. (35)

Then, there exists an element 𝑥∗ in 𝐴 such that

𝑑 (𝑔𝑥
∗
, 𝑆𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (36)

Proof. It is obvious that the continuity and surjectivity of 𝑆
and 𝑔 imply the lower semicontinuity of 𝑑 ∘ (𝑔 ⊗ 𝑆), where 𝑑
is the distance function of the metric space (𝑋, 𝑑) and (𝑔 ⊗

𝑆)(𝐴) = 𝐴 × 𝐵, respectively. Applying Theorem 11, we have
the desired result.
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