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A nonlinear generalized Degasperis-Procesi equation is investigated. Assuming that the strong solution of the equation is bounded
in the sense of L∞(R)-norm and the initial data belong to the space L1(R)∩ L2(R), we prove that the solutions are stable in the space
L1(R).

1. Introduction

Coclite and Karlsen [1] investigated the following generalized
Degasperis-Procesi equation:

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥
+ 4𝑓


(𝑢) 𝑢
𝑥
= 𝑓


(𝑢) 𝑢
3

𝑥

+ 3𝑓


(𝑢) 𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑓


(𝑢) 𝑢
𝑥𝑥𝑥
.

(1)

When 𝑓(𝑢) ∈ 𝐶3 and satisfies

𝑓


(𝑢)

≤ 𝑐 |𝑢| ,

𝑓 (𝑢)
 ≤ 𝑐|𝑢|

2

, (2)

or

𝑓


(𝑢)

≤ 𝑐,

𝑓 (𝑢)
 ≤ 𝑐 |𝑢| , (3)

where 𝑐 is a positive constant, the existence and 𝐿1 stability of
entropy weak solutions belonging to the class 𝐿1(𝑅)⋂𝐵𝑉(𝑅)
are established for (1) in paper [1].

The objective of this paper is to study the generalized
Degasperis-Procesi equation

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥
+ 𝑚𝑔


(𝑢) 𝑢
𝑥
= 𝑔


(𝑢) 𝑢
3

𝑥

+ 3𝑔


(𝑢) 𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑔


(𝑢) 𝑢
𝑥𝑥𝑥
,

(4)

where 𝑚 is a positive constant, 𝑔(𝑢) is a polynomial of order
𝑛 (𝑛 ≥ 2), and 𝑔(0) = 0. When 𝑚 = 4 and 𝑔(𝑢) = 𝑢2/2,

(4) reduces to the classical Degasperis-Procesi model [2–10].
Assuming that there exists a strong solution to (4), which is
bounded in its existence time interval [0, 𝑇), and the initial
value of (4) lies in 𝐿1(𝑅)∩𝐿2(𝑅), we will prove that the strong
solutions of the equation are stable in the space 𝐿1(𝑅) (see
Theorem 8 in Section 3). From the authors’ knowledge, this
is a new result for (4).

This paper is organized as follows. Section 2 gives several
lemmas. The main result and its proof are presented in
Section 3.

2. Several Lemmas

Weconsider theCauchy problemof (4) in the following form:

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥
+ 𝑚𝑔


(𝑢) 𝑢
𝑥
= 𝑔


(𝑢) 𝑢
3

𝑥

+ 3𝑔


(𝑢) 𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑔


(𝑢) 𝑢
𝑥𝑥𝑥
,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) .

(5)

Applying the operator (1 − 𝜕2
𝑥
)
−1 to the first equation of

problem (5), we obtain

𝑢
𝑡
+ 𝑔


(𝑢) 𝑢
𝑥
+ 𝜕
𝑥
𝑃
𝑢
= 0,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) ,

(6)
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where𝑃
𝑢
= ((𝑚−1)/2) ∫

𝑅

𝑒
−|𝑥−𝑦|

𝑔(𝑢(𝑡, 𝑦))𝑑𝑦. LettingΨ
𝑢
(𝑢) =

𝜕
𝑥
𝑃
𝑢
, we get

𝑢
𝑡
+ 𝑔


(𝑢) 𝑢
𝑥
+ Ψ
𝑢
(𝑢) = 0,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) .

(7)

Lemma 1. The solution of problem (5) with𝑚 > 0 satisfies

∫

𝑅

𝑦
1
𝑦𝑑𝑥 = ∫

𝑅

1 + 𝜉
2

𝑚 + 𝜉
2

�̂� (𝜉)


2

𝑑𝜉 = ∫

𝑅

1 + 𝜉
2

𝑚 + 𝜉
2

𝑢0 (𝜉)


2

𝑑𝜉,

(8)

where 𝑦
1
= 𝑢 − 𝜕

2

𝑥𝑥
𝑢 and 𝑦 = (𝑚 − 𝜕2

𝑥𝑥
)
−1

𝑢. Moreover, there
exist two constants 𝑐

1
> 0 and 𝑐

2
> 0 depending only on𝑚 such

that

𝑐
1

𝑢0
𝐿2(𝑅)

