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Fifth-order mapped semi-Lagrangian weighted essentially nonoscillatory (WENO) methods at certain smooth extrema are
developed in this study. The schemes contain the mapped semi-Lagrangian finite volume (M-SL-FV) WENO 5 method and the
mapped compact semi-Lagrangian finite difference (M-C-SL-FD)WENO 5method.Theweights in themore common scheme lose
accuracy at certain smooth extrema. We introduce mapped weighting to handle the problem. In general, a cell average is applied
to construct the M-SL-FV WENO 5 reconstruction, and the M-C-SL-FDWENO 5 interpolation scheme is proposed based on an
interpolation approach. An accuracy test and numerical examples are used to demonstrate that the two schemes reduce the loss of
accuracy and improve the ability to capture discontinuities.

1. Introduction

The hyperbolic conservation laws are calculated in one-
dimensional form defined by

𝑢
𝑡
+ 𝑓(𝑢)

𝑥
= 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

(1)

where 𝑢 and 𝑓(𝑢) can be either scalars or vectors. The
fifth-order mapped semi-Lagrangian weighted essentially
nonoscillatory (WENO) methods have been produced for
the one-dimensional scalar case and for systems near certain
smooth extrema in this study.The scheme is divided into two
parts: a mapped semi-Lagrangian finite volume (M-SL-FV)
WENO method and a mapped compact semi-Lagrangian
finite difference (M-C-SL-FD) WENOmethod.

In [1], Henrick et al. proposed themappedweighting near
critical points. They contrasted the WENO 5 scheme and
the mapped WENO 5 scheme and found that the WENO
5 method reached third-order accuracy at critical points,
while the mapped weighted WENO 5 scheme achieved fifth-
order accuracy. So the mapped WENO scheme reduced
the loss of the accuracy and improved ability to capture
discontinuities. Based on the theory of the mapped WENO
scheme, Feng et al. used a piecewise polynomial function to

propose the new mapped weights. The scheme reduced the
influence of the discontinuities in the nonsmooth stencils,
such that the underlying loss of accuracy was overcome [2].
In [3], Bryson and Levy designed a new method to solve the
Hamilton-Jacobi equations using a mixed model consisting
ofmappedweights and aGodunov-type central method.This
scheme reached high-order accuracy. Borges proposed a set
of smoothness indicators andmapped weights for hyperbolic
conservation laws. This scheme had less dissipation and
achieved high accuracy, and they applied the method to two-
dimensional problems and found that it performed well [4].

In 1990, Lele proposed a series of compact methods,
which were associated with a spectral-like solution [5].
They presented basic programmes for approximating the
derivatives: a cell-centered compact scheme and midpoint
interpolation. In [6], a high-order nonlinear scheme was
proposed which considered a flux splitting and boundary
scheme, followed by analysis of the asymptotic stability of
weighted compact nonlinear scheme. Based on the WENO
scheme, finite difference weighted compact programmes
were developed, which associated the approximation of
derivatives with the WENO scheme. In this way the method
preserved the characteristics of normal compactmethods and
retained the ability to capture shockwaves anddiscontinuities
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[7]. An efficient conservative compounded compact WENO
scheme was proposed for shock-turbulence interaction, ana-
lyzing the resolution properties, Fourier harmonies, and
boundary closures. The boundary conditions affected the
stability characteristics of the scheme, so explicit boundary
conditions were proposed to deal with stability [8]. Zhang
et al. developed a nonlinear weighted compact method that
increased higher-order precision. They used a cell-centered
compact approach, a splitting technique, and characteristic
projection to increase the precision. The nonlinear compact
WENO method was capable of capturing discontinuities
without oscillation [9].

The hybrid model of the Lagrangian and Eulerian
approaches produced the semi-Lagrangian approach, inher-
iting the advantages of the two approaches. This approach
achieved high accuracy and allowed a weaker CFL condition.
The Lagrangian-Eulerian method proposed in 1974 solved
a wide variety of time-dependent multidimensional fluid
problems. The methodology was stable and accurate [10]. A
nonoscillatory Eulerian scheme was proposed to compute
two-dimensional Euler equations, level set equations, and
equations of state.The level set function was used to hunt the
interface in the scheme, so that themethodwas easily extend-
able tomultidimensional andmultilevel time integration [11].
A Lagrangian method with high-order ENO reconstruction
was designed by Cheng and Shu for compressible Euler
equations in which they compared figures of the four typical
numerical fluxes in the Lagrangian scheme: Godunov flux,
Dukowicz flux, Lax-Friedrichs flux, andHarten-Lax-van Leer
contact wave flux [12]. In [13], Liu et al. combined the
Lagrangian scheme with the Lax-Wendroff method to build
a new scheme which was used to calculate the compressible
Euler equations. The hybrid scheme was capable of saving
computational cost.

In past years the semi-Lagrangian method has been
very popular in transport planning [14–16]. Oscillation-free
advection of interfaces, forward-trajectory global scheme,
and conservative and nonconservative forms were devel-
oped for transport schemes. Crouseilles applied the semi-
Lagrangianmethod toVlasov equations.This approach easily
achieved high-order time accuracy and positivity [17, 18]. In
[19–22], Qiu and Shu developed a series of semi-Lagrangian
methods which allowed weaker CFL conditions and had
stability, accuracy, and positivity properties.

In the present study, a mapped semi-Lagrangian WENO
method is proposed for calculating hyperbolic conservation
laws near certain smooth extrema. The method contains
two schemes: the M-SL-FV WENO method and M-C-SL-
FD WENO method. The WENO scheme is widely used
for hyperbolic conservation laws [23–26], but the WENO
5 scheme can only achieve third-order accuracy at certain
smooth extrema. Mapped weighting has been designed to
achieve an ideal order of accuracy at certain smooth extrema
[1, 2]. The semi-Lagrangian finite volume WENO scheme
uses cell averages to construct the WENO scheme [23, 24],
and an interpolation approach is applied to build a semi-
Lagrangian finite difference WENO scheme [9, 27]. In this
study, the 3-total-variation-diminishing (TVD) Runge-Kutta
(RK) scheme is applied to follow the backward characteristic

line in a single time step for the case of variable characteristics
[23, 28, 29]. As a result, the proposed schemes achieve fifth-
order accuracy and overcome the potential loss of accuracy
and also capture shock well.

The paper is organized as follows. The mapped finite
volume WENO scheme for scalar hyperbolic conservation
laws is reviewed at certain smooth extrema in Section 2. The
M-SL-FV fifth-order WENO reconstruction scheme is given
in Section 3. In Section 4, the compact semi-Lagrangian finite
difference scheme for one-dimensional hyperbolic conserva-
tion laws is analyzed and the fifth-order mapped weighting
interpolation method is presented. In Section 5, an accu-
racy test and numerical tests are presented regarding fifth-
order M-SL-FV and M-C-SL-FD WENO methods for one-
dimensional hyperbolic conservation laws. The equations
have certain smooth extrema, and the numerical results show
that the proposedmethod works well in all cases. Concluding
remarks and a perspective for future work are presented in
Section 6.

2. A Review of Mapped Fifth-Order Finite
Volume WENO Scheme

The mapped fifth-order WENO scheme is shown as the
solution of one-dimensional scalar conservation laws, which
are summarized by

𝑢
𝑡
+ 𝑓(𝑢)

𝑥
= 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) .

(2)

Putting the calculation region as [𝑎, 𝑏] and adopting the
following spatial discretization:

𝑎 = 𝑥
1/2

< 𝑥
3/2

< ⋅ ⋅ ⋅ < 𝑥
𝑁+(1/2)

= 𝑏, (3)

where 𝐼
𝑖
= [𝑥
𝑖−(1/2)

, 𝑥
𝑖+(1/2)

], 𝑖 = 1, 2, . . . , 𝑁, we choose the
center of the cell and cell length as 𝑥

𝑖
= (1/2)(𝑥

𝑖−(1/2)
+

𝑥
𝑖+(1/2)

), and Δ𝑥
𝑖
= 𝑥
𝑖+(1/2)

− 𝑥
𝑖−(1/2)

.
For fifth-order WENO reconstruction, we first need to

identify three third-order numerical fluxes. We set

𝑢
(0)

𝑖+(1/2)
=

1

3

𝑢
𝑖−2

−

7

6

𝑢
𝑖−1

+

11

6

𝑢
𝑖
,

𝑢
(1)

𝑖+(1/2)
= −

1

6

𝑢
𝑖−1

+

5

6

𝑢
𝑖
+

1

3

𝑢
𝑖+1

,

𝑢
(2)

𝑖+(1/2)
=

1

3

𝑢
𝑖
+

5

6

𝑢
𝑖+1

−

1

6

𝑢
𝑖+2

.

(4)

The fifth-order linear scheme

𝑢
𝑖+(1/2)

=

1

30

𝑢
𝑖−2

−

13

60

𝑢
𝑖−1

+

47

60

𝑢
𝑖
+

9

20

𝑢
𝑖+1

−

1

20

𝑢
𝑖+2

(5)

is based on three third-order numerical fluxes 𝑢(0)
𝑖+(1/2)

, 𝑢(1)
𝑖+(1/2)

,
and 𝑢

(2)

𝑖+(1/2)
, respectively:

𝑢
𝑖+(1/2)

= 𝑑
0
𝑢
(0)

𝑖+(1/2)
+ 𝑑
1
𝑢
(1)

𝑖+(1/2)
+ 𝑑
2
𝑢
(2)

𝑖+(1/2)
. (6)
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The combination coefficients 𝑑
0
, 𝑑
1
, 𝑑
2
are termed linear

weights.
It is noted that if the function 𝑢(𝑥) is globally smooth,

the linear weights 𝑑
0
, 𝑑
1
, 𝑑
2
are applied to obtain high-

order accuracy. However, if the scheme oscillates near dis-
continuities, we need the assistance of the nonlinear weights
𝜔
𝑟
proposed by Liu et al. to achieve high-order accuracy

in smooth regions and capture the oscillations near dis-
continuities [24]. The nonlinear weights 𝜔

𝑟
depend on the

smoothness indicators 𝛽
𝑟
which evaluate the smoothness of

the functions 𝑢(0)
𝑖+(1/2)

, 𝑢(1)
𝑖+(1/2)

, 𝑢(2)
𝑖+(1/2)

and is given by

𝛽
𝑟
=

2

∑

𝑙=1

∫

𝐼𝑖

Δ𝑥
2𝑙−1

𝑖
(

𝜕
𝑙
𝑢
(𝑟)
(𝑥)

𝜕
𝑙
𝑥

)

2

𝑑𝑥, 𝑟 = 0, 1, 2. (7)

These are

𝛽
0
=

13

12

(𝑢
𝑖+1

− 2𝑢
𝑖+2

+ 𝑢
𝑖+3

)
2

+

1

4

(3𝑢
𝑖+1

− 4𝑢
𝑖+2

+ 𝑢
𝑖+3

)
2

,

𝛽
1
=

13

12

(𝑢
𝑖
− 2𝑢
𝑖+1

+ 𝑢
𝑖+2

)
2

+

1

4

(𝑢
𝑖
− 𝑢
𝑖+2

)
2

,

𝛽
2
=

13

12

(𝑢
𝑖−1

− 2𝑢
𝑖
+ 𝑢
𝑖+1

)
2

+

1

4

(𝑢
𝑖−1

− 4𝑢
𝑖
+ 3𝑢
𝑖+1

)
2

.

(8)

The nonlinear weights are then determined by

𝜔
𝑟
=

𝛼
𝑟

∑
2

𝑠=0
𝛼
𝑠

, 𝛼
𝑟
=

𝑑
𝑟

(𝜖 + 𝛽
𝑟
)
2
, 𝑟 = 0, 1, 2, (9)

where 𝑑
𝑟
are the linear weights and 𝜖 is a small and positive

number to prevent the denominator becoming zero. In most
of the numerical tests, 𝜀 = 10

−6.
To avoid the nonlinear weights producing any loss in

precision at certain smooth extrema, Henrick et al. proposed
the mapped weights [1] for conservation laws, which gave
perfect precision of the WENO method at certain smooth
extrema. The mapped weighted𝑚

𝑟
(𝜔) is defined as

𝑚
𝑟
(𝜔
𝑟
) =

𝜔
𝑟
(𝑑
𝑟
+ (𝑑
𝑟
)
2

− 3𝑑
𝑟
𝜔
𝑟
+ 𝜔
2

𝑟
)

(𝑑
𝑟
)
2

+ (1 − 2𝑑
𝑟
) 𝜔
𝑟

, (10)

where 𝜔
𝑟

∈ (0, 1) and 𝑟 = 0, 1, 2. The function has the
following properties:

𝑚
𝑟
(0) = 0, 𝑚

𝑟
(1) = 1, 𝑚

𝑟
(𝑑
𝑟
) = 𝑑
𝑟
,

𝑚
󸀠

𝑟
(𝑑
𝑟
) = 𝑚

󸀠󸀠

𝑟
(𝑑
𝑟
) = 0.

(11)

The mapped nonlinear weights 𝜔(𝑀)
𝑟

are then computed as

𝜔
(𝑀)

𝑟
=

𝛼
∗

𝑟

∑
2

𝑠=0
𝛼
∗

𝑠

, 𝛼
∗

𝑟
= 𝑚
𝑟
(𝜔
𝑟
) , 𝑟 = 0, 1, 2. (12)

In our numerical tests 𝜀 was taken as 10
−40. The mapped-

weights method created high-order precision and reduced
the loss of the accuracy at certain smooth extrema.

The mapped WENO of the flux 𝑢−
𝑖+(1/2)

is given by

𝑢
−

𝑖+(1/2)
=

2

∑

𝑟=0

𝜔
(𝑀)

𝑟
𝑢
𝑟
(𝑥
𝑖+(1/2)

) . (13)

This is a mirror symmetric about 𝑥
𝑖
of the abovementioned

process for the approximations 𝑢+
𝑖−(1/2)

.

3. M-SL-FV Fifth-Order WENO Reconstruction

The semi-Lagrangian finite volume method and mapped
fifth-order WENO reconstruction scheme for scalar and sys-
temof conservation laws are presented in this section.Wefirst
show the semi-Lagrangian finite volume scheme and then
introduce the mapped WENO 5 reconstruction.

3.1. Semi-Lagrangian Finite Volume Scheme for Scalar Case.
Firstly, we integrate (2) to obtain the finite volume scheme

𝑑

𝑑𝑡

𝑢
𝑖
(𝑡) = −

1

Δ𝑥
𝑖

(
̂
𝑓
𝑖+(1/2)

−
̂
𝑓
𝑖−(1/2)

) . (14)

The proposed semi-Lagrangian finite volume scheme is based
on integrating (14); that is, we set up the integral in time
[𝑡
𝑛
, 𝑡
𝑛+1

] such that

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
−

1

Δ𝑥
𝑖

∫

𝑡
𝑛+1

𝑡
𝑛

(
̂
𝑓
𝑖+(1/2)

−
̂
𝑓
𝑖−(1/2)

) 𝑑𝑡. (15)

Here, the three-point Gaussian quadrature formula is used
to approximate the integration in time, which limits the
WENO reconstruction to fifth-order accuracy at most. From
the above-mentioned estimate, the corresponding equation is
acquired as

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
−

Δ𝑡

Δ𝑥
𝑖

3

∑

𝑙=1

𝜌
𝑙
(
̂
𝑓 (𝑢 (𝑥

𝑖+(1/2)
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡))

−
̂
𝑓 (𝑢 (𝑥

𝑖−(1/2)
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡))) ,

(16)

where 𝜌
1
= 𝜌
3
= 5/18, 𝜌

2
= 4/9 are the weights, and 𝜏

1
=

(1/2)(1 + √0.6), 𝜏
2
= 1/2, 𝜏

3
= (1/2)(1 − √0.6) are the Gaus-

sian quadrature points.
It should be noted that the ̂

𝑓(𝑢(𝑥
𝑖+(1/2)

, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡)), 𝑙 =

1, 2, 3 are not approximated by the WENO reconstruction
directly, so we need to make use of the characteristic curves
given by

𝑥
󸀠
(𝑡) = −𝑓

󸀠
(𝑢 (𝑥, 𝑡)) ,

𝑥
0
= 𝑥 (𝑡 = 𝑡

𝑛
) = 𝑥
𝑖+(1/2)

.

(17)
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On the one hand, if𝑓󸀠(𝑢) is variable, and the third-orderTVD
RK method is applied to track the characteristic curves, we
find the point 𝑥(3)

𝑖+(1/2)
at time level 𝑡𝑛, which is built up by

𝑥
(1)

𝑖+(1/2)
= 𝑥
0
− 𝑓
󸀠
(𝑥
0
, 𝑡
𝑛
) 𝜏
𝑙
Δ𝑡,

𝑥
(2)

𝑖+(1/2)
=

3

4

𝑥
0
+

1

4

𝑥
(1)

𝑖+(1/2)
−

1

4

𝑓
󸀠
(𝑥
(1)

𝑖+(1/2)
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡) 𝜏
𝑙
Δ𝑡,

𝑥
(3)

𝑖+(1/2)
=

1

3

𝑥
0
+

2

3

𝑥
(2)

𝑖+(1/2)
−

2

3

𝑓
󸀠
(𝑥
(2)

𝑖+(1/2)
, 𝑡
𝑛
+

1

2

𝜏
𝑙
Δ𝑡) 𝜏
𝑙
Δ𝑡.

(18)

On the other hand, if 𝑓󸀠(𝑢) is constant, the point 𝑥(3)
𝑖+(1/2)

can
be built up by the formula

𝑥
(3)

𝑖+(1/2)
= 𝑥
0
− 𝑓
󸀠
(𝑥
0
, 𝑡
𝑛
) 𝜏
𝑙
Δ𝑡, 𝑙 = 1, 2, 3. (19)

Until now we have needed to substitute the above results of
the reduction 𝑥

(3)

𝑖+(1/2)
into (16) and evaluate the numerical

flux 𝑓 at the cell point, so the semi-Lagrangian finite volume
scheme is given by

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
−

Δ𝑡

Δ𝑥
𝑖

3

∑

𝑙=1

𝜌
𝑙
(
̂
𝑓 (𝑢 (𝑥

(3)

𝑖+(1/2)
, 𝑡
𝑛
))

−
̂
𝑓 (𝑢 (𝑥

(3)

𝑖−(1/2)
, 𝑡
𝑛
))) .

(20)

It is clear that the above result depends on the numerical flux
𝑢 at 𝑥(3)

𝑖+(1/2)
at time level 𝑡𝑛. Lastly, we need to reconstruct the

point value 𝑢 at 𝑥(3)
𝑖+(1/2)

at time level 𝑡𝑛, which is described in
detail in Section 3.3.

3.2. Semi-Lagrangian Finite Volume Scheme for System. Take
the following one-dimensional system of conservation laws
in this section, defined by

u
𝑡
+ f(u)

𝑥
= 0, (21)

where

u = (

𝑢
1

𝑢
2

...
𝑢
𝑚

), f (u) = (

𝑓
1
(u)

𝑓
2
(u)
...

𝑓
𝑚
(u)

) . (22)

To construct the semi-Lagrangian finite volume scheme for
system (21), a similar derivation for the scalar case is applied
to (21), as

u𝑛+1
𝑖

= u𝑛
𝑖
−

Δ𝑡

Δ𝑥
𝑖

3

∑

𝑙=1

𝜌
𝑙
(
̂f (u (𝑥

𝑖+(1/2)
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡))

−
̂f (u (𝑥

𝑖−(1/2)
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡))) ,

(23)

where𝜌
1
= 𝜌
3
= 5/18,𝜌

2
= 4/9, 𝜏

1
= (1/2)(1+√0.6), 𝜏

2
= 1/2

and 𝜏
3
= (1/2)(1 − √0.6), and ̂f is a Lax-Friedrichs flux with

𝛼 = max
u

𝑗=1,2,...,𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
𝑗
(u)󵄨󵄨󵄨󵄨

󵄨
. (24)

Note that the characteristics are defined by integrating
the eigenvalues of f󸀠(u) for the case where the initial value
problem of the system is to meet the characteristic curves

𝑥
󸀠
(𝑡) = −𝜆

𝑝
(u (𝑥, 𝑡)) , 𝑝 = 1, 2, . . . , 𝑚,

𝑥
0
= 𝑥 (𝑡 = 𝑡

𝑛
) = 𝑥
𝑖+(1/2)

.

(25)

The third-order TVD RK method is used to solve the above-
mentioned initial value problem. The solution is obtained
from

𝑥
(1)

𝑖+(1/2)
= 𝑥
0
− 𝜆
𝑝
(𝑥
0
, 𝑡
𝑛
) 𝜏
𝑙
Δ𝑡,

𝑥
(2)

𝑖+(1/2)
=

3

4

𝑥
0
+

1

4

𝑥
(1)

𝑖+(1/2)

−

1

4

𝜆
𝑝
(𝑥
(1)

𝑖+(1/2)
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡) 𝜏
𝑙
Δ𝑡,

𝑥
(3)

𝑖+(1/2)
=

1

3

𝑥
0
+

2

3

𝑥
(2)

𝑖+(1/2)

−

2

3

𝜆
𝑝
(𝑥
(2)

𝑖+(1/2)
, 𝑡
𝑛
+

1

2

𝜏
𝑙
Δ𝑡) 𝜏
𝑙
Δ𝑡,

(26)

where 𝑝 = 1, 2, . . . , 𝑚. In a derivation similar to the scalar
case, the semi-Lagrangian finite volume scheme for the sys-
tem (21) is reduced to give

u𝑛+1
𝑖

= u𝑛
𝑖
−

Δ𝑡

Δ𝑥
𝑖

3

∑

𝑙=1

𝜌
𝑙
(
̂f (u (𝑥

(3)

𝑖+(1/2)
, 𝑡
𝑛
))

−
̂f (u (𝑥

(3)

𝑖−(1/2)
, 𝑡
𝑛
))) .

(27)

The WENO reconstruction is provided in detail in
Section 3.3.

3.3. Mapped Fifth-Order WENO Reconstruction. Ordinar-
ily, fifth-order WENO reconstruction maintains fifth-order
accuracy in smooth regions and captures discontinuities well
but only achieves third-order accuracy at certain smooth
extrema. Mapped nonlinear weights are used to better
approximate the numerical flux at certain smooth extrema. In
this subsection, we shall first consider the case when 𝜆

𝑝
≥ 0;

then we will consider the case when 𝜆
𝑝

< 0. The detail of
the scheme has been omitted; only the necessary formulae are
given in the following.

Case 1 (𝜆
𝑝

≥ 0). In fifth-order reconstruction, we
always use the small stencils {𝐼

𝑖−2
, 𝐼
𝑖−1

, 𝐼
𝑖
}, {𝐼
𝑖−1

, 𝐼
𝑖
, 𝐼
𝑖+1

}, and
{𝐼
𝑖
, 𝐼
𝑖+1

, 𝐼
𝑖+2

} to construct the second-order reconstruction
polynomials 𝑝

𝑟
(𝑥) (𝑟 = 0, 1, 2). Then we use the large

stencils {𝐼
𝑖−2

, 𝐼
𝑖−1

, 𝐼
𝑖
, 𝐼
𝑖+1

, 𝐼
𝑖+2

} to construct the fourth-order
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reconstruction polynomial 𝑞(𝑥). Defining 𝜉
𝑖
= (𝑥
𝑖+(1/2)

−

𝑥
(3)

𝑖+(1/2)
)/Δ𝑥
𝑖
we have the following reconstituted scheme:

𝑝
0
(𝑥
(3)

𝑖+(1/2)
) = (

1

3

− 𝜉
𝑖
+

𝜉
2

𝑖

2

) 𝑢
𝑛

𝑖−2
+ (−

7

6

+ 3𝜉
𝑖
− 𝜉
2

𝑖
) 𝑢
𝑛

𝑖−1

+ (

11

6

− 2𝜉
𝑖
+

𝜉
2

𝑖

2

) 𝑢
𝑛

𝑖
,

𝑝
1
(𝑥
(3)

𝑖+(1/2)
) = (−

1

6

+

𝜉
2

𝑖

2

)𝑢
𝑛

𝑖−1
+ (

5

6

+ 𝜉
𝑖
− 𝜉
2

𝑖
) 𝑢
𝑛

𝑖

+ (

1

3

− 𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑢
𝑛

𝑖+1
,

𝑝
2
(𝑥
(3)

𝑖+(1/2)
) = (

1

3

+ 𝜉
𝑖
+

𝜉
2

𝑖

2

) 𝑢
𝑛

𝑖
+ (

5

6

− 𝜉
𝑖
− 𝜉
2

𝑖
) 𝑢
𝑛

𝑖+1

+ (−

1

6

+

𝜉
2

𝑖

2

)𝑢
𝑛

𝑖+2
,

𝑞 (𝑥
(3)

𝑖+(1/2)
) = (

1

30

−

𝜉
2

𝑖

8

+

𝜉
4

𝑖

24

)𝑢
𝑛

𝑖−2

+ (−

13

60

−

𝜉
𝑖

12

+

3𝜉
2

𝑖

4

+

𝜉
3

𝑖

6

−

𝜉
4

𝑖

6

)𝑢
𝑛

𝑖−1

+ (

47

60

+

5𝜉
𝑖

4

− 𝜉
2

𝑖
−

𝜉
3

𝑖

2

+

𝜉
4

𝑖

4

)𝑢
𝑛

𝑖

+ (

9

20

−

5𝜉
𝑖

4

+

𝜉
2

𝑖

4

+

𝜉
3

𝑖

2

−

𝜉
4

𝑖

6

)𝑢
𝑛

𝑖+1

+ (−

1

20

+

𝜉
𝑖

12

+

𝜉
2

𝑖

8

−

𝜉
3

𝑖

6

+

𝜉
4

𝑖

24

) 𝑢
𝑛

𝑖+2
,

(28)

and the corresponding linear weights, indicated by 𝑑
0
, 𝑑
1
, 𝑑
2

in this case:

𝑑
0
=

1/30 − 𝜉
2

𝑖
/8 + 𝜉

4

𝑖
/24

1/3 − 𝜉
𝑖
+ 𝜉
2

𝑖
/2

,

𝑑
1
= (−

1

30

+

4𝜉
𝑖

45

+

9𝜉
2

𝑖

80

−

13𝜉
3

𝑖

36

+

11𝜉
4

𝑖

144

+

𝜉
5

𝑖

8

−

𝜉
6

𝑖

24

)

× ((

1

3

− 𝜉
𝑖
+

𝜉
2

𝑖

2

)(−

1

6

+

𝜉
2

𝑖

2

))

−1

,

𝑑
2
=

−1/20 + 𝜉
𝑖
/12 + 𝜉

2

𝑖
/8 − 𝜉

3

𝑖
/6 + 𝜉

4

𝑖
/24

−1/6 + 𝜉
2

𝑖
/2

.

