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Maneuvering target tracking is a challenge. Target’s sudden speed or direction changing would make the common filtering tracker
divergence. To improve the accuracy ofmaneuvering target tracking, we propose a tracking algorithm based on spline fitting. Curve
fitting, based on historical point trace, reflects the mobility information. The innovation of this paper is assuming that there is no
dynamic motion model, and prediction is only based on the curve fitting over the measured data. Monte Carlo simulation results
show that, when sea targets are maneuvering, the proposed algorithm has better accuracy than the conventional Kalman filter
algorithm and the interactive multiple model filtering algorithm, maintaining simple structure and small amount of storage.

1. Introduction

In modern society, radar plays an increasingly important
role, where the sea target detection and tracking is a very
important aspect and has great practical value. Low-speed
objects such as sea ice and others bring great danger to
the ship sailing on the sea, and the performance of sea
target detection directly affects the safety of navigation.
Tracking is an important part of radar system. Especially
the maneuvering target tracking is more complex in clutter
environment.

In conventional target tracking, the most common
method is the standard Kalman filter algorithm [1].When the
target state and observation equations are linear equations
and the observation noise is Gaussian white noise, the
Kalman filter algorithm is the optimal algorithm in the
sense of minimum variance. When the target maneuver
occurs, Kalman filtering accuracy will be reduced or even
diverged due to themodelmismatch and noise characteristics
that cannot be known exactly. In view of the limitations
of the Kalman filter algorithm, the multimodel filtering
algorithm [2–8] and the adaptive Kalman filter algorithm [9–
12] emerged. The multiple-model algorithm is the algorithm
using the weighted sum of multiple models to approximate

the actual motion model of the target. Subsequently, the
interacting multiple model algorithm emerged [5, 6]. It is
the fusion result of multimodel by updating probability of
models. It has better performance than multimodel filtering
algorithm.

During maneuvering, target maneuver has still regularity
which is reflected in the measured values and cannot be
properly represented by the Kalman filter algorithm. There-
fore, this paper proposes a filtering algorithm based on the
smoothing spline fitting.The proposed algorithmfits through
the measured values reflecting the movement regularity.
The difference between the proposed algorithm and the
standard Kalman filter algorithm is that the latter calculates
estimations through the sum of the predicted values and
the measured values weighted and the former algorithm fits
values individually from the measured values to determine
the estimations.

The paper is organized as follows. In Section 2, Kalman
filter algorithm is proposed. In Sections 3 and 4, interacting
multiple model algorithm and spline fitting filtering algo-
rithm are introduced, respectively. In Section 5, simulation
results are given to illustrate the effectiveness of the proposed
algorithms. Finally, concluding remarks are provided in
Section 6.
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Figure 1: The Kalman filter algorithm flowchart.
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Figure 2: The IMM algorithm flowchart.

2. Kalman Filtering (KF) Algorithm

The Kalman filtering (KF) flowchart is shown in Figure 1.
As can be seen from Figure 1, the weighted predicted

values and the weighted measured values determine the
estimate value of theKF; the predicted value is generated from
the motion model. However, a single model cannot meet all
the maneuvering of the target; the covariance plays a link
between the model and the weighting. When filtering, the
weighting of the measured value tends to be a constant value
and contribution to the estimate becomes smaller. So the KF
algorithm cannot escape from the shackles of a single model.

Application of the KF algorithm to real-time problem
depends on a priori knowledge of the mean square error
of the state and the observation process [13]. Moreover the
optimal estimation of covariance matrix for the state and
observation processes does not exist. In order to solve this
problem, some research proposed suboptimal solutions, they
estimate one or more parameters of mean variance matrix

of the state and the observe process [14–16], or estimate the
gain adaptively [17, 18]. Also, the authors [19, 20] proposed
algorithmswith the divergence criterion and forgetting factor
preventing filter divergence, but the divergence criterion
cannot reflect filter divergence exactly.

The KF algorithm uses a single model which cannot
meet every maneuver, only suitable for the steady situation.
When the model does not suit the motion model, the gain
coefficient or the covariance will be adjusted to remedy
the motion model. These methods do not get rid of the
computing framework of the Kalman system, nothing more
than a feedback loop [21].

3. Interacting Multiple
Model (IMM) Algorithm

The IMM algorithm has become a standard tool for maneu-
vering target tracking [5, 6, 22]. It has a recursive algorithm
structure, which using finite state model represents the entire
system to try to solve the problem of a single target motion
model mismatch. The IMM approximates nonlinear systems
by finite linear model and estimates the system state by the
sum of weighted estimation of models. The IMM requires
models to represent the entire state of the system, usually this
is difficult to achieve.

While maneuvering occurs, the accuracy of the IMM is
superior to the KF. However, the shortcomings of the IMM
are more models more calculation, the competition between
models. All of these affect performance of the IMM.The IMM
has multiple models to remedy the motion model when the
model does not suit the motion model. The similarity of the
standard Kalman filter algorithm and the IMM algorithm is
using motion model to predict movement position; filtering
results are decided by the weighted values of predicted and
measured. When maneuvering, the measured values reflect
better regularity of motion, but the weight of the measured
values does not increase more in both algorithms.

The IMM flowchart is shown in Figure 2.
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Step 2 (filtering predict). The first step result is the model
input at time 𝑘. We get the output from KF filter as follows:
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where 𝑃(𝑘 | 𝑘) is the state covariance.
Then we perform the first interactive multiple model

algorithm recursive process.