≤ 𝑐
1
‖𝑢‖
𝐿
2
(𝑅)
≤ 𝑐
2

𝑢0
𝐿2(𝑅)

. (9)

Proof. Letting 𝑦
1
= 𝑢 − 𝜕

2

𝑥𝑥
𝑢 and 𝑦 = (𝑚 − 𝜕2

𝑥𝑥
)
−1

𝑢 and using
(4), we obtain 𝑢 = 𝑚𝑦 − 𝑦

𝑥𝑥
and

𝑑

𝑑𝑡
∫

𝑅

𝑦
1
𝑦𝑑𝑥 = ∫

𝑅

𝜕𝑦
1

𝜕𝑡
𝑦 𝑑𝑥 + ∫

𝑅

𝑦
1

𝜕𝑦

𝜕𝑡
𝑑𝑥 = 2∫

𝑅

𝜕𝑦
1

𝜕𝑡
𝑦 𝑑𝑥

= 2∫

𝑅

[−𝑚𝑔


(𝑢) 𝑢
𝑥
+ 𝑔


(𝑢) 𝑢
3

𝑥

+ 3𝑔


(𝑢) 𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑔


(𝑢) 𝑢
𝑥𝑥𝑥
] 𝑦 𝑑𝑥

= 2∫

𝑅

[−𝑚𝜕
𝑥
[𝑔 (𝑢)] + [𝑔 (𝑢)]

𝑥𝑥𝑥
] 𝑦 𝑑𝑥

= ∫

𝑅

[𝑚𝑔 (𝑢)] 𝑦
𝑥
− 𝑔 (𝑢) 𝑦

𝑥𝑥𝑥
𝑑𝑥

= ∫

𝑅

[𝑚𝑔 (𝑢)] 𝑦
𝑥
− 𝑔 (𝑢) (𝑚𝑦

𝑥
− 𝑢
𝑥
) 𝑑𝑥

= ∫

𝑅

𝑔 (𝑢) 𝑢
𝑥
𝑑𝑥,

= 0.

(10)

Using the Parseval identity and (10), we obtain (8) and (9).

Remark 2. When 𝑚 ≤ 0, from (8), we cannot obtain
inequality (9).

Lemma 3. If 𝑢
0
∈ 𝐿
2

(𝑅) and ‖𝑢‖
𝐿
∞
(𝑅)
< 𝑀, it holds that

𝑃𝑢
𝐿∞(𝑅

+
×𝑅)
,

Ψ𝑢 (𝑢)
𝐿∞(𝑅

+
×𝑅)
< 𝑐
0
𝑀
𝑛−2

, (11)

where 𝑐
0
is a constant independent of 𝑡 and 𝑛 ≥ 2.

Proof. Using the assumption 𝑢
0
∈ 𝐿
2

(𝑅) and Lemma 1, we
have 𝑢 ∈ 𝐿2(𝑅). Using (7), we get

𝑃
𝑢
(𝑡, 𝑥) =

𝑚 − 1

2
∫

𝑅

𝑒
−|𝑥−𝑦|

𝑔 (𝑢) 𝑑𝑦,

Ψ
𝑢
(𝑢 (𝑡, 𝑥)) =

𝑚 − 1

2
∫

𝑅

𝑒
−|𝑥−𝑦| sign (𝑦 − 𝑥) 𝑔 (𝑢) 𝑑𝑦.

(12)

Since the function 𝑔(𝑢) is a polynomial of order 𝑛 and
‖𝑢‖
𝐿
∞
(𝑅)

< 𝑀, combining Lemma 1 derives that (11)
holds.

Lemma 4. Assume that ‖𝑢‖
𝐿
∞
(𝑅)
< 𝑀 and ‖V‖

𝐿
∞
(𝑅)
< 𝑀

are two solutions of (4) with initial data 𝑢
0
, V
0
∈ 𝐿
2

(𝑅),
respectively. Then, for any 𝜙(𝑡, 𝑥) ∈ 𝐶∞

0
([0,∞) × 𝑅), it holds

that

∫

∞

−∞

Ψ𝑢 (𝑢) − ΨV (V)


𝜙 (𝑡, 𝑥)
 𝑑𝑥 ≤ 𝑐0 ∫

∞

−∞

|𝑢 − V| 𝑑𝑥, (13)

where 𝑐
0
> 0 depends on𝑚,𝑛,𝑀, 𝜙, ‖𝑢

0
‖
𝐿
2
(𝑅)
, and ‖V

0
‖
𝐿
2
(𝑅)
.