(29)

The smoothness indicators take the following form:

𝛽
0
=

13

12

(𝑢
𝑛

𝑖−2
− 2𝑢
𝑛

𝑖−1
+ 𝑢
𝑛

𝑖
)
2

+

1

4

(𝑢
𝑛

𝑖−2
− 4𝑢
𝑛

𝑖−1
+ 3𝑢
𝑛

𝑖
)
2

,

𝛽
1
=

13

12

(𝑢
𝑛

𝑖−1
− 2𝑢
𝑛

𝑖
+ 𝑢
𝑛

𝑖+1
)
2

+

1

4

(𝑢
𝑛

𝑖−1
− 𝑢
𝑛

𝑖+1
)
2

,

𝛽
2
=

13

12

(𝑢
𝑛

𝑖
− 2𝑢
𝑛

𝑖+1
+ 𝑢
𝑛

𝑖+2
)
2

+

1

4

(3𝑢
𝑛

𝑖
− 4𝑢
𝑛

𝑖+1
+ 𝑢
𝑛

𝑖+2
)
2

.

(30)

The nonlinear weights satisfy

𝜔
𝑟
=

𝛼
𝑟

∑
2

𝑠=0
𝛼
𝑠

, 𝛼
𝑟
=

𝑑
𝑟

(𝜖 + 𝛽
𝑟
)
2
, 𝑟 = 0, 1, 2. (31)

Themapped nonlinear weights 𝜔(𝑀)
𝑟

are then computed from

𝜔
(𝑀)

𝑟
=

𝛼
∗

𝑟

∑
2

𝑠=0
𝛼
∗

𝑠

, 𝛼
∗

𝑟
= 𝑚
𝑟
(𝜔
𝑟
) , 𝑟 = 0, 1, 2. (32)

Here 𝜖 > 0 is to avoid the denominator becoming zero;
we used the value 𝜀 = 10

−40 in our numerical tests. The
numerical flux is reconstructed by the following fifth-order
mapped WENO scheme with the semi-Lagrangian finite
volume scheme

(𝑢
(3)

𝑖+(1/2)
)

−

=

2

∑

𝑟=0

𝜔
(𝑀)

𝑟
𝑝
𝑟
(𝑥
(3)

𝑖+(1/2)
) . (33)

Case 2 (𝜆
𝑝
< 0). We use the the small stencils {𝐼

𝑖+3
, 𝐼
𝑖+2

, 𝐼
𝑖+1

},
{𝐼
𝑖+2

, 𝐼
𝑖+1

, 𝐼
𝑖
}, and {𝐼

𝑖+1
, 𝐼
𝑖
, 𝐼
𝑖−1

} to construct the second-order
reconstruction polynomials 𝑝

𝑟
(𝑥) (𝑟 = 0, 1, 2) and then use

the large stencils {𝐼
𝑖+3

, 𝐼
𝑖+2

, 𝐼
𝑖+1

, 𝐼
𝑖
, 𝐼
𝑖−1

} to derive a fourth-
order reconstruction polynomial 𝑞(𝑥). We have

𝑝
0
(𝑥
(3)

𝑖+(1/2)
) = (

1

3

+ 𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑢
𝑛

𝑖+3
+ (−

7

6

− 3𝜉
𝑖
− 𝜉
2

𝑖
) 𝑢
𝑛

𝑖+2

+ (

11

6

+ 2𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑢
𝑛

𝑖+1
,

𝑝
1
(𝑥
(3)

𝑖+(1/2)
) = (−

1

6

+

𝜉
2

𝑖

2

)𝑢
𝑛

𝑖+2
+ (

5

6

− 𝜉
𝑖
− 𝜉
2

𝑖
) 𝑢
𝑛

𝑖+1

+ (

1

3

+ 𝜉
𝑖
+

𝜉
2

𝑖

2

) 𝑢
𝑛

𝑖
,

𝑝
2
(𝑥
(3)

𝑖+(1/2)
) = (

1

3

− 𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑢
𝑛

𝑖+1
+ (

5

6

+ 𝜉
𝑖
− 𝜉
2

𝑖
) 𝑢
𝑛

𝑖

+ (−

1

6

+

𝜉
2

𝑖

2

)𝑢
𝑛

𝑖−1
,
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𝑞 (𝑥
(3)

𝑖+(1/2)
) = (

1

30

−

𝜉
2

𝑖

8

+

𝜉
4

𝑖

24

)𝑢
𝑛

𝑖+3

+ (−

13

60

+

𝜉
𝑖

12

+

3𝜉
2

𝑖

4

−

𝜉
3

𝑖

6

−

𝜉
4

𝑖

6

) 𝑢
𝑛

𝑖+2

+ (

47

60

−

5𝜉
𝑖

4

− 𝜉
2

𝑖
+

𝜉
3

𝑖

2

+

𝜉
4

𝑖

4

)𝑢
𝑛

𝑖+1

+ (

9

20

+

5𝜉
𝑖

4

+

𝜉
2

𝑖

4

−

𝜉
3

𝑖

2

−

𝜉
4

𝑖

6

)𝑢
𝑛

𝑖

+ (−

1

20

−

𝜉
𝑖

12

+

𝜉
2

𝑖

8

+

𝜉
3

𝑖

6

+

𝜉
4

𝑖

24

)𝑢
𝑛

𝑖−1
,

(34)

and the corresponding linear weights, which are indicated by
𝑑
0
, 𝑑
1
, 𝑑
2
. In this case

𝑑
0
=

1/30 − 𝜉
2

𝑖
/8 + 𝜉

4

𝑖
/24

1/3 + 𝜉
𝑖
+ 𝜉
2

𝑖
/2

,

𝑑
1
= (−

1

30

−

4𝜉
𝑖

45

+

9𝜉
2

𝑖

80

+

13𝜉
3

𝑖

36

+

11𝜉
4

𝑖

144

−

𝜉
5

𝑖

8

−

𝜉
6

𝑖

24

)

× ((

1

3

+ 𝜉
𝑖
+

𝜉
2

𝑖

2

)(−

1

6

+

𝜉
2

𝑖

2

))

−1

,

𝑑
2
=

−1/20 − 𝜉
𝑖
/12 + 𝜉

2

𝑖
/8 + 𝜉

3

𝑖
/6 + 𝜉

4

𝑖
/24

−1/6 + 𝜉
2

𝑖
/2

.

(35)

The smoothness indicators take the following form:

𝛽
0
=

13

12

(𝑢
𝑛

𝑖+1
− 2𝑢
𝑛

𝑖+2
+ 𝑢
𝑛

𝑖+3
)
2

+

1

4

(3𝑢
𝑛

𝑖+1
− 4𝑢
𝑛

𝑖+2
+ 𝑢
𝑛

𝑖+3
)
2

,

𝛽
1
=

13

12

(𝑢
𝑛

𝑖
− 2𝑢
𝑛

𝑖+1
+ 𝑢
𝑛

𝑖+2
)
2

+

1

4

(𝑢
𝑛

𝑖
− 𝑢
𝑛

𝑖+2
)
2

,

𝛽
2
=

13

12

(𝑢
𝑛

𝑖−1
− 2𝑢
𝑛

𝑖
+ 𝑢
𝑛

𝑖+1
)
2

+

1

4

(𝑢
𝑛

𝑖−1
− 4𝑢
𝑛

𝑖
+ 3𝑢
𝑛

𝑖+1
)
2

.

(36)

The corresponding numeration is applied to obtain the
following reconstituted scheme, so the numerical flux is
reconstructed by the following fifth-order mapped WENO
scheme and semi-Lagrangian finite volume scheme:

(𝑢
(3)

𝑖+(1/2)
)

−

=

2

∑

𝑟=0

𝜔
(𝑀)

𝑟
𝑝
𝑟
(𝑥
(3)

𝑖+(1/2)
) . (37)

4. M-C-SL-FD WENO Interpolation

The compact semi-Lagrangian finite difference method and
mapped fifth-order WENO interpolation for scalar and
system of conservation laws are given in this section. We
first present the compact semi-Lagrangian finite difference
scheme.

4.1. Compact Semi-Lagrangian Finite Difference Scheme for
Scalar Case. From (2) with uniform grid Δ𝑥 = 𝑥

𝑖+(1/2)
−

𝑥
𝑖−(1/2)

, then at the grid point 𝑥 = 𝑥
𝑖
, a semidiscrete finite

different scheme

(

𝜕𝑢

𝜕𝑡

)

𝑖

= −𝑓
󸀠

𝑖
. (38)

On the basis of (38) we propose a compact semi-Lagrangian
finite difference scheme. Firstly, we set up the integral in time

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
− ∫

𝑡
𝑛+1

𝑡
𝑛

𝑓
󸀠

𝑖
𝑑𝑡. (39)

The three-point Gaussian quadrature formula is then used
to compute (39), which achieves fifth-order accuracy at most
for the WENO reconstruction. From the above estimate, the
corresponding equation is

𝑢
𝑛+1

𝑖
= 𝑢
𝑛

𝑖
− Δ𝑡

3

∑

𝑙=1

𝜌
𝑙
𝑓
󸀠
(𝑢 (𝑥
𝑖
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡)) , (40)

where 𝜌
1

= 𝜌
3

= 5/18, 𝜌
2

= 4/9 are the weights,
and 𝜏

1
= (1/2)(1 + √0.6), 𝜏

2
= 1/2, 𝜏

3
= (1/2)(1 −

√0.6) are the Gaussian quadrature points. In this study, we
applied the sixth-order accuracy compact scheme to propose
the compact semi-Lagrangian finite difference scheme. The
sixth-order accuracy compact scheme is given as [5]

𝛼𝑓
󸀠

𝑖−1
+ 𝑓
󸀠

𝑖
+ 𝛼𝑓
󸀠

𝑖+1
= 𝑏

𝑓
𝑖+(3/2)

− 𝑓
𝑖−(3/2)

3Δ𝑥

+ 𝑎

𝑓
𝑖+(1/2)

− 𝑓
𝑖−(1/2)

Δ𝑥

,

(41)

where 𝛼 = 9/62, 𝑎 = (3/8)(3 − 2𝛼); 𝑏 = (1/8)(22𝛼 − 1);
and (1/107520)(75 − 354𝛼)Δ𝑥

6
𝑓
(7) is the truncation error of

the sixth-order tridiagonal scheme. By a corresponding deri-
vation, the compact semi-Lagrangian finite difference scheme
is given by

𝑢
𝑛+1

𝑖

= 𝑢
𝑛

𝑖

− Δ𝑡

3

∑

𝑙=1

𝜌
𝑙
(𝑐 ((

̂
𝑓 (𝑢 (𝑥

𝑖+(3/2)
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡))

−
̂
𝑓 (𝑢 (𝑥

𝑖−(3/2)
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡))) (3Δ𝑥)

−1
)

+ 𝑑 ((
̂
𝑓 (𝑢 (𝑥

𝑖+(1/2)
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡))

−
̂
𝑓 (𝑢 (𝑥

𝑖−(1/2)
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡))) (Δ𝑥)

−1
)) .

(42)

From the above equation, we discover that (42) contains
the corresponding compact coefficients 𝑐 and 𝑑, which are
determined by (41).

Until now, with the help of the characteristic curves,
we have found the points 𝑥(3)

𝑖+(1/2)
and 𝑥

(3)

𝑖−(1/2)
. These points
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are computed using identical arithmetic in the scalar case
of the semi-Lagrangian finite volume scheme. Substituting
the above results of the reduction 𝑥

(3)

𝑖+(1/2)
into (42) and

evaluating the numerical flux at the cell point, the compact
semi-Lagrangian finite difference scheme is given by

𝑢
𝑛+1

𝑖

= 𝑢
𝑛

𝑖

− Δ𝑡

3

∑

𝑙=1

𝜌
𝑙
(𝑐 ((

̂
𝑓 (𝑢 (𝑥

(3)

𝑖+(3/2)
, 𝑡
𝑛
))

−
̂
𝑓 (𝑢 (𝑥

(3)

𝑖−(3/2)
, 𝑡
𝑛
))) (3Δ𝑥)

−1
)

+ 𝑑 ((
̂
𝑓 (𝑢 (𝑥

(3)

𝑖+(1/2)
, 𝑡
𝑛
))

−
̂
𝑓 (𝑢 (𝑥

(3)

𝑖−(1/2)
, 𝑡
𝑛
))) (Δ𝑥)

−1
)) .

(43)

It is clear that the above result depends on the numerical flux
𝑓 at 𝑥(3)

𝑖+(1/2)
, at time level 𝑡𝑛. Finally, we need to reconstruct

the point value 𝑓 at 𝑥(3)
𝑖+(1/2)

at time level 𝑡𝑛. This is described
in detail in Section 4.3.

4.2. Compact Semi-Lagrangian Finite Difference Scheme
for System. Parallel to the system in the semi-Lagrangian
finite volume scheme, the characteristics are defined by
integrating the eigenvalues of f󸀠(u), denoted by 𝜆

𝑝
(𝑢(𝑥, 𝑡)),

𝑝 = 1, 2, . . . , 𝑚. In the same way, the third-order TVD RK
method is used to solve the characteristic curves.The solution
is given by

𝑥
(1)

𝑖+(1/2)
= 𝑥
0
− 𝜆
𝑝
(𝑥
0
, 𝑡
𝑛
) 𝜏
𝑙
Δ𝑡,

𝑥
(2)

𝑖+(1/2)
=

3

4

𝑥
0
+

1

4

𝑥
(1)

𝑖+(1/2)
−

1

4

𝜆
𝑝
(𝑥
(1)

𝑖+(1/2)
, 𝑡
𝑛
+ 𝜏
𝑙
Δ𝑡) 𝜏
𝑙
Δ𝑡,

𝑥
(3)

𝑖+(1/2)
=

1

3

𝑥
0
+

2

3

𝑥
(2)

𝑖+(1/2)
−

2

3

𝜆
𝑝
(𝑥
(2)

𝑖+(1/2)
, 𝑡
𝑛
+

1

2

𝜏
𝑙
Δ𝑡) 𝜏
𝑙
Δ𝑡,

(44)

where 𝑝 = 1, 2, . . . , 𝑚. The semi-Lagrangian finite different
scheme for the system (21) is taken as

u𝑛+1
𝑖

= u𝑛
𝑖
− Δ𝑡

3

∑

𝑙=1

𝜌
𝑙
(𝑐 ((

̂f (u (𝑥
(3)

𝑖+(3/2)
, 𝑡
𝑛
))

−
̂f (u (𝑥

(3)

𝑖−(3/2)
, 𝑡
𝑛
))) (3Δ𝑥)

−1
)

+ 𝑑 ((
̂f (u (𝑥

(3)

𝑖+(1/2)
, 𝑡
𝑛
))

−
̂f (u (𝑥

(3)

𝑖−(1/2)
, 𝑡
𝑛
))) (Δ𝑥)

−1
)) ,

(45)

where 𝑐 and 𝑑 are the corresponding compact coefficients
determined by (41). The WENO interpolation is provided in
detail in Section 4.3.

4.3. Mapped Fifth Order WENO Interpolation. In the subsec-
tion, we shall first consider the case when 𝜆

𝑝
≥ 0, after that

we will consider the case when 𝜆
𝑝

< 0. The details of the
method are omitted and necessary formulas are given in the
following.

Case 1 (𝜆
𝑝
≥ 0). In the fifth order interpolation, we always

use the three points stencils {𝑓
𝑛

𝑖−2
, 𝑓
𝑛

𝑖−1
, 𝑓
𝑛

𝑖
}, {𝑓𝑛
𝑖−1

, 𝑓
𝑛

𝑖
, 𝑓
𝑛

𝑖+1
},

and {𝑓
𝑛

𝑖
, 𝑓
𝑛

𝑖+1
, 𝑓
𝑛

𝑖+2
} to interpolate polynomials 𝑝

𝑟
(𝑥) (𝑟 =

0, 1, 2). Then we use the stencil {𝑓𝑛
𝑖−2

, 𝑓
𝑛

𝑖−1
, 𝑓
𝑛

𝑖
, 𝑓
𝑛

𝑖+1
, 𝑓
𝑛

𝑖+2
} to

interpolate polynomial 𝑞(𝑥). We have the following scheme:

𝑝
0
(𝑥
(3)

𝑖+(1/2)
) = (

3

8

− 𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖−2
+ (−

10

8

+ 3𝜉
𝑖
− 𝜉
2

𝑖
)𝑓
𝑛

𝑖−1

+ (

15

8

− 2𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖
,

𝑝
1
(𝑥
(3)

𝑖+(1/2)
) = (−

1

8

+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖−1
+ (

6

8

+ 𝜉
𝑖
− 𝜉
2

𝑖
)𝑓
𝑛

𝑖

+ (

3

8

− 𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖+1
,

𝑝
2
(𝑥
(3)

𝑖+(1/2)
) = (

3

8

+ 𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖
+ (

6

8

− 𝜉
𝑖
− 𝜉
2

𝑖
)𝑓
𝑛

𝑖+1

+ (−

1

8

+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖+2
,

𝑞 (𝑥
(3)

𝑖+(1/2)
) = (

3

128

−

5𝜉
2

𝑖

48

+

𝜉
4

𝑖

24

)𝑓
𝑛

𝑖−2

+ (−

5

32

−

𝜉
𝑖

24

+

2𝜉
2

𝑖

3

+

𝜉
3

𝑖

6

−

𝜉
4

𝑖

6

)𝑓
𝑛

𝑖−1

+ (

45

64

+

9𝜉
𝑖

8

−

7𝜉
2

𝑖

8

−

𝜉
3

𝑖

2

+

𝜉
4

𝑖

4

)𝑓
𝑛

𝑖

+ (

15

32

−

27𝜉
𝑖

24

+

𝜉
2

𝑖

6

+

𝜉
3

𝑖

2

−

𝜉
4

𝑖

6

)𝑓
𝑛

𝑖+1

+ (−

5

128

+

𝜉
𝑖

24

+

7𝜉
2

𝑖

48

−

𝜉
3

𝑖

6

+

𝜉
4

𝑖

24

)𝑓
𝑛

𝑖+2
,

(46)

and 𝑑
0
, 𝑑
1
, 𝑑
2
, are the corresponding linear weights given by

𝑑
0
=

1

16

+

𝜉
𝑖

6

+

𝜉
2

𝑖

12

,

𝑑
1
=

10

16

+

𝜉
𝑖

6

−

𝜉
2

𝑖

6

,

𝑑
2
=

5

16

−

𝜉
𝑖

3

+

𝜉
2

𝑖

12

.

(47)
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The smoothness indicators are taken on the following form:

𝛽
0
=

13

12

(𝑓
𝑛

𝑖−2
− 2𝑓
𝑛

𝑖−1
+ 𝑓
𝑛

𝑖
)
2

+

1

4

(𝑓
𝑛

𝑖−2
− 4𝑓
𝑛

𝑖−1
+ 3𝑓
𝑛

𝑖
)
2

,

𝛽
1
=

13

12

(𝑓
𝑛

𝑖−1
− 2𝑓
𝑛

𝑖
+ 𝑓
𝑛

𝑖+1
)
2

+

1

4

(𝑓
𝑛

𝑖−1
− 𝑓
𝑛

𝑖+1
)
2

,

𝛽
2
=

13

12

(𝑓
𝑛

𝑖
− 2𝑓
𝑛

𝑖+1
+ 𝑓
𝑛

𝑖+2
)
2

+

1

4

(3𝑓
𝑛

𝑖
− 4𝑓
𝑛

𝑖+1
+ 𝑓
𝑛

𝑖+2
)
2

.

(48)

The nonlinear weights satisfy

𝜔
𝑟
=

𝛼
𝑟

∑
2

𝑠=0
𝛼
𝑠

, 𝛼
𝑟
=

𝑑
𝑟

(𝜖 + 𝛽
𝑟
)
2
, 𝑟 = 0, 1, 2. (49)

Themapped nonlinear weights 𝜔(𝑀)
𝑟

are then computed from

𝜔
(𝑀)

𝑟
=

𝛼
∗

𝑟

∑
2

𝑠=0
𝛼
∗

𝑠

, 𝛼
∗

𝑟
= 𝑚
𝑟
(𝜔
𝑟
) , 𝑟 = 0, 1, 2. (50)

Here 𝜖 > 0 is to avoid the denominator becoming zero; we
use the value 𝜀 = 10

−40 in our numerical tests. The numerical
flux is computed by the following fifth order mappedWENO
scheme with the semi-Lagrangian compact finite difference
scheme:

(
̂
𝑓
(3)

𝑖+(1/2)
)

−

=

2

∑

𝑟=0

𝜔
(𝑀)

𝑟
𝑝
𝑟
(𝑥
(3)

𝑖+(1/2)
) . (51)

Case 2 (𝜆
𝑝

< 0). We use the three points stencils
{𝑓
𝑛

𝑖+3
, 𝑓
𝑛

𝑖+2
, 𝑓
𝑛

𝑖+1
}, {𝑓𝑛
𝑖+2

, 𝑓
𝑛

𝑖+1
, 𝑓
𝑛

𝑖
}, and {𝑓

𝑛

𝑖+1
, 𝑓
𝑛

𝑖
, 𝑓
𝑛

𝑖−1
} and the

stencil {𝑓𝑛
𝑖+3

, 𝑓
𝑛

𝑖+2
, 𝑓
𝑛

𝑖+1
, 𝑓
𝑛

𝑖
, 𝑓
𝑛

𝑖−1
} to build the scheme. We have

𝑝
0
(𝑥
(3)

𝑖+(1/2)
) = (

3

8

+ 𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖+3
+ (−

10

8

− 3𝜉
𝑖
− 𝜉
2

𝑖
)𝑓
𝑛

𝑖+2

+ (

15

8

+ 2𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖+1
,

𝑝
1
(𝑥
(3)

𝑖+(1/2)
) = (−

1

8

+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖+2
+ (

6

8

− 𝜉
𝑖
− 𝜉
2

𝑖
)𝑓
𝑛

𝑖+1

+ (

3

8

+ 𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖
,

𝑝
2
(𝑥
(3)

𝑖+(1/2)
) = (

3

8

− 𝜉
𝑖
+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖+1
+ (

6

8

+ 𝜉
𝑖
− 𝜉
2

𝑖
)𝑓
𝑛

𝑖

+ (−

1

8

+

𝜉
2

𝑖

2

)𝑓
𝑛

𝑖−1
,

𝑞 (𝑥
(3)

𝑖+(1/2)
) = (

3

128

−

5𝜉
2

𝑖

48

+

𝜉
4

𝑖

24

)𝑓
𝑛

𝑖+3

+ (−

5

32

+

𝜉
𝑖

24

+

2𝜉
2

𝑖

3

−

𝜉
3

𝑖

6

−

𝜉
4

𝑖

6

)𝑓
𝑛

𝑖+2

+ (

45

64

−

9𝜉
𝑖

8

−

7𝜉
2

𝑖

8

+

𝜉
3

𝑖

2

+

𝜉
4

𝑖

4

)𝑓
𝑛

𝑖+1

+ (

15

32

+

27𝜉
𝑖

24

+

𝜉
2

𝑖

6

−

𝜉
3

𝑖

2

−

𝜉
4

𝑖

6

)𝑓
𝑛

𝑖

+ (−

5

128

−

𝜉
𝑖

24

+

7𝜉
2

𝑖

48

+

𝜉
3

𝑖

6

+

𝜉
4

𝑖

24

)𝑓
𝑛

𝑖−1
,

(52)

and the corresponding linear weights, which are denoted by
𝑑
0
, 𝑑
1
, 𝑑
2
. In this case,

𝑑
0
=

1

16

−

𝜉
𝑖

6

+

𝜉
2

𝑖

12

,

𝑑
1
=

10

16

−

𝜉
𝑖

6

−

𝜉
2

𝑖

6

,

𝑑
2
=

5

16

+

𝜉
𝑖

3

+

𝜉
2

𝑖

12

.

(53)

The smoothness indicators are taken on the following form:

𝛽
0
=

13

12

(𝑓
𝑛

𝑖+3
− 2𝑓
𝑛

𝑖+2
+ 𝑓
𝑛

𝑖+1
)
2

+

1

4

(𝑓
𝑛

𝑖+3
− 4𝑓
𝑛

𝑖+2
+ 3𝑓
𝑛

𝑖+1
)
2

,

𝛽
1
=

13

12

(𝑓
𝑛

𝑖+2
− 2𝑓
𝑛

𝑖+1
+ 𝑓
𝑛

𝑖+1
)
2

+

1

4

(𝑓
𝑛

𝑖+2
− 𝑓
𝑛

𝑖
)
2

,

𝛽
2
=

13

12

(𝑓
𝑛

𝑖+1
− 2𝑓
𝑛

𝑖
+ 𝑓
𝑛

𝑖−1
)
2

+

1

4

(3𝑓
𝑛

𝑖+1
− 4𝑓
𝑛

𝑖
+ 𝑓
𝑛

𝑖−1
)
2

.

(54)

The numerical flux is reconstructed by the following fifth
order mapped WENO scheme:

(
̂
𝑓
(3)

𝑖+(1/2)
)

−

=

2

∑

𝑟=0

𝜔
(𝑀)

𝑟
𝑝
𝑟
(𝑥
(3)

𝑖+(1/2)
) . (55)

4.4. Boundary Conditions. It should be pointed out that the
derived-boundary and near-boundary schemes are signifi-
cant for the fifth-ordermappedM-C-SL-FDWENOschemes.
Theboundary conditions are crucial for the order of accuracy,
and they affect the stability characteristics of the scheme. In
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this study, the fourth-order accuracy boundary programme
of Zhang et al. [9] was used as follows:

𝑓
󸀠

0
+ 3𝑓
󸀠

1
=

1

6Δ𝑥

(−17𝑓
󸀠

0
+ 9𝑓
󸀠

1
+ 9𝑓
󸀠

2
− 𝑓
󸀠

3
) ,

𝑓
󸀠

0
+ 4𝑓
󸀠

1
+ 𝑓
󸀠

2
=

1

Δ𝑥

(−3𝑓
󸀠

0
+ 3𝑓
󸀠

2
) ,

𝑓
󸀠

𝑁
+ 3𝑓
󸀠

𝑁−1
=

1

6Δ𝑥

(−17𝑓
󸀠

𝑁−3
+ 9𝑓
󸀠

𝑁−2
+ 9𝑓
󸀠

𝑁−1
+ 17𝑓

󸀠

𝑁
) ,

𝑓
󸀠

𝑁
+ 4𝑓
󸀠

𝑁−1
+ 𝑓
󸀠

𝑁−2
=

1

Δ𝑥

(−3𝑓
󸀠

𝑁
+ 3𝑓
󸀠

𝑁−2
) .

(56)

It should be observed that the accuracy of the boundary
conditions is fourth-order, but that does not reduce the fifth-
order accuracy of the M-C-SL-FD WENO schemes; that is,
fourth-order accuracy boundary conditions maintain fifth-
order accuracy and stability of the scheme proposed in this
study.

Remark 1. Negative linear weights in a WENO scheme pro-
duce oscillations and instability. Shi et al. [30] have dealt with
this problem using a simple and effective splitting technique
which obviates the need to remove the negative weights and
retains the stability and accuracy of the scheme.

Remark 2. If the systems under consideration have 𝑚 char-
acteristic variables, such as

𝜆
1
(𝑢) , 𝜆

2
(𝑢) , . . . , 𝜆

𝑚
(𝑢) , (57)

Ii and Xiao [28] have produced a method incorporating a
decoupled system of characteristic variables and Riemann
invariants and then solved the linear systems for primi-
tive variables along the characteristic curves, which is the
approach adopted in this paper.

Remark 3. When the CFL number is large enough to make
𝑥
𝑖+(1/2)

− 𝑥
(3)

𝑖+(1/2)
> Δ𝑥
𝑖
, Qiu and Shu have proposed a large

time-step evolution method to handle this condition [19].

5. Numerical Examples

Massive numerical experiments to assess the performance of
the M-SL-FV WENO 5 and M-C-SL-FD WENO 5 schemes
are described in this section. We present the results of our
numerical tests for scalar and for system of conservation laws.
If in the following examples the characteristics were variable,
we adopted the third-order TVD RK method. The mapped
semi-Lagrangian WENO 5 schemes and semi-Lagrangian
WENO 5 schemes allow a weaker CFL condition. In the
examples, the CFL number is taken as 5.9 for the linear
advection problem and Burger’s equation and 9.9 for the one-
dimensional Euler equations. A CFL number of 0.2 is chosen
for the FVWENO 5 and FDWENO 5 schemes. All solutions
are computed using uniformmeshes. In all of the simulations,
the mapped semi-Lagrangian schemes use 𝜀 = 10

−40. For the
semi-Lagrangian, FV and FDWENO schemes use 𝜀 = 10

−6.

5.1. Accuracy Test

Example 1 (the linear advection problem). We check the
order of accuracy of M-SL-FV, M-C-SL-FD, SL-FV, C-SL-
FD, FV, and FD WENO 5 methods for the linear advection
problem

𝑢
𝑡
+ 𝑢
𝑥
= 0. (58)

The initial condition is given by𝑢(𝑥, 0) = sin(𝜋𝑥−sin(𝜋𝑥)/𝜋),
the investigative domain is [−1, 1], and the boundary condi-
tions are periodic.The exact solution of this problem is given
by

𝑢 (𝑥, 𝑡) = sin(𝜋 (𝑥 − 𝑡) −

sin (𝜋 (𝑥 − 𝑡))

𝜋

) . (59)

The norm of the error is computed at time 𝑡 = 0.5 and
CFL = 5.9. The errors and numerical orders of accuracy
for the M-SL-FV WENO 5 scheme and M-C-SL-FD WENO
5 scheme are shown in Table 1. The convergence results of
the scheme without the mapped weights are listed in Table 2.
The convergence rates of Tables 1 and 2 show that M-SL-
FV WENO 5 and M-C-SL-FD WENO 5 with 𝜀 = 10

−40

schemes can reach fifth-order accuracy. In fact, the error
is third-order accuracy in the 𝐿

∞ norm with 𝜀 = 10
−6 as

shown in Table 2. The 𝐿
1 and 𝐿

∞ errors of the FV and FD
WENO 5 methods are shown in Table 3. Tables 1 and 3 show
the orders of the accuracy for the M-SL-FV, M-C-SL-FD,
FV, and FD WENO 5 methods. We see that the FV and FD
WENO 5 methods do not achieve fifth-order accuracy for
the linear advection problem. It is important to point out
that the FV and FD methods are worse than the M-SL-FV
and M-C-SL-FD methods for the linear advection problem.
So we can confirm that the mapped weights scheme gives a
good approximation to the exact solution, and the M-SL-FV
WENO 5 and M-C-SL-FD WENO 5 methods perform well
for the linear advection problem.

5.2. Numerical Tests

Example 2 (Burgers equation). In order to demonstrate the
stability of the M-SL-FV WENO 5 scheme and M-C-SL-FD
WENO 5 scheme, the nonlinear scalar Burgers equation is

𝑢
𝑡
+ (

𝑢
2

2

)

𝑥

= 0. (60)

We take 𝑢(𝑥, 0) = 0.5 + sin(𝜋𝑥) as the initial condition. The
domain of the equation in this study is taken as [0, 2], and
CFL = 5.9 with periodic boundary conditions. We show the
results at 𝑡 = 0.5/𝜋 and 𝑡 = 1.5/𝜋 with 𝑁 = 50. The solution
remains smooth at 𝑡 = 0.5/𝜋, but a shock wave is produced at
𝑡 = 1.5/𝜋.The outcomes of theM-SL-FVWENO 5 andM-C-
SL-FDWENO 5 schemes at time 𝑡 = 0.5/𝜋 and 𝑡 = 1.5/𝜋 are
shown in Figures 1 and 2, respectively. The results are seen to
be reasonable; both the M-SL-FVWENO 5 and M-C-SL-FD
WENO 5 schemes solve the numerical oscillations very well
at 𝑡 = 1.5/𝜋.



10 Journal of Applied Mathematics

Table 1: Left: M-SL-FVWENO 5 scheme, right: M-C-SL-FDWENO 5 scheme for Example 1 on a uniform mesh of𝑁 cells at 𝑡 = 0.5, CFL =
5.9, and 𝜀 = 10

−40.

𝑁

M-SL-FVWENO 5 M-C-SL-FDWENO 5
𝐿
1 error Order 𝐿

∞ error Order 𝐿
1 error Order 𝐿

∞ error Order
10 1.00𝐸 − 02 — 2.03𝐸 − 02 — 7.79𝐸 − 03 — 2.45𝐸 − 02 —
20 4.66𝐸 − 04 4.42 1.43𝐸 − 03 3.83 3.76𝐸 − 04 4.37 1.30𝐸 − 03 4.24
40 1.72𝐸 − 05 4.76 5.25𝐸 − 05 4.77 9.46𝐸 − 06 5.31 3.72𝐸 − 05 5.13
80 5.68𝐸 − 07 4.92 1.62𝐸 − 06 5.02 3.17𝐸 − 07 4.90 1.15𝐸 − 06 5.02
160 1.78𝐸 − 08 5.00 5.09𝐸 − 08 4.99 9.32𝐸 − 09 5.09 3.25𝐸 − 08 5.15

Table 2: Left: SL-FV WENO 5 scheme, right: C-SL-FD WENO 5 scheme for Example 1 on a uniform mesh of 𝑁 cells at 𝑡 = 0.5, CFL = 5.9,
and 𝜀 = 10

−6.

𝑁

SL-FVWENO 5 C-SL-FDWENO 5
𝐿
1 error Order 𝐿

∞ error Order 𝐿
1 error Order 𝐿

∞ error Order
10 1.83𝐸 − 02 — 4.41𝐸 − 02 — 1.21𝐸 − 02 — 3.91𝐸 − 02 —
20 1.97𝐸 − 03 3.22 4.62𝐸 − 03 3.25 1.76𝐸 − 03 2.78 4.07𝐸 − 03 3.26
40 1.07𝐸 − 04 4.20 3.78𝐸 − 04 3.61 7.69𝐸 − 05 4.52 3.26𝐸 − 04 3.64
80 4.68𝐸 − 06 4.52 2.96𝐸 − 05 3.67 3.46𝐸 − 06 4.47 2.56𝐸 − 05 3.67
160 1.96𝐸 − 07 4.58 2.46𝐸 − 06 3.59 1.65𝐸 − 07 4.39 2.36𝐸 − 06 3.44

Table 3: Left: FVWENO 5 scheme, right: FDWENO 5 scheme for Example 1 on a uniformmesh of𝑁 cells at 𝑡 = 0.5, CFL = 0.2, and 𝜀 = 10
−6.

𝑁

FVWENO 5 FDWENO 5
𝐿
1 error Order 𝐿

∞ error Order 𝐿
1 error Order 𝐿

∞ error Order
10 1.84𝐸 − 02 — 4.44𝐸 − 02 — 1.99𝐸 − 02 — 4.77𝐸 − 02 —
20 1.93𝐸 − 03 3.25 4.62𝐸 − 03 3.26 2.02𝐸 − 03 3.30 4.73𝐸 − 03 3.33
40 1.07𝐸 − 04 4.17 3.78𝐸 − 04 3.61 1.08𝐸 − 04 4.23 3.83𝐸 − 04 3.63
80 4.72𝐸 − 06 4.50 3.00𝐸 − 05 3.66 4.75𝐸 − 06 4.51 3.02𝐸 − 05 3.66
160 2.13𝐸 − 07 4.47 2.76𝐸 − 06 3.44 2.14𝐸 − 07 4.47 2.77𝐸 − 06 3.45

Now, we begin to study the one-dimensional Euler sys-
tem, written as

u
𝑡
+ f(u)

𝑥
= 0, (61)

where

u = (

𝜌

𝜌V
𝐸

) , f (u) = (

𝜌V
𝜌V2 + 𝑝

V (𝐸 + 𝑝)

) . (62)

Here 𝜌, V, 𝐸, and 𝑝 are the density, velocity, total energy, and
pressure, respectively. The equation of state has the following
form:

𝐸 =

𝑝

𝛾 − 1

+

1

2

𝜌V2, (63)

and the ratio of specific heat 𝛾 = 1.4.

Example 3 (the Sod problem). The sod problem is the Euler
equation (61), specified by the following initial conditions:

(𝜌, V, 𝑝) = {

(1, 0, 1) 𝑥 ≤ 0,

(0.125, 0, 0.1) 𝑥 > 0.

(64)

Setting [−5, 5] as the computational domain of this problem,
we show the results at 𝑡 = 1.3 and CFL = 9.9 with periodic

boundary conditions. In Figure 3, the outcomes of the M-
SL-FV WENO 5 and M-C-SL-FD WENO 5 schemes with a
uniform grid of 200 points are shown. It is important to point
out that the shock and contact discontinuity are correctly
captured by both schemes.

Example 4 (The Lax problem). We consider the lax problem,
which is the Euler equation (61) and has the following starting
conditions:

(𝜌, V, 𝑝) =
{

{

{

(0.445, 0.698, 3.528) 𝑥 ≤ 0,

(0.5, 0, 0.571) 𝑥 > 0.

(65)

Setting [−5, 5] as the investigative domain of this prob-
lem, the solution is up to 𝑡 = 1.3 and CFL = 9.9

with periodic boundary conditions. In the example, the
M-SL-FV WENO 5 scheme and M-C-SL-FD WENO 5
scheme are used to calculate the solution. The simulated
density of the lax problem with a uniform gird of 200
points against the exact solution are displayed in Figure 4.
It can be seen that the two schemes maintain the ENO
property and have a good nonoscillatory resolution at the
discontinuities.
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Figure 1:The numerical results of the Burgers equation at 𝑡 = 0.5/𝜋with CFL = 5.9,𝑁 = 50; (a) M-SL-FVWENO 5 scheme; (b)M-C-SL-FD
WENO 5 scheme; solid line: exact solution; circle: computed solution.
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Figure 2:The numerical results of the Burgers equation at 𝑡 = 1.5/𝜋with CFL = 5.9,𝑁 = 50; (a)M-SL-FVWENO 5 scheme; (b)M-C-SL-FD
WENO 5 scheme; solid line: exact solution; circle: computed solution.

Example 5 (the shock-turbulence interaction problem). The
shock-turbulence interaction problem is the Euler equation
(61), specified by the following initial conditions:

(𝜌, V, 𝑝) = {

(3.857143, 2.629369, 10.333333) 𝑥 ≤ −4,

(1 + 𝜀 sin 5𝑥, 0, 1) 𝑥 > −4.

(66)

Here we take 𝜀 = 0.2. Setting [−5, 5] as the computational
domain of this problem, the density is plotted at 𝑡 = 1.8 and
CFL = 9.9with periodic boundary conditions.The outcomes
of the M-SL-FVWENO 5 scheme andM-C-SL-FDWENO 5
scheme are displayed in Figure 5. The figure shows that the
two schemes can capture sharp, nonoscillatory shock near
discontinuities.

Example 6 (the two interacting blast waves problem). In this
example, we consider two interacting blast waves, which is
defined by the Euler equation (61) and has the following
starting conditions:

(𝜌, V, 𝑝) =
{
{

{
{

{

(1, 0, 1000) 0 ≤ 𝑥 ≤ 0.1,

(1, 0, 0.01) 0.1 ≤ 𝑥 ≤ 0.9,

(1, 0, 100) otherwise.
(67)

Setting [0, 1] as the investigative domain of this problem, the
solution is up to 𝑡 = 0.038 and CFL = 9.9 with periodic
boundary conditions. In the example, the simulated density
of the two interacting blast waves problem are displayed for
theM-SL-FVWENO5 andM-C-SL-FDWENO5 schemes in
Figure 6 for a mesh of 400 cells. The figure shows clearly that



12 Journal of Applied Mathematics

1.0

0.8

0.6

0.4

0.2

0.0

D
en
sit
y

−5 −4 −3 −2 −1 0 1 2 3 4 5

x

(a)

1.0

0.8

0.6

0.4

0.2

0.0

D
en
sit
y

−5 −4 −3 −2 −1 0 1 2 3 4 5

x

(b)

Figure 3: The numerical results of the Sod problem at 𝑡 = 1.3 with CFL = 9.9, 𝑁 = 200; (a) M-SL-FV WENO 5 scheme; (b) M-C-SL-FD
WENO 5 scheme; solid line: exact solution; circle: computed solution.
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Figure 4: The numerical results of the lax problem at 𝑡 = 1.3 with CFL = 9.9, 𝑁 = 200; (a) M-SL-FV WENO 5 scheme; (b) M-C-SL-FD
WENO 5 scheme; solid line: exact solution; circle: computed solution.

the strong shock waves and contact discontinuities are best
resolved by the M-SL-FVWENO 5 and M-C-SL-FDWENO
5 schemes. The numerical solutions are very satisfactory.

6. Concluding Remarks

Mapped semi-Lagrangian WENO methods are proposed in
this paper. The M-SL-FV WENO 5 and M-C-SL-FD WENO
5 schemes were applied to one-dimensional hyperbolic con-
servation laws. Both schemes permit weaker CFL conditions,
at the same time achieving fifth-order accuracy at certain
smooth extrema and nonoscillatory shock near discontinu-
ities. The numerical examples using the two schemes have
demonstrated that they improve both accuracy and the ability

to capture shock. The study of mapped semi-Lagrangian
WENO schemes will be further expanded into the challeng-
ing areas of multidimensional nonlinear problems.
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semi-Lagrangian method for the numerical solution of the
Vlasov equation,” Computer Physics Communications, vol. 180,
no. 10, pp. 1730–1745, 2009.

[18] N. Crouseilles, M.Mehrenberger, and E. Sonnendrücker, “Con-
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