4. Spline Fitting Filtering (SFF) Algorithm

The KF algorithm requires the system model to be linear,
which greatly limits the scope of application of the KF
algorithm. The IMM increases the number of model to close
the motion model. And predicted and measured weighted
values decide the estimate values in both algorithms. When
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Figure 3: The SFF algorithm flowchart.

the target maneuver occurs, the predicted value cannot
immediately react because both algorithms did not accurately
and rapidly adjust the weight of the measured values. How-
ever, the measured values can give faster and more sensitive
response. To improve on this, the paper proposes, in the
filtering process, the measured value that contains the true
information of the motion. The measured value reflects the
regularity of target maneuvering more promptly than the
predicted value, and the regularity reflects from a certain
smoothing of the curve. Therefore, the estimated value of the
filter should be closely linked to the measured value. When
sea targets maneuver, they still have regularity of motion
despite the measurement errors and systematic errors. The
cubic spline is used to approximate the mathematical model
of targets maneuvering, and the smoothing spline function
reflects the regularity of maneuvering. Therefore, the novel
point of SFF is the using of spline function to reflect sea
targetsmaneuvering, abandonment of themotionmodel.The
advantage of SFF can be seen in Figures 4 and 5. The SFF
is closer to the true value than the KF and IMM. When the
target maneuver occurs, the error of the SFF is the smallest
one in three algorithms.

Assumed measured point (𝑥(𝑗), 𝑦(𝑗)), 𝑗 = 1, 2, . . ., here
𝑓 is a cubic spline function.The problem is to find a function
𝑓 that minimizes
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where 𝑥(𝑗), 𝑦(𝑗) represent the horizontal and vertical coor-
dinates of the measured value, respectively, 𝑛 represents
the number of nodes, 𝑑2𝑓(𝑥)/𝑑𝑥2 represents the second
derivative of𝑓(𝑥), 𝜌 is a smoothing parameter, and 𝜌 ∈ [0, 1].
When 𝜌 = 0,𝑓(⋅) is a spline function to fit the data in the least
squares sense; when 𝜌 = 1,𝑓 is the cubic spline interpolation.
Formula (7) is a least-squares problem, where the first term
quantifies the error between the measured data points 𝑦(𝑗)
and themodel𝑓(𝑥𝑗).The second term imposes a smoothness
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Figure 4: Point track.

constraint on the solution. In practice, we set 𝜌 = 0.8 for
better reflecting the regularity of maneuvering by smoothing
spline curve.

The SFF algorithm is as follows: suppose the measured
value is 𝑧(𝑛) = (𝑥(𝑛), 𝑦(𝑛)).

First, mean the measured values 𝑧(𝑛 − 1) = (𝑧(𝑛 − 2) +

𝑧(𝑛))/2 (𝑛 ≥ 3). Second, the filtering estimate results are
fitted by the spline function from 𝑛 filtered measured values.
So the cycle continues. Taking into account the experimental
results and the complexity of the algorithm, three points are
used for the spline fitting.

The SFF flowchart is shown in Figure 3.

5. Simulation Results

The simulation environment is Intel CPU 2.53GHz, 1 GB
Memory, and MATLAB R2009b. Assume sea target depar-
tures at coordinates (8000m and 8000m):

(1) 0–49 s, the target uniform linear motion (30m/s at 𝑥-
axis direction, 40m/s at 𝑦 axis direction);

(2) 50–90 s, the target turning movement at the turn rate
3∘/s, 50m/s speed;

(3) 91–119 s, the target uniform linear motion at 50m/s
speed;

(4) 120–160 s, the target turning movement at the turn
rate 3∘/s, 50m/s speed;

(5) 161–210 s, the target uniform linear motion at 50m/s
speed.

The results of three filtering algorithms are shown in
Figure 4. And the results of Monte Carlo of 100 times are
depicted in Figures 5(a), 5(b), and 5(c).

As can be seen fromFigure 4, theKFmotionmodelmeets
the target motion model during the uniform linear motion
and filtering results converge; as other periods, the filtering
results of theKFwill increase errors or divergence.The reason
is the weight of the measured values is much smaller that

cannot influence the filtering results. The filtering results
determined by the weighted sum of the prediction values and
the measured values. As the target maneuvers, the algorithm
model mismatches the uniform linear motionmodel, and the
predictive value is still the main content of the filtering value.
It cannot keep up with the change of motion, which leads to
increasing error and even divergence. For the same set of data,
the IMM has three corresponding models.

The filtering result of the IMM is better than the KF
during the turningmovement, but the filter effect of the IMM
is reduced or even diverged as the IMM model mismatch.
The SFF filtering effects is the same with the IMM. When
the target maneuvers, the SFF is superior to the former
algorithms.

As can be seen from Figure 5(a), the filtering trajectory
of the SFF is closer to the true value than the KF and IMM;
when the target maneuver occurs, the average error of the
SFF is smaller than that of the KF and IMM as can be seen
from Figure 5(b); from Figure 5(c), there is a large fluctuation
of standard deviation for the KF and IMM as target motion,
while the standard deviation of the SFF has small change.

When selecting the type of steering ratio, the conclusion
is consistent and uniform.

In the three algorithms, the KF is optimal in uniform
linear motion when its model meets the motion model. On
the other movement, the accuracy of the SFF is better than
the accuracy of the KF and IMM because the impact of the
measured value of the SFF is more prominent in filtering and
measurements reflect the movement regularity in time.

6. Conclusion

The paper proposed a target tracking filtering algorithm
based on spline function fitting the measured value. For
the same set of data, the estimation error of the proposed
algorithm compares with the estimation error of KF algo-
rithm and IMM algorithm. Monte Carlo results clearly show
that the SFF has higher estimation accuracy. Particularly
it has obvious advantages to the standard Kalman filter
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Figure 5: (a) Average point track. (b) Mean error. (c) Root-mean-
square error.

algorithmandmaintains a simple structure and small amount
of storage.
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