Proof. We have

∫

∞

−∞

Ψ𝑢 (𝑢) − ΨV (V)


𝜙 (𝑡, 𝑥)
 𝑑𝑥

≤ (𝑚 − 1)∫

∞

−∞


𝜕
𝑥
Λ
−2

(𝑔 (𝑢) − 𝑔 (V))


𝜙 (𝑡, 𝑥)
 𝑑𝑥

=
|𝑚 − 1|

2



∫

∞

−∞

∫

∞

−∞

𝑒
−|𝑥−𝑦| sign (𝑥 − 𝑦)





𝑔 (𝑢)

− 𝑔 (V) 𝑑𝑦
𝜙 (𝑡, 𝑥)

 𝑑𝑥


≤ 𝑐
0
∫

∞

−∞

|𝑢 − V|𝑀𝑛−2𝑑𝑦


∫

∞

−∞

𝜙 (𝑡, 𝑥)
 𝑑𝑥



≤ 𝑐
0
∫

∞

−∞

|𝑢 − V| 𝑑𝑦,

(14)

which completes the proof.

We define 𝛿(𝜎) as a function which is infinitely differ-
entiable on (−∞, +∞) such that 𝛿(𝜎) ≥ 0, 𝛿(𝜎) = 0 for
|𝜎| ≥ 1, and ∫∞

−∞

𝛿(𝜎)𝑑𝜎 = 1. For any number 𝜀 > 0, we
let 𝛿
𝜀
(𝜎) = 𝛿(𝜀

−1

𝜎)/𝜀. Then we know that 𝛿
𝜀
(𝜎) is a function

in 𝐶∞(−∞,∞) and

𝛿
𝜀
(𝜎) ≥ 0, 𝛿

𝜀
(𝜎) = 0 if |𝜎| ≥ 𝜀,

𝛿𝜀 (𝜎)
 ≤
𝑐

𝜀
, ∫

∞

−∞

𝛿
𝜀
(𝜎) = 1.

(15)

Assume that the function V(𝑥) is locally integrable on
(−∞,∞). We define an approximation function of V as

V𝜀 (𝑥) =
1

𝜀
∫

∞

−∞

𝛿 (
𝑥 − 𝑦

𝜀
) V (𝑦) 𝑑𝑦, 𝜀 > 0. (16)

We get V𝜀(𝑥) → V(𝑥) as 𝜀 → 0 almost everywhere.
We state the concept of a characteristic cone. For any𝑅

0
>

0, we define 𝑁 > max
𝑡∈[0,𝑇]

‖𝑢‖
𝐿
∞ < ∞. Let ℧ represent the

cone {(𝑡, 𝑥) : |𝑥| < 𝑅
0
−𝑁𝑡, 0 ≤ 𝑡 ≤ 𝑇

0
= min(𝑇, 𝑅

0
𝑁
−1

)}. We
let 𝑆
𝜏
represent the cross section of the cone ℧ by the plane

𝑡 = 𝜏, 𝜏 ∈ [0, 𝑇
0
]. Set 𝐾

𝑟+2𝜌
= {𝑥 : |𝑥| ≤ 𝑟 + 2𝜌}, where

𝑟 > 0, 𝜌 > 0, and 𝜋
𝑇
= [0, 𝑇] × 𝑅 for an arbitrary 𝑇 > 0.

The space of all infinitely differentiable functions 𝜙(𝑡, 𝑥) with
compact support in [0, 𝑇] × 𝑅 is denoted by 𝐶∞

0
(𝜋
𝑇
).
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Lemma 5 (see [11]). Let the function V(𝑡, 𝑥) be bounded and
measurable in cylinder Ω

𝑇
= [0, 𝑇] × 𝐾

𝑟
. If 𝜌 ∈ (0,min[𝑟, 𝑇])

and 𝜀 ∈ (0, 𝜌), then the function

𝑉𝜀 =
1

𝜀
2

× ∫∫∫∫ |(𝑡−𝜏)/2|≤𝜀,
𝜌≤(𝑡+𝜏)/2≤𝑇−𝜌,

|(𝑥−𝑦)/2|≤𝜀,

|(𝑥+𝑦)/2|≤𝑟−𝜌

V (𝑡, 𝑥) − V (𝜏, 𝑦)
 𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏

(17)

satisfies lim
𝜀→0
𝑉
𝜀
= 0.

