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Tension in the yarn and its oscillations during the over-end unwinding of the yarn from stationary packages depend on the
unwinding speed, the shape and the winding type of the package, the air drag coefficient, and also the coefficient of friction between
the yarn and the package. The yarn does not leave the surface package immediately at the unwinding point. Instead, it first slides
on the surface and then lifts off to form the balloon.The problem of simulating the unwinding process can be split into two smaller
subproblems: the first task is to describe the motion of the yarn in the balloon; the second one is to solve the sliding motion. In
spite of the seemingly complex form of the equations, they can be partially analytically solved as we show in the paper.

1. Introduction

During the yarn unwinding from a stationary package, the
yarn slides on the surface of the package before it lifts off to
form a balloon. The point where the yarn begins to slide is
known as the unwinding point, while the point where the
yarn lifts off from the surface is known as the lift-off point.
On this section of the yarn, that is, between the unwinding
point and the lift-off point, the tension in the yarn drops from
its value in the balloon (at the lift-off point) to its residual
value, defined as the tension of the yarn inside the package.
The equations of motion which govern the motion of the
yarn are known: we have established them in Section 2 of
this paper. They can be partially analytically solved, as we
show in the following. The theory of yarn unwinding off a
package and the balloon theory had a quick development in
the fifties because of Padfield’s work [1, 2]. She fixed Mack
equations for the balloon [3] so that they take into account
the Coriolis system force. She found the results for a single
balloon as it unwinds from a cylindrical package. The same
theory was later used to calculate the parameters for multiple
consecutive balloons with a nonzero unwinding angle and
a cylindrical, conical, or empty package [1]. Kothari and
Leaf derived motion equations that include the effect of the
gravity force and air resistance force tangential component
[4, 5]. Using extensive numerical methods for cylindrical

and conical packages they showed that these effects can be
ignored. Recently Fraser used themotion theory to show that
the time dependence can be excluded frommotion equations
in a mathematical correct way [6, 7]. He derived movable
boundary conditions for packages with small winding angle.
Fraser also determined that the tension inside and the radius
of a balloon are smaller for an elastic yarn. Using simple
physics He recently introduced different nanophenomena in
nanotextile that are the newest additions to the theory of
electrospinning [8, 9].

2. The Equation of Motion for Yarn

The problem of yarn motion on the package surface during
the unwinding can be treated in analogy with the motion of
the yarn forming the balloon between the lift-off point and
the eyelet, through which the yarn is being pulled.

The yarn is being withdrawn with velocity 𝑉 through
an eyelet, where we also fix the origin 𝑂 of our coordinate
system (Figure 1). The yarn is rotating aroun the 𝑧-axis with
an angular velocity 𝜔. At the lift-off point Lp, the yarn lifts
from the package and forms a balloon. At the unwinding
pointUp, the yarn starts to slide on the surface of the package.
Angle 𝜙 is the winding angle of the yarn on the package.
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Figure 1: Mechanical setup in over-end yarn unwinding from
cylindrical package.

The general equation of motion for the yarn was derived
and justified in one of the previous works [10]:

𝜌 (𝐷
2
𝑟 + 2𝜔 × 𝐷𝑟 + 𝜔 × (𝜔 × 𝑟) + �̇� × 𝑟) =

𝜕

𝜕𝑠
(𝑇

𝜕𝑟

𝜕𝑠
) + 𝑓.

(1)

The position vector 𝑟 points from the origin of the coor-
dinate system to a chosen point along the yarn, 𝜌 is the
linear density of the yarn mass, 𝜔 is the angular velocity
vector of the spinning coordinate system in which the yarn
is being described and which points along the 𝑧-axis,𝐷 is the
operator of the total time derivative which follows themotion
of the point inside the spinning coordinate system, 𝐷 =

𝜕/𝜕𝑡|
𝑟,𝜃,𝑧

− 𝑉𝜕/𝜕𝑠, 𝑇 is the mechanical tension, and 𝑓 is the
linear density of external forces.

3. Friction between the Yarn and
the Package Surface

There is a friction between the package and the yarn which is
sliding on its surface before it lifts off to form the balloon.
The yarn is exerting a normal force on the package (i.e., a
force perpendicular to the package surface, thus in radial
direction). This force is not known a priori, but must be
determined as part of the solution to the full problem. The
simplest expression of the friction law states that the friction
force is proportional to the normal component of the force.
The coefficient of proportionality is known as the coefficient

�

𝑛𝑒𝑟

−𝜇𝑛
�

|�|

Figure 2: The force of friction between the package surface and the
yarn.

of friction 𝜇. The friction force points in the direction
opposite to the yarn motion.

The quantity 𝑓 in (1) therefore has two components: the
radial force of the package on the yarn (which is equal in
magnitude to the force of the yarn on the package, in accor-
dance with Newton’s law of reciprocal action) and the friction
force proper (Figure 2):

𝑓 = 𝑛𝑒
𝑟
− 𝜇𝑛

V

|V|
. (2)

Here 𝑛 is the linear density of the normal component of the
force between the yarn and the surface, 𝑒

𝑟
is the unit vector

in the radial direction, and V/|V| is the unit vector in the
direction of the yarn.

When the yarn slides on the surface, it thus experiences
the normal force 𝑛𝑒

𝑟
and the friction force −𝜇𝑛 V/|V|.

The friction law is at best a rough approximation to amore
complex real behavior. In reality, the coefficient of friction
depends in a complicated way on the sliding velocity [11–16],
and it is different at various points of the package surface since
the package is seldom fully homogenous.We thus take 𝜇 to be
some average coefficient of friction which one can determine
empirically [17].

4. Quasi-Stationary Approximation

Equation (1) is generally valid and describes an arbitrary
motion of the yarn, even in cases when the conditions are
rapidly changing, for example, near the package edges. Near
the package edge the winding angle suddenly changes, there-
fore the motion of the yarn on the package surface and in the
part of the balloon near the lift-off point becomes very com-
plex. Near the edges, undesired events can occur: the yarn
can fall off the package or a layer of the yarn collapses. The
description of such transient effects is beyond the validity of
our simplified model, since one should accurately model the
behavior of the yarn also in the layers forming the package
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bulk. For example, the residual forces of the yarn in the
package would also play a role [18].

Strictly speaking, the yarn undergoes sliding motion on
the package surface only when the unwinding point is at a
certain distance away from the package edges. In such cir-
cumstances, the conditions are quasi-stationary: in the rotat-
ing coordinate frame the yarn only slowly changes its form.
For this reason, in the first approximation the time depen-
dence can be fully described by time-variable boundary
conditions, while the time-derivative terms in the equation
of motion can be neglected:

𝜌(𝑉
2 𝜕
2
𝑟

𝜕𝑠2
− 2𝑉𝜔 ×

𝜕𝑟

𝜕𝑠
+ 𝜔 × (𝜔 × 𝑟)) =

𝜕

𝜕𝑠
(𝑇

𝜕𝑟

𝜕𝑠
) + 𝑓.

(3)

5. The Equation of Motion for
the Yarn on the Package: Simplification to
a Two-Dimensional Problem

When the yarn slides on the package surface, its motion
effectively occurs within a two-dimensional subspace. This
fact can be taken into account in (3) in order to simplify the
problem to a two-dimensional problemwhich can be handled
more easily. It turns out that in the case of sliding motion
on the cylindrical package, the problem can be solved to a
large extent using analytical techniques. Analytical solutions
allow for amore direct understanding of the relation between
the different quantities. For this reason, we will henceforth
assume that the package is cylindrical, and we will determine
the analytical solution.

The radius vector to a point on the surface of a cylinder
can be expressed as (compare with equation (17) in [10])

𝑟 (𝑠) = 𝑐𝑒
𝑟
(𝜃 (𝑠)) + 𝑧 (𝑠) 𝑒

𝑧
. (4)

The quantity 𝑐 is the constant distance of the point 𝑟 from
the package axis. It is equal to the radius of the layer which is
being unwound.The unit vector 𝑒

𝑧
points along the direction

of the package axis, and the unit vector 𝑒
𝑟
points in the radial

direction with the polar angle 𝜃(𝑠) (see Figure 3). There are
two unknowns in this expression, 𝜃(𝑠) and 𝑧(𝑠), while the
third [𝑟(𝑠)] drops out since it is constant on the surface.
The motion of the yarn has thus been translated to a two-
dimensional problem.This ansatz will be used in (4) to find a
simplified equation of motion.

The arc-length derivatives of the radius vector are com-
puted using the relations (18) from [10] to obtain

𝑟

(𝑠) = 𝑐𝜃


(𝑠) 𝑒
𝜃
+ 𝑧

(𝑠) 𝑒
𝑧
,

𝑟

(𝑠) = 𝑐𝜃


(𝑠) − 𝑐[𝜃


(𝑠)]
2

𝑒
𝑟
+ 𝑧

(𝑠) 𝑒
𝑧
,

(5)
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Figure 3: The cylindrical coordinate system.

where the dashes indicate the arc-length derivative. We then
obtain

𝜕

𝜕𝑠
(𝑇

𝜕𝑟

𝜕𝑠
)

=
𝜕𝑇

𝜕𝑠

𝜕𝑟

𝜕𝑠
+ 𝑇

𝜕
2
𝑟

𝜕𝑠2

= 𝑇

(𝑐𝜃

𝑒
𝜃
+ 𝑧

𝑒
𝑧
) + 𝑇 (𝑐𝜃


𝑒
𝜃
− 𝑐(𝜃

)
2

𝑒
𝑟
+ 𝑧

𝑒
𝑧
)

= −𝑐𝑇(𝜃

)
2

𝑒
𝑟
+ 𝑐 (𝑇


𝜃

+ 𝑇𝜃

) 𝑒
𝜃
+ (𝑇

𝑧

+ 𝑇𝑧

) 𝑒
𝑧
.

(6)

We also need the relations

𝜔 × 𝑟

= −𝑐𝜔𝜃


(𝑠) 𝑒
𝑟
,

𝜔 × (𝜔 × 𝑟) = −𝜔
2
𝑐𝑒
𝑟

(7)

which can be derived using a simple calculation of the vector
products.

Equation (3) may then be decomposed along its different
components:

(𝑟) 𝜌 (−𝑐𝑉
2
(𝜃

)
2

+ 2𝑉𝑐𝜔𝜃

− 𝜔
2
𝑐) = −𝑐𝑇(𝜃


)
2

+ 𝑓
𝑟
, (8)

(𝜃) 𝜌 (𝑐𝑉
2
𝜃

) = 𝑐𝑇𝜃


+ 𝑐𝑇𝜃


+ 𝑓
𝜃
, (9)

(𝑧) 𝜌 (𝑉
2
𝑧

) = 𝑇𝑧


+ 𝑇𝑧

+ 𝑓
𝑧
. (10)

The quantities 𝑓
𝑟
, 𝑓
𝜃
, and 𝑓

𝑧
are the components of the linear

density of the external force (2).The first one is simply𝑓
𝑟
= 𝑛,

while the other two still need to be determined. The velocity
of the yarn in the quasi-stationary approximation is (see
equation (23) in [10], where we substitute Vrel = 0)

V = −𝑉𝑡 + 𝜔 × 𝑟 = 𝑐 (𝜔 − 𝑉𝜃

) 𝑒
𝜃
− 𝑧

𝑉𝑒
𝑧
. (11)



4 Abstract and Applied Analysis

This expression can then be used to derive the unit vector in
the direction of the yarn velocity:

V

|V|
=

1

√𝑐2(𝜔 − 𝑉𝜃)
2

+ 𝑧
2
𝑉2

[𝑐 (𝜔 − 𝑉𝜃

) 𝑒
𝜃
− 𝑧

𝑉𝑒
𝑧
] ,

(12)

from which then finally follow the two components of the
linear density of the force:

𝑓
𝜃
=

−𝜇𝑛𝑐 (𝜔 − 𝑉𝜃

)

√𝑐2(𝜔 − 𝑉𝜃)
2

+ 𝑧
2
𝑉2

,

𝑓
𝑧
=

𝜇𝑛𝑧

𝑉

√𝑐2(𝜔 − 𝑉𝜃)
2

+ 𝑧
2
𝑉2

.

(13)

Equations (8)–(10) and (13) are the simplified equations of
motions that we required. At first they appear more complex
than the vector expressions (2) and (3), since they are
expressed component by component. Nevertheless, they are
indeed simpler: the unknown functions are 𝜃, 𝑧, 𝑛

𝜃
, 𝑛
𝑧
, and

𝑇, but we have managed to eliminate 𝑟 and 𝑛
𝑟
. In this part

of the paper we will show that the function 𝑇 can equally be
eliminated.

6. Partial Analytical Solution

Equation (9) from the previous section is multiplied by 𝑐𝜃
,

(10) by 𝑧
; they are then added together and reorganized to

read

𝜌𝑉
2
(𝑐
2
𝜃

𝜃

+ 𝑧

𝑧

) = 𝑇 (𝑐

2
𝜃

𝜃

+ 𝑧

𝑧

)

+ 𝑇

(𝑐
2
𝜃
2

+ 𝑧
2

) + 𝑐𝜃

𝑓
𝜃
+ 𝑧

𝑓
𝑧
.

(14)

In this equation, 𝜌 is the linear density of the yarn, 𝑉 the
unwinding velocity, 𝑐 the package radius, 𝑇 the tension in
the yarn, 𝑓 the linear density of the force of friction, and the
position of the point is given in the cylindrical coordinate
system (𝑟𝜃𝑧). The dash after a symbol denotes the operation
of taking the derivative with respect to the arc length 𝑠. Now
we take into account the condition of nonextensibility, which
states that the extension of yarnmay be neglected. Formotion
on the package surface, this condition (equation (34) in [10])
can be expressed as

𝑐
2
𝜃
2

+ 𝑧
2

= 1. (15)

Taking a derivative of this equation, we obtain

𝑐
2
𝜃

𝜃

+ 𝑧

𝑧


= 0. (16)

Inserting (15) and (16) into (14), we end up with

𝑇

= −𝑐𝜃


𝑓
𝜃
− 𝑧

𝑓
𝑧
. (17)

In this equation we insert the expressions for the components
of the linear density of the force

𝑓
𝜃
=

−𝜇𝑛𝑐 (𝜔 − 𝑉𝜃

)

√𝑐2(𝜔 − 𝑉𝜃)
2

+ 𝑧
2
𝑉2

,

𝑓
𝑧
=

𝜇𝑛𝑧

𝑉

√𝑐2(𝜔 − 𝑉𝜃)
2

+ 𝑧
2
𝑉2

(18)

and we obtain

𝑇

=

𝜇𝑛 (𝑐
2
𝜃

(𝜔 − 𝑉𝜃


) − 𝑧
2

𝑉)

√𝑐2(𝜔 − 𝑉𝜃)
2

+ 𝑧
2
𝑉2

=

𝜇𝑛 (𝑐
2
𝜔𝜃

− 𝑉)

√𝑐2(𝜔 − 𝑉𝜃)
2

+ 𝑧
2
𝑉2

.

(19)

To obtain the last expression we have used (15). The 𝑛 from
this equation is evaluated and inserted in the expression for
𝑓
𝜃
in (18):

𝑓
𝜃
= 𝑐𝑇
 𝑉𝜃

− 𝜔

𝑐2𝜔𝜃 − 𝑉
. (20)

This is then used in

𝜌𝑐𝑉
2
𝜃


= 𝑐𝑇𝜃

+ 𝑐𝑇

𝜃

+ 𝑓
𝜃

(21)

to obtain

(𝜌𝑉
2
− 𝑇) 𝜃


= 𝑇

𝜃

+

𝑉𝜃

− 𝜔

𝑐2𝜔𝜃 − 𝑉
𝑇

= 𝜔𝑇
 𝑐
2
𝜃
2

− 1

𝑐2𝜔𝜃 − 𝑉
.

(22)

We rewrite this equation as

𝑐𝜔

𝑉

𝑇


𝜌𝑉2 − 𝑇
= 𝑐𝜃

[

(𝑐
2
𝜔/𝑉) 𝜃


− 1

𝑐2𝜃
2

− 1

] . