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We focus on the need for weakGPS signal tracking technique at a receiver powered on in urban or indoor environment; the tracking
loop is unlocked and data bit edge position is unknown. A modified Viterbi algorithm (MVA) based on dynamic programming
is developed and it is applied to GPS bit synchronization to improve bit edge position detection probability. Meanwhile, two
combination carrier tracking schemes based on central differenceKalman filter (CDKF) andMVAmodule are designed for tracking
very weak GPS signal. The testing results indicate that the methods can successfully detect bit edge position with high detection
probability whether or not the tracking loop is locked. The tested combination tracking scheme is still able to work well when the
signal quality deteriorates to 20 dB-Hz without additional large store space.

1. Introduction

Urban and indoor positioning techniques have become a
major focus for research over the past decade for applications
like location based services (LBS). Such requirements are the
main thrust in the technology development for a pedestrian
navigation system (PNS). Global positioning system (GPS)
is undoubtedly a viable option for use in such systems due
to its high accuracy positioning capability. A pedestrian
typicallymoves in dense urban areas (along sidewalks), inside
buildings, in tunnels, and under foliage, where GPS signals
often fail to reach the user. That is, the receiver technologies
to overcome weak signal environment have been a topic of
radiobiological interest.

In the present day practice, a receiver may get “assistance”
in the form of additional acquisition aiding messages from
a server or base station or Internet based [1]. However, the
E-911 mandate requires GPS receivers to provide a position
solution in any kind of environment [2]. So, providing this
type of assistance requires additional infrastructure and may
not be available in all places. Also, the receiver requires
additional hardware to receive the aidingmessages.Therefore
developing a GPS receiver which is able to work well without

assistant information under weak or indoor signal conditions
is very important. Further, there is a need as in the case of E-
911.

Conventional GPS receivers process signals with a 𝐶/𝑁
0

above 33–35 dB-Hz successfully. With advances in GPS
receiver technology, high sensitivity GPS (HSGPS) technol-
ogy provides the ability to process signal at lower power
levels using longer predetection integration times (PIT) [3].
At present, several studies indicate that coherent integration,
noncoherent integration, and differential coherent integra-
tion have led to growing acceptance of these weak signal
acquisition approaches [4]. Followed by the signal acquisition
strategy is weak signal tracking with long time integration
model. Thus, it raises an interesting question: the data bit
timing presents a navigation message bit offset ambiguity;
the purpose of data bit edge detection is to avoid integration
across a data bit edge whichmight cause loss of bit energy and
errors in the navigation message extraction. Conventional
wisdom states that histogram method (HM) and Kokkonen
and Pietila method (K-P method) are able to combat the bit
offset ambiguity. However, it is difficult to get ideal results
using these methods when receiving signal degrading [5].
Lately, considerable progress has been made in this question,
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such asViterbi algorithm (VA) [5–7].This idea using dynamic
programming technology has led to a better result than the
previous twomethods [7]; that is, the VAwith a cost function
in the form of bit energy sum is able to determine data bit
boundary with a higher probability detection (PD) in the
presence of weak signal. The form of cost function would
lead to error when detection occurs in those close to true
bit edge positions. Furthermore, these approaches would be
subjected to carrier phase and frequency error [8].Thismeans
that they will be performed after the loop is locked or has
wiped off carrier phase and frequency error. This will raise a
very realistic problem: if a receiver is powered on under very
weak signal conditions, its loop will not be locked forever and
the data bit edge detection methods as mentioned would be
failure. Received signal phase changes fierce in the presence
ofmuch noise. As a traditional PLL (phase locked loop) phase
discriminator with nonlinear characteristic and the loop is
easy to lose lock [9, 10]. It is necessary to develop an effective
trackingmethodwhen a receiver is powered on inweak signal
environments.

The structure of the paper is as follows. In Section 2, a
modified Viterbi algorithm (MVA) based on hide Markov
model (HMM)with alternative cost function is developed for
improving GPS bit synchronization. When detection occurs
especially in those close-to-true bit edge positions, the new
cost function will make the bit energy in different position
appear of great differences and turn out to be more robust
when working in weak signal environments. In Section 3,
a CDKF weak signal tracking model and filtering process
are designed by establishing the carrier tracking error model
to avoid nonlinear affection coming from the traditional
PLL discriminator. In Section 4, a weak signal tracking
scheme which combined CDKF with MVA is put forward;
the proposed array tracker scheme contains two realization
methods. Performance analysis and simulation results are
given in Section 5. Then conclusions are provided in the last
section.

2. Modified Viterbi Algorithm to
Bit Synchronization

Assuming code loop has been synchronized and 𝑐
𝐿
(𝑡
𝑘
) is

local code, an approximate Doppler shift 𝑓
𝑑
, Doppler rate

𝑓
𝑎
, and phase 𝜃

0
are obtained. They are used to construct

the following model for the in-phase and quad-phase local
signals [11]:

𝐼
𝐿
(𝑡
𝑘
) = 𝑐
𝐿
(𝑡
𝑘
) ⋅ cos (2𝜋 (𝑓IF + 𝑓𝑑) 𝑡𝑘 + 𝜋𝑓𝑎𝑡

2

𝑘
+ 𝜃
0
) ,

𝑄
𝐿
(𝑡
𝑘
) = 𝑐
𝐿
(𝑡
𝑘
) ⋅ sin (2𝜋 (𝑓IF + 𝑓𝑑) 𝑡𝑘 + 𝜋𝑓𝑎𝑡

2

𝑘
+ 𝜃
0
) .

(1)

The I and Q components from correlators are

𝐼
𝑘
= 𝐴
𝑘
⋅ 𝑑
𝑘
⋅ cos (𝜃

𝑘
) + 𝑛
𝐼,𝑘
,

𝑄
𝑘
= 𝐴
𝑘
⋅ 𝑑
𝑘
⋅ sin (𝜃

𝑘
) + 𝑛
𝑄,𝑘
,

(2)

where, 𝑑
𝑘
is the data bit associated with sample k, 𝜃

𝑘
is

carrier phase error, 𝑛
𝐼,𝑘

and 𝑛
𝑄,𝑘

are the noise for the I and
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Figure 1: N steps state transition.

Q samples, which is assumed to be additive white Gaussian
noise (AWGN), and 𝐴

𝑘
is the signal level.

Suppose there is no phase and frequency error between
the local signal and received signal; loop is locked. Then, the
𝜃
𝑘
is equal to zero in (2) and correlator output is 𝑦

𝑘
, 𝑘 =

1, . . . , 20(𝑁 + 1). When the sampling period is 1 millisecond
(ms),𝑁+1 is in units of 20 milliseconds. 𝑦

𝑘
can be expressed

as

𝑦
𝑘
= 𝐴𝑑
𝑘
+ 𝑛
𝑘
. (3)

If the 20 consecutive samples belong to the samemessage
data bit, the sign of𝑑

𝑘
will not change.Define the correspond-

ing message as 𝑑
𝑗
(𝑗 = 1, . . . , 𝑁 + 1) during the sampling

period. For 20 milliseconds data length, suppose missing
points is 𝑒. There would be 𝑁 complete navigation message
at least in (𝑁 + 1) group 20 milliseconds sampling sequences
due to the period of a GPS navigation message which is 20
milliseconds. Because the period of sampling is 1 millisecond,
there is 20 possible data bit edges. We can get corresponding
20 continuous observation sequences and the length of each
observation sequence 𝑠

𝑖,𝛿
is 𝑁. If 𝛿 indicates the bit edge

position, then the corresponding observation sequence is [7]

𝑠
𝑖,𝛿
=
1

20

20𝑖+𝛿−1

∑

𝑘=20(𝑖−1)+𝛿

𝑦
𝑘

=
1

20
(

20𝑖−𝑒

∑

𝑘=20(𝑖−1)+𝛿

𝐴
𝑘
𝑑
𝑗

+

20𝑖+𝛿−1

∑

𝑘=20𝑖−𝑒+1

𝐴
𝑘
𝑑
𝑗+1
+

20𝑖+𝛿−1

∑

𝑘=20(𝑖−1)+𝛿

𝑛
𝑘
) ,

(4)

where 𝑖 = 1, . . . , 𝑁; it represents the current integration
interval and goes from 1 toN andN is the number of received
data bits; 𝑦

𝑘
is the correlator samples.

Equation (4) can be written in the form

𝑠
𝑖,𝛿
= 𝐴
𝑖,𝛿
𝑑
𝑖
+ 𝑛
𝑖,𝛿
, (5)

where the 𝐴
𝑖,𝛿

is average level and 𝑛
𝑖,𝛿

is noise.
Obviously, If 𝛿 is the expected data edge position, |𝑠

𝑖,𝛿
|will

reach the maximum.
For each bit edge candidate, a two-state trellis diagram

has been set in Figure 1 [7]. Every diagram is constructed
setting full connections between consecutive states; it means
that every state will have two paths entering it and two paths
leaving it. Since N is the total number of observations in
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a set, each diagram presents exactly N steps. The algorithm
processes them identifying the minimum weighting paths;
the weights for each transition are expressed by (2)

𝑝
𝑖
= 𝑠
𝑖,𝛿
− 𝐴𝑑
𝑖
. (6)

Here, A is the true signal level and 𝑑
𝑖
is the bit value

associated with the state considered as destination in the
current transition.

For the total (𝑁 + 1) ⋅ 20ms data, it contains at least 𝑁
full data bits. The maximum of (5) can be represented as
max
{𝑑𝑖}
𝑁

𝑖=1

∑
𝑁

𝑖=1
|𝑠
𝑖,𝛿
| [7]. However, when 𝛿 is close to the edge

of the correct data bits, even on normal signal conditions,
∑
𝑁

𝑖=1
|𝑠
𝑖,𝛿
| and ∑𝑁

𝑖=1
|𝑠
𝑖,𝛿±1
| certainly are very close too. A

typical example as we know is that 6 plus 7 is equal to 13
and 6 plus 8 is equal to 14. It is very close between 13 and
14. If we consider the effect of noise, the result will be worse.
But 6 multiples 7 is equal to 42 and 6 multiples 8 is equal to
48; the result of “multiples” is better than “plus.” Therefore,
we use max

{𝑑𝑖}
𝑁

𝑖=1

∏
𝑁

𝑖=1
|𝑠
𝑖,𝛿
| instead of max

{𝑑𝑖}
𝑁

𝑖=1

∑
𝑁

𝑖=1
|𝑠
𝑖,𝛿
| or

min
{𝑑𝑖}
𝑁

𝑖=1

∑
𝑁

𝑖=1
|𝑠
𝑖,𝛿
− 𝐴𝑑
𝑖
| as the cost function. In this way, it

will have superior resistance to noise. Define

Γ
𝑁
=

𝑁

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑠𝑖,𝛿
󵄨󵄨󵄨󵄨 . (7)

Obviously, the 𝛿 which makes Γ
𝑁
maximum is expected

data bit edge.
When tracking loop is in bit synchronization tracking

state, the sampling period is 1millisecond.Data bit edge index
(𝛿) range is from 1 to 20. A grid map that is shown in Figure 1
will always be achieved for each 𝛿 and a surviving path
corresponding to max

{𝑑𝑖}
𝑁

𝑖=1

∏
𝑁

𝑖=1
|𝑠
𝑖,𝛿
| be generated. When the

20 𝛿’s candidates have been processed, we can get 20 surviving
paths. In all 20 surviving paths, the path of maximum weight
is the optimal path, that is, the maximum likelihood path.
And the optimal path suggests a symbol sequences which is
expected navigation message.

3. Nonlinear Filter Technique Improving PLL’s
Parameter Estimation Performance

The Kalman filter is essentially a recursive algorithm that
implements a predictor corrector type estimator. The predic-
tor is based on a system model and the corrector is based on
the measurement model. The Kalman filter is optimal in the
sense that it minimizes the estimated error covariance. Ping
has established adaptive Kalman filteringmodel to track high
dynamicGPS signal. It has a linearmeasurementmodel based
on oscillator output. Psiaki realized weak GPS signal tracking
using EKF [12–14]. But the EKF algorithm has some potential
drawbacks such as Jacobi matrix calculation and linear error
to solve nonlinear equation [15]. The sigma-point Kalman
filters (SPKF), a family of filters based on derivativeness
statistical linearization achieves higher performance than
EKF formany problems and is applicable to areas where EKFs
cannot be used, such as unscented Kalman filter (UKF) and

center difference Kalman filter (CDKF) [16–18]. As UKF had
to select three parameters, 𝛼, 𝛽, and 𝜅, it is very difficult in
practice and UKF covariance of positive semidefinite cannot
be fully guaranteed [16]. For CDKF, only one parameter ℎ
will be selected to complete filtering operation, and it can
fully guarantee the positive semidefinite covariance when
ℎ
2
≥ 1 [17]. Therefore, CDKF is more suitable for practical

application.
In this paper, the initial attempt is made for CDKF

method tracking weak signal due to its precision which is
equal to EKF’s 2nd Taylor series expansion. An error tracking
scheme is designed.The phase discriminator is substituted by
CDKF in order to get better parameters estimation.

The estimated parameters are phase difference, Doppler
frequency error, Doppler rate error, and amplitude. That is,
x = [𝜃

𝑒
, 𝑓
𝑒
, 𝛼
𝑒
, 𝐴]. An error tracking model is established as

follows:

[
[
[
[
[
[

[

𝜃
𝑒

𝑓
𝑒

𝛼
𝑒

𝐴

]
]
]
]
]
]

]𝑘

=

[
[
[
[
[
[
[

[

1 Δ𝑡
1

2
Δ𝑡
2
0

0 1 Δ𝑡 0

0 0 1 0

0 0 0 1

]
]
]
]
]
]
]

]

[
[
[
[
[
[

[

𝜃
𝑒

𝑓
𝑒

𝛼
𝑒

𝐴

]
]
]
]
]
]

]𝑘−1

+

[
[
[
[
[
[

[

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]
]
]
]
]
]

]

[
[
[
[
[
[

[

𝑤
𝜃

𝑤
𝑓

𝑤
𝛼

𝑤
𝐴

]
]
]
]
]
]

]

.

(8)

Here,Δt is CDKF update time. Disturbances term is assumed
to be independent; their variances can be defined. The
established measurement equation with measurement noise
𝑅
𝑘
is

𝑧
𝑘
= [
𝐼
𝑝,𝑘

𝑄
𝑝,𝑘

] + [
𝑛
𝐼,𝑝,𝑘

𝑛
𝑄,𝑝,𝑘

] = [

[

𝐴
𝑘
𝑑
𝑘
𝑑
𝑘
cos (𝜃

𝑒,𝑘
)

𝐴
𝑘
𝑑
𝑘
𝑑
𝑘
sin (𝜃

𝑒,𝑘
)

]

]

+ 𝑅
𝑘
, (9)

where 𝐴
𝑘
is signal mean level during loop update and 𝑑

𝑘
is

message bit estimation; if 𝐼
𝑝,𝑘
> 0, 𝑑

𝑘
= 1, else 𝑑

𝑘
= −1.

Outputs of the CDKF are used to calculate the 𝜃
𝑒,𝑘

and it will
be used to control local NCOandmake the phase constituted.
The CDKF carrier tracking processing is as follows.

(1) With the Initial Values. Consider

x̂
0
= 𝐸 (x

0
) ,

P
0
= Cov (x

0
) = 𝐸 (x

0
− x̂
0
) (x
0
− x̂
0
)
𝑇
.

(10)

(2) Time Updating. According to the sigma point symmetric
sampling theory, Sigma points 𝜉

𝑖,𝑘
, 𝑖 = 0, 1, . . . , 2𝑛 are

calculated by x̂
𝑘
and P

𝑘
:

𝜉
0,𝑘
= x̂
𝑘
,

𝜉
𝑖,𝑘
= x̂
𝑘
+ (ℎ√P

𝑘
)
𝑖

,

𝜉
𝑖+𝑛,𝑘

= x̂
𝑘
− (ℎ√P

𝑘
)
𝑖

,

𝑖 = 1, 2, . . . , 𝑛.

(11)
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𝜉
𝑖,𝑘

propagates to 𝛾
𝑖, 𝑘+1|𝑘

through the nonlinear function
f
𝑘
(⋅); one can get one-step status prediction x̂

𝑘+1|𝑘
and the

error covariance matrix P
𝑘+1|𝑘

from 𝛾
𝑖, 𝑘+1|𝑘

:

𝛾
𝑖, 𝑘+1|𝑘

= f
𝑘
(𝜉
𝑖, 𝑘
) , 𝑖 = 0, 1, . . . , 2𝑛,

x̂
𝑘+1|𝑘

=

2𝑛

∑

𝑖=0

𝑊
𝑚

𝑖
𝛾
𝑖, 𝑘+1|𝑘

+ q
𝑘
=

2𝑛

∑

𝑖=0

𝑊
𝑚

𝑖
f
𝑘
(𝜉
𝑖, 𝑘
) + q
𝑘
.

P
𝑘+1|𝑘

=

𝑛

∑

𝑖=1

[𝑊
𝑐1

𝑖
(𝛾
𝑖, 𝑘+1|𝑘

− 𝛾
𝑖+𝑛, 𝑘+1|𝑘

)
2

+𝑊
𝑐2

𝑖
(𝛾
𝑖, 𝑘+1|𝑘

+ 𝛾
𝑖+𝑛, 𝑘+1|𝑘

− 2𝛾
0, 𝑘+1|𝑘

)
2

] +Q
𝑘
.

(12)

(3)MeasurementUpdating. Similarly, sigma points 𝜉
𝑖,𝑘+1|𝑘

and
𝑖 = 0, 1, . . . , 2𝑛 are achieved using x̂

𝑘+1|𝑘
and P

𝑘+1|𝑘
according

to the sigma point symmetric sampling theory; that is, 𝜉
𝑖,𝑘+1|𝑘

can be written by

𝜉
0,𝑘+1|𝑘

= x̂
𝑘+1|𝑘
,

𝜉
𝑖,𝑘+1|𝑘

= x̂
𝑘+1|𝑘

+ (ℎ√P
𝑘+1|𝑘
)
𝑖

,

𝜉
𝑖+𝑛,𝑘+1|𝑘

= x̂
𝑘+1|𝑘

− (ℎ√P
𝑘+1|𝑘
)
𝑖

,

𝑖 = 1, 2, . . . , 𝑛.

(13)

𝜉
𝑖,𝑘+1|𝑘

propagates to 𝜒
𝑖, 𝑘+1|𝑘

through nonlinear function
h
𝑘+1
(⋅). The outputs prediction ẑ

𝑘+1|𝑘
, autocovariance matrix

Pz̃𝑘+1 , and cross-covariancematrix Px̃𝑘+1 z̃𝑘+1 are achieved using
𝜒
𝑖, 𝑘+1|𝑘

:

𝜒
𝑖, 𝑘+1|𝑘

= h
𝑘+1
(𝜉
𝑖,𝑘+1|𝑘

) , 𝑖 = 0, 1, . . . , 2𝑛,

ẑ
𝑘+1|𝑘

=

2𝑛

∑

𝑖=0

𝑊
𝑚

𝑖
𝜒
𝑖, 𝑘+1|𝑘

+ r
𝑘+1

=

2𝑛

∑

𝑖=0

𝑊
𝑚

𝑖
h
𝑘+1
(𝜉
𝑖,𝑘+1|𝑘

) + r
𝑘+1
,

Pz̃𝑘+1 =
𝑛

∑

𝑖=1

[𝑊
𝑐1

𝑖
(𝜒
𝑖, 𝑘+1|𝑘

− 𝜒
𝑖+𝑛, 𝑘+1|𝑘

)
2

+𝑊
𝑐2

𝑖
(𝜒
𝑖, 𝑘+1|𝑘

+ 𝜒
𝑖+𝑛, 𝑘+1|𝑘

− 2𝜒
0, 𝑘+1|𝑘

)
2

] + R
𝑘+1
,

Px̃𝑘+1 z̃𝑘+1 =
𝑛

∑

𝑖=1

√𝑊
𝑐1

𝑖
(𝜉
𝑖,𝑘+1|𝑘

− x̂
𝑘+1|𝑘
) (𝜒
𝑖, 𝑘+1|𝑘

− 𝜒
𝑖+𝑛, 𝑘+1|𝑘

)

𝑇

.

(14)

After getting newmeasurement z
𝑘+1

, the filter is updated:

x̂
𝑘+1
= x̂
𝑘+1|𝑘

+ K
𝑘+1
(z
𝑘+1
− ẑ
𝑘+1|𝑘
) ,

K
𝑘+1
= Px̃𝑘+1 z̃𝑘𝑘+1P

−1

z̃𝑘+1 ,

P
𝑘+1
= P
𝑘+1|𝑘

− K
𝑘+1

Pz̃𝑘+1K
𝑇

𝑘+1
.

(15)

Here, K
𝑘+1

is a gain matrix.

4. Array Nonlinear Filtering Tracker

The bit synchronization model starts working after the PLL
has been locked by pulling frequency and phase for a
typical receiver. If a receiver is powered on under weak
signal environment, it should extend the loop integral time
right. However, unknown navigation data bit edge makes it
impossible to execute this strategy. The reason is that input
signal is just very weak before the loop is locked.The typical 1
millisecond integration is not suitable for tracking loop since
its processing gain is not enough for very weak signal. A
practical program which can accurately identify the bit edge
position before the PLL achieves lock state is needed.

In above circumstances, in order to make the receiver
still work well, we combine designed bit synchronization
module with CDKF signal tracking module, so that a bit
synchronization tracking is realized for very weak signals.
In this scheme, the CDKF module removes the phase and
frequency errors on the state transition path which is in the
bit synchronizationmodule.The bit synchronization tracking
parallel processing scheme (scheme I) is shown in Figure 2. If
the first group of data delay 0ms, the finally group of data will
delay 19 milliseconds considering that the number of bit edge
candidate is 20.

The bit synchronization in the red box refers to Section 2.
As input signal is very weak, when the receiver is in tracking
state, the sample period of input signal is 1 millisecond
and CDKF loop update time is 20ms. Every observation
sequence which is used by bit synchronization comes from
independent CDKF tracking loop outputs. Updated CDKF
removes the phase error of observations before performance
bit synchronization algorithm. Because the number of bit
edge candidate is 20, 20 groups of CDKF and bit syn-
chronization modules are designed to quickly complete bit
synchronization tracking. After the bit synchronization, the
integration time no longer crosses the data bit edge. The
CDKF loop which has the maximum weight continues to
work with 20 milliseconds integrated time. Other modules
are to stop working. Tracking loop converts to single CDKF
weak signal tracking status. Be noted that the above process
has no complex process control.

Sometimes, for saving hardware resources, we can also
use a serial manner (scheme II) that is realized by using a
group of bit synchronization tracking module in Figure 2.
That is, only one red box in Figure 2 will be realized for
scheme II. The designed process of scheme II is as follows.

(i) Deal with current 1 millisecond data; one can get an
optimal weight and the path recording this informa-
tion.

(ii) Extract next 1 millisecond data and go into (i).

(iii) Repeat (i) and (ii) 19 times; 20 optimal weights will be
achieved.

(iv) Find the maximum from the 20 optimal weights and
extract the delay time (𝑇milliseconds) corresponding
to the maximum.
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Figure 2: Parallel bit synchronized tracking scheme (scheme I).

(v) Delay new input data 𝑇 milliseconds; it is the right
bit edge position. Bit synchronization tracking is
completed. The tracking loop uses single CDKF to
work.

Obviously, scheme II (serial mode) is less than scheme
I (parallel mode) in terms of hard resource consumption.
However scheme II has more complex control and its bit
synchronization tracking total time is 20 times more than the
parallel mode.

Results of scheme II are shown in Figure 6. It is easier
to implement using software than hardware. In terms of
complexity, CDKF and optimal path dynamic programming
are implemented by recursive algorithm and the quantity of
calculation is very small. Further, once the current optimal
weights are determined, it is not necessary that the used
observations are saved on a largememory. It is very important
to practice project.

5. Test Results and Analysis

For comprehensive assessment of the proposed weak signal
tracking scheme, the following three experiments were set up
to determine bit synchronization time, bit synchronization
performance assessment, phase and frequency estimation
error, and demodulation error rate; the implementation
complexity was analyzed at last. Taken together, these results

suggest that proposedmethod is very suitable for weak signal
tracking. Particularly the bit edge is unknownwhen a receiver
is powered on under very weak signal environment.

5.1. Determining Bit Synchronization Time. Firstly, assess
suitable bit synchronization time. CNR (carrier-to-noise
ratio) or 𝐶/𝑁

0
of tested signal is set to 15 dB-Hz, 20 dB-

Hz, 25 dB-Hz, and 30 dB-Hz. It is difficult to demodulate
when using 1 millisecond integration time for very weak
tested signal. A reconstructed output signal was generated
and its phase and frequency error has been removed. Tested
signal center frequency is 4.092MHz, sampling frequency is
12.276MHz, and data bit state obeys binomial distribution;
that is, the probability of each state transition is 0.5 and bit
synchronization time is set to 100 milliseconds, 500 millisec-
onds, 1000 milliseconds, and 2000 milliseconds, respectively.
The tested results are shown in Figure 3.

As a result of Figure 3, the longer the synchronized time
or the more the bits that contain the full number (𝑁), the
more accurate the bit synchronization, the shorter the bit
synchronization time, and the more closely the optimal path
weight values which are between other candidate bit edges
and the expected bit edge. Obviously, the results are credible.
When bit synchronization time arises to 2 seconds, it can
also detect the right bit edge even for 15 dB-Hz signal and
the weights may be quite different between the expected
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Figure 3: Continued.
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Figure 5: With phase and frequency errors.

edge position and the adjacent position. However, from the
point of view of the weights distribution, the weak signal
synchronization model has no guarantee of a higher bit EDR
in very short time, for example, 100 milliseconds. Certainly, 2
seconds have been also short enough. More importantly, we
should pay attention to the bit energy difference between the
true bit edge position and its near position.The difference has
been very significant using more than 500 milliseconds of bit
synchronization time. 2 seconds of bit synchronization time
will be adopted in the following assessment according to these
test results.