Lemma 6 (see [11]). Let |𝜕𝐹(𝑢)/𝜕𝑢| be bounded. Then the
function

𝐻(𝑢, V) = sign (𝑢 − V) (𝐹 (𝑢) − 𝐹 (V)) (18)

satisfies the Lipschitz condition in 𝑢 and V, respectively.

Using the methods presented in [11], we have the follow-
ing result.

Lemma 7. If 𝑢 is a strong solution of problem (6), 𝜙(𝑡, 𝑥) ∈
𝐶
∞

0
(𝜋
𝑇
), and 𝜙(0, 𝑥) = 0, it holds that

∬

𝜋
𝑇

{|𝑢 − 𝑘| 𝜙
𝑡
+ sign (𝑢 − 𝑘) [𝑔 (𝑢) − 𝑔 (𝑘)] 𝜙

𝑥

− sign (𝑢 − 𝑘)Ψ
𝑢
(𝑡, 𝑥) 𝜙} 𝑑𝑥 𝑑𝑡 = 0,

(19)

where 𝑘 is an arbitrary constant.

Proof. Let Φ(𝑢) be a twice differential function on the line
−∞ < 𝑢 < ∞. We multiply the first equation of problem
(6) by the function Φ(𝑢)𝜙(𝑡, 𝑥), where 𝜙(𝑡, 𝑥) ∈ 𝐶∞

0
(𝜋
𝑇
).

Integrating over 𝜋
𝑇
and transferring the derivatives with

respect to 𝑡 and 𝑥 to the test function 𝜙, for any constant 𝑘,
we obtain

∬

𝜋
𝑇

{Φ (𝑢) 𝜙
𝑡
+ [∫

𝑢

𝑘

Φ


(𝑧) 𝑔


(𝑧) 𝑑𝑧] 𝜙
𝑥

−Φ


(𝑢)Ψ
𝑢
(𝑡, 𝑥) 𝜙} 𝑑𝑥 𝑑𝑡 = 0,

(20)

in which we have used ∫∞
−∞

[∫
𝑢

𝑘

Φ


(𝑧)𝑔


(𝑧)𝑑𝑧]𝜙
𝑥
𝑑𝑥 =

−∫
∞

−∞

[Φ


(𝑢)𝑔


(𝑢)𝑢
𝑥
]𝜙(𝑡, 𝑥)𝑑𝑥.

Integration by parts yields that

∫

∞

−∞

[∫

𝑢

𝑘

Φ


(𝑧) 𝑔


(𝑧) 𝑑𝑧] 𝜙
𝑥
𝑑𝑥

= ∫

∞

−∞

[Φ


(𝑢) [𝑔 (𝑢) − 𝑔 (𝑘)]

− ∫

𝑢

𝑘

[𝑔 (𝑧) − 𝑔 (𝑘)]Φ


(𝑧) 𝑑𝑧] 𝜙
𝑥
𝑑𝑥.

(21)

LetΦ𝜀(𝑢) be an approximation of the function |𝑢 − 𝑘| and set
Φ(𝑢) = Φ

𝜀

(𝑢). Using the properties of the sign(𝑢 − 𝑘), from
(20) and (21), and sending 𝜀 → 0, we have

∬

𝜋
𝑇

{|𝑢 − 𝑘| 𝜙
𝑡
+ sign (𝑢 − 𝑘) [𝑔 (𝑢) − 𝑔 (𝑘)] 𝜙

𝑥

− sign (𝑢 − 𝑘)Ψ
𝑢
(𝑡, 𝑥) 𝜙} 𝑑𝑥 𝑑𝑡 = 0,

(22)

which completes the proof.

3. Main Result

Generally speaking, we cannot get the boundedness of strong
solutions for problem (6). This is why we assume that the
strong solutions of problem (6) possess boundedness in order
to establish the 𝐿1 stability for the problem. Now we state our
main result as follows.

Theorem 8. Assume that there exist strong solutions 𝑢 and V
for problem (5) or (6). Let𝑇 be themaximum existence time for
the solutions. If ‖𝑢‖

𝐿
∞
(𝑅)
< 𝑀, ‖V‖

𝐿
∞
(𝑅)
< 𝑀, and the initial

data 𝑢
0
, V
0
∈ 𝐿
1

(𝑅) ∩ 𝐿
2

(𝑅), it holds that

‖𝑢(𝑡, ⋅) − V(𝑡, ⋅)‖
𝐿
1
(𝑅)

≤ 𝑐𝑒
𝑐𝑡

∫

∞

−∞

𝑢0 (𝑥) − V0 (𝑥)
 𝑑𝑥, 𝑡 ∈ [0, 𝑇] ,

(23)

where 𝑐 depends on ‖𝑢
0
‖
𝐿
2
(𝑅)
, ‖V
0
‖
𝐿
2
(𝑅)
,𝑀, 𝑇, and the coeffi-

cients of polynomial 𝑔(𝑢).

Proof. For 𝜙(𝑡, 𝑥) ∈ 𝐶∞
0
(𝜋
𝑇
), we assume that 𝜙(𝑡, 𝑥) = 0

outside the cylinder

⊎ = {(𝑡, 𝑥)} = [𝜌, 𝑇 − 2𝜌] × 𝐾
𝑟−2𝜌
, 0 < 2𝜌 ≤ min (𝑇, 𝑟) .

(24)

Let

𝜓 = 𝜙(
𝑡 + 𝜏

2
,
𝑥 + 𝑦

2
) 𝛿
𝜀
(
𝑡 − 𝜏

2
) 𝛿
𝜀
(
𝑥 − 𝑦

2
)

= 𝜙 (⋅ ⋅ ⋅ ) 𝜆
𝜀
(∗) ,

(25)

where (⋅ ⋅ ⋅ ) = ((𝑡 + 𝜏)/2, (𝑥 + 𝑦)/2) and (∗) = ((𝑡 − 𝜏)/2, (𝑥 −
𝑦)/2). The function 𝛿

𝜀
(𝜎) is defined in (15). Note that

𝜓
𝑡
+ 𝜓
𝜏
= 𝜙
𝑡
(⋅ ⋅ ⋅ ) 𝜆

𝜀
(∗) , 𝜓

𝑥
+ 𝜓
𝑦
= 𝜙
𝑥
(⋅ ⋅ ⋅ ) 𝜆

𝜀
(∗) .

(26)

Following Kruzkov’s device of doubling the variables
presented in [11], from Lemma 7, and choosing 𝑘 = V(𝜏, 𝑦),
we have

∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

{
𝑢 (𝑡, 𝑥) − V (𝜏, 𝑦)

 𝜓𝑡

+ sign (𝑢 (𝑡, 𝑥) − V (𝜏, 𝑦))

× (𝑔 (𝑢 (𝑡, 𝑥)) − 𝑔 (V (𝜏, 𝑦))) 𝜓
𝑥

+ sign (𝑢 (𝑡, 𝑥) − V (𝜏, 𝑦))

×Ψ
𝑢
(𝑡, 𝑥) 𝜓} 𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏 = 0.

(27)
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Similarly, it has

∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

{
V (𝜏, 𝑦) − 𝑢 (𝑡, 𝑥)

 𝜓𝜏

+ sign (V (𝜏, 𝑦) − 𝑢 (𝑡, 𝑥))

× (𝑔 (𝑢 (𝑡, 𝑥)) − 𝑔 (V (𝜏, 𝑦))) 𝜓
𝑦

+ sign (V (𝜏, 𝑦) − 𝑢 (𝑡, 𝑥))

× ΨV (𝜏, 𝑦) 𝜓} 𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏 = 0.

(28)

It follows from (27) and (28) that

0 ≤ ∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

{
𝑢 (𝑡, 𝑥) − V (𝜏, 𝑦)

 (𝜓𝑡 + 𝜓𝜏)

+ sign (𝑢 (𝑡, 𝑥) − V (𝜏, 𝑦))

× (𝑔 (𝑢 (𝑡, 𝑥)) − 𝑔 (V (𝜏, 𝑦)))

× (𝜓
𝑥
+ 𝜓
𝑦
)} 𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏

+



∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

sign (𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥))

× (Ψ
𝑢
(𝑡, 𝑥) − ΨV (𝜏, 𝑦))

×𝜓𝑑𝑥𝑑𝑡 𝑑𝑦 𝑑𝜏



= 𝐵
1
+ 𝐵
2
+



∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

𝐵
3
𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏



.

(29)

We will prove the following inequality:

0 ≤ ∬

𝜋
𝑇

{ |𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)| 𝜙
𝑡

+ sign (𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥))

× (𝑔 (𝑢 (𝑡, 𝑥)) − 𝑔 (V (𝑡, 𝑥))) 𝜙
𝑥
} 𝑑𝑥 𝑑𝑡

+



∬

𝜋
𝑇

sign (𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥))

× [Ψ
𝑢
(𝑡, 𝑥) − ΨV (𝑡, 𝑥)] 𝜙 𝑑𝑥 𝑑𝑡



.

(30)

We observe that the first two terms of inequality (29) can be
represented in the form

𝐽
𝜀
= 𝐽 (𝑡, 𝑥, 𝜏, 𝑦, 𝑢 (𝑡, 𝑥) , V (𝜏, 𝑦)) 𝜆

𝜀
(∗) . (31)

From Lemma 6, we know that 𝐽
𝜀
satisfies the Lipschitz

condition in 𝑢 and V, respectively. By the choice of 𝜙, we have
𝐽
𝜀
= 0 outside the region

{(𝑡, 𝑥; 𝜏, 𝑦)} ={𝜌 ≤
𝑡 + 𝜏

2
≤ 𝑇 − 2𝜌,

|𝑡 − 𝜏|

2
≤ 𝜀,

𝑥 + 𝑦


2
≤ 𝑟 − 2𝜌,

𝑥 − 𝑦


2
≤ 𝜀} ,

(32)

∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

𝐽
𝜀
𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏

= ∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

[𝐽 (𝑡, 𝑥, 𝜏, 𝑦, 𝑢 (𝑡, 𝑥) , V (𝜏, 𝑦))

−𝐽 (𝑡, 𝑥, 𝑡, 𝑥, 𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥))]

× 𝜆
𝜀
(∗) 𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏

+ ∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

𝐽 (𝑡, 𝑥, 𝑡, 𝑥, 𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥))

× 𝜆
𝜀
(∗) 𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏

= 𝐴
11
(𝜀) + 𝐴

12
.

(33)

Considering the estimate |𝜆(∗)| ≤ 𝑐/𝜀2 and the expression of
function 𝐴

11
(𝜀), we have

𝐴11 (𝜀)


≤ 𝑐 [𝜀 +
1

𝜀
2

× ∫∫∫∫ |(𝑡−𝜏)/2|≤𝜀,
𝜌≤(𝑡+𝜏)/2≤𝑇−𝜌,

|(𝑥−𝑦)/2|≤𝜀,

|(𝑥+𝑦)/2|≤𝑟−𝜌

V (𝑡, 𝑥) − V (𝜏, 𝑦)
 𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏] ,

(34)

where the constant 𝑐 does not depend on 𝜀. Using Lemma 5,
we obtain 𝐴

11
(𝜀) → 0 as 𝜀 → 0. The integral 𝐴

12
does not

depend on 𝜀. In fact, substituting 𝑡 = 𝛼, (𝑡 − 𝜏)/2 = 𝛽, 𝑥 = 𝜂,
and (𝑥 − 𝑦)/2 = 𝜉 and noting that

∫

𝜀

−𝜀

∫

∞

−∞

𝜆
𝜀
(𝛽, 𝜉) 𝑑𝜉 𝑑𝛽 = 1, (35)

we have

𝐴
12
= 2
2

∬

𝜋
𝑇

𝐽
𝜀
(𝛼, 𝜂, 𝛼, 𝜂, 𝑢 (𝛼, 𝜂) , V (𝛼, 𝜂))

× {∫

𝜀

−𝜀

∫

∞

−∞

𝜆
𝜀
(𝛽, 𝜉) 𝑑𝜉 𝑑𝛽}𝑑𝜂 𝑑𝛼

= 4∬

𝜋
𝑇

𝐽 (𝑡, 𝑥, 𝑡, 𝑥, 𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥)) 𝑑𝑥 𝑑𝑡.

(36)

Hence

lim
𝜀→0

∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

𝐽
𝜀
𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏

= 4∬

𝜋
𝑇

𝐽 (𝑡, 𝑥, 𝑡, 𝑥, 𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥)) 𝑑𝑥 𝑑𝑡.
(37)
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Since

𝐵
3
= sign (𝑢 (𝑡, 𝑥) − V (𝜏, 𝑦))

× (Ψ
𝑢
(𝑡, 𝑥) − ΨV (𝜏, 𝑦)) 𝜙𝜆𝜀 (∗)

= 𝐵
3
(𝑡, 𝑥, 𝜏, 𝑦) 𝜆

𝜀
(∗) ,

∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

𝐵
3
𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏

= ∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

[𝐵
3
(𝑡, 𝑥, 𝜏, 𝑦) − 𝐵

3
(𝑡, 𝑥, 𝑡, 𝑥)]

× 𝜆
𝜀
(∗) 𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏

+ ∫∫∫∫

𝜋
𝑇
×𝜋
𝑇

𝐵
3
(𝑡, 𝑥, 𝑡, 𝑥) 𝜆

𝜀
(∗) 𝑑𝑥 𝑑𝑡 𝑑𝑦 𝑑𝜏

= 𝐴
21
(𝜀) + 𝐴

22
,

(38)

we obtain

𝐴21 (𝜀)


≤ 𝑐 (𝜀 +
1

𝜀
2

× ∫∫∫∫ |(𝑡−𝜏)/2|≤𝜀,
𝜌≤(𝑡+𝜏)/2≤𝑇−𝜌,

|(𝑥−𝑦)/2|≤𝜀,

|(𝑥+𝑦)/2|≤𝑟−𝜌

ΨV (𝑡, 𝑥) − ΨV (𝜏, 𝑦)
 𝑑𝑥𝑑𝑡𝑑𝑦𝑑𝜏) .

(39)

Using Lemma 5, we have 𝐴
21
(𝜀) → 0 as 𝜀 → 0. Using (35),

we have

𝐴
22
= 2
2

∬

𝜋
𝑇

𝐼
3
(𝛼, 𝜂, 𝛼, 𝜂, 𝑢 (𝛼, 𝜂) , V (𝛼, 𝜂))

× {∫

ℎ

−ℎ

𝜆
𝜀
(𝛽, 𝜉) 𝑑𝜉 𝑑𝛽}𝑑𝜂 𝑑𝛼

= 4∬

𝜋
𝑇

𝐼
3
(𝑡, 𝑥, 𝑡, 𝑥, 𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥)) 𝑑𝑥 𝑑𝑡

= 4∬

𝜋
𝑇

sign (𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥))

× (Ψ
𝑢
(𝑡, 𝑥) − ΨV (𝑡, 𝑥)) 𝜙 (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡.

(40)

From (33),(37), (39), and (40), we prove that inequality (30)
holds.

Set

𝜔 (𝑡) = ∫

∞

−∞

|𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)| 𝑑𝑥. (41)

We define

𝜃
𝜀
= ∫

𝜎

−∞

𝛿
𝜀
(𝜎) 𝑑𝜎, (𝜃



𝜀
(𝜎) = 𝛿

𝜀
(𝜎) ≥ 0) (42)

and choose two numbers 𝜌 and 𝜏 ∈ (0, 𝑇
0
), 𝜌 < 𝜏. In (30),

we choose

𝜙 = [𝜃
𝜀
(𝑡 − 𝜌) − 𝜃

𝜀
(𝑡 − 𝜏)] 𝜒 (𝑡, 𝑥) ,

ℎ < min (𝜌, 𝑇
0
− 𝜏) ,

(43)

where

𝜒 (𝑡, 𝑥) = 𝜒
ℎ
(𝑡, 𝑥) = 1 − 𝜃

ℎ
(|𝑥| + 𝑁𝑡 − 𝑅 + ℎ) , ℎ > 0.

(44)

When ℎ is sufficiently small, we note that function 𝜒(𝑡, 𝑥) =
0 outside the cone ℧ and 𝜙(𝑡, 𝑥) = 0 outside the set ⊎. For
(𝑡, 𝑥) ∈ ℧, we have the relations

0 = 𝜒
𝑡
+ 𝑁

𝜒𝑥
 ≥ 𝜒𝑡 + 𝑁𝜒𝑥. (45)

Applying (41)–(45) and (30), we have the inequality

0 ≤ ∬

𝜋
𝑇0

{[𝛿
𝜀
(𝑡 − 𝜌) − 𝛿

𝜀
(𝑡 − 𝜏)] 𝜒

ℎ

× |𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)|} 𝑑𝑥 𝑑𝑡

+ ∫

𝑇
0

0

∫

∞

−∞

[𝜃
𝜀
(𝑡 − 𝜌) − 𝜃

𝜀
(𝑡 − 𝜏)]

×
[𝐽𝑢 (𝑡, 𝑥) − 𝐽V (𝑡, 𝑥)] 𝜒ℎ (𝑡, 𝑥)

 𝑑𝑥 𝑑𝑡.

(46)

Using Lemma 4 and letting ℎ → 0 and 𝑅
0
→ ∞, we obtain

0 ≤ ∫

𝑇
0

0

{ [𝛿
𝜀
(𝑡 − 𝜌) − 𝛿

𝜀
(𝑡 − 𝜏)]

× ∫

∞

−∞

|𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)| 𝑑𝑥} 𝑑𝑡

+ 𝑐∫

𝑇
0

0

[𝜃
𝜀
(𝑡 − 𝜌) − 𝜃

𝜀
(𝑡 − 𝜏)]

× ∫

∞

−∞

|𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)| 𝑑𝑥 𝑑𝑡.

(47)

By the properties of the function 𝛿
𝜀
(𝜎) for 𝜀 ≤ min(𝜌, 𝑇

0
−

𝜌), we have



∫

𝑇
0

0

𝛿
𝜀
(𝑡 − 𝜌) 𝜔 (𝑡) 𝑑𝑡 − 𝜔 (𝜌)



=



∫

𝑇
0

0

𝛿
𝜀
(𝑡 − 𝜌)

𝜔 (𝑡) − 𝜔 (𝜌)
 𝑑𝑡



≤ 𝑐
1

𝜀
∫

𝜌+𝜀

𝜌−𝜀

𝜔 (𝑡) − 𝜔 (𝜌)
 𝑑𝑡 → 0, as 𝜀 → 0,

(48)

where 𝑐 is independent of 𝜀. Letting

𝐹 (𝜌) = ∫

𝑇
0

0

𝜃
𝜀
(𝑡 − 𝜌) 𝜔 (𝑡) 𝑑𝑡 = ∫

𝑇
0

0

∫

𝑡−𝜌

−∞

𝛿
𝜀
(𝜎) 𝑑𝜎𝜔 (𝑡) 𝑑𝑡,

(49)
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we get

𝐹


(𝜌) = −∫

𝑇
0

0

𝛿
𝜀
(𝑡 − 𝜌) 𝜔 (𝑡) 𝑑𝑡 → −𝜔 (𝜌) , as 𝜀 → 0,

(50)

from which we obtain

𝐹 (𝜌) → 𝐹 (0) − ∫

𝜌

0

𝜔 (𝜎) 𝑑𝜎, as 𝜀 → 0. (51)

Similarly, we have

𝐹 (𝜏) → 𝐹 (0) − ∫

𝜏

0

𝜔 (𝜎) 𝑑𝜎, as 𝜀 → 0. (52)

It follows from (51) and (52) that

𝐹 (𝜌) − 𝐹 (𝜏) → ∫

𝜏

𝜌

𝜔 (𝜎) 𝑑𝜎, as 𝜀 → 0. (53)

Sending 𝜌 → 0 and 𝜏 → 𝑡 and using
𝑢 (𝜌, 𝑥) − V (𝜌, 𝑥)

 ≤
𝑢 (𝜌, 𝑥) − 𝑢0 (𝑥)



+
V (𝜌, 𝑥) − V0 (𝑥)

 +
𝑢0 (𝑥) − V0 (𝑥)

 ,

(54)

from (47), (48), and (53)-(54), we have

∫

∞

−∞

|𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)| 𝑑𝑥 ≤ ∫
∞

−∞

𝑢0 − V0
 𝑑𝑥

+ 𝑐
0
∫

𝑡

0

∫

∞

−∞

|𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)| 𝑑𝑥 𝑑𝑡.

(55)

Applying the Gronwall inequality yields the desired result.
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