5.2. Bit Synchronization Performance Evaluation. In order
to compare detection performance between the MVA and

the traditional histogram method, we test the two methods
and get different data bit edge detection probability to
different CNR. The tested CNR range is from 15 to 30 dB-
Hz, bit synchronization time is 2 seconds according to the
previous results, and other settings in MVA are the same
with the previous experiment; NBS

1
= 50 and NBS

2
= 45

in histogram method. Repeat 200 times for every CNR
for the two methods. The results are shown in Figure 4,
which has removed the phase and frequency errors. The test
results suggest that the power of the input signal gradually
increases with CNR; performance of both two methods can
be continuously improved. As far as detection probability is
concerned, the MVA is superior to the histogram method.
Even for 20 dB-Hz, the MVA can also achieve 100% of the
detection probability, but histogram method has to increase
bit synchronization time to achieve better detection probabil-
ity.

Meanwhile, the bit edge detection results are shown in
Figure 5 in the presence of phase and frequency error, where
the phase error and frequency error are normal distribution;
the range of phase error is from 0 to 15 degrees and range of
frequency error is from 0 to 5Hz.The results suggest that the
bit edge detection performance has been declined compared
with no phase and frequency errors.This decline would to be
relieved by increasing bit synchronization time.

5.3. Signal Tracking Performance Evaluation. Usually, carrier
is in low dynamic movement on weak signal environment,
such as downtown and indoor. The phase and frequency
errors estimation history and the first 75 demodulated data
bits using CDKF loop with bit synchronization module for
20 dB-Hz and 28 dB-Hz weak GPS signal are demonstrated
in Figure 6. As can be seen from Figure 6, when the loop
has not been locked, the conventional method, without bit
synchronization aided, cannot determine the right edge of
the data bit edge position. The new tracking scheme using a
bit synchronization module can work well when the 𝐶/𝑁

0
is

20 dB-Hz; the frequency and phase errors are allowed within
a certain range and navigation message has been correctly
demodulated. In fact, the signal quality drops to 20 dB-Hz
and the tracking loop is not always kept locked.Theundesired
result is due to the signal power which is too low.

The loop locked probability to different CNR using 100
timesMonteCarlo tests is shown in Figure 7.Thedata suggest
that the new tracking method retains lower loss locked
probability during weak signal tracking.

5.4. Complexity Analysis. The computational complexity of
CDKF is very low due to its recursion. A bit synchroniza-
tion tracking module is able to achieve an optimal path
when the state transition occurs every time. The current
optimal weights can be obtained using four status transition
probabilities and the optimal path weights which are the
previous results; only four optimal path weights state tran-
sition probabilities and the previous weights are needed to
be saved; that is, there are only five numbers of data that
need to be stored; after obtaining the current optimal weights,
the current observations will be discarded to relieve storage
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Figure 6: Estimated phase, frequency error history, and the first 75 data bits.

space. If the start time of a receiver needs to be improved, save
the survivor path information corresponding to the optimal
weights for navigation solution. Certainly, an additional store
space is needed to temporarily store 21×20 = 420 number of
data.

6. Summary

The paper endeavors to solute the problem of signal tracking
when a receiver is powered on under weak signal environ-
ments. The loop will stay in the unlocked state and cannot
find the data edge to implement weak signal tracking using

traditional 1 millisecond update loop approach. A tracking
scheme based on CDKF has been designed to avoid the
complexity of traditional EKF algorithm in computing non-
linear equation. The MVA based on optimal path dynamic
programming which comes from HMM has been devel-
oped and some better results have been obtained. Finally,
serial and parallel weak signal tracking scheme combining
CDKF estimation technology with MVA are designed and
implemented. A suitable scheme would be adopted due to
practical requirements. Test results and analysis confirmed
the rationality and resource consumption advantages; fur-
thermore, some acceptable tracking results proved 20 dB-Hz
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Figure 7: The loop stability to different CNR.

weak GPS signal can be processed. The phase and frequency
estimation accuracy for weak GPS signal tracking will be
evaluated in following research work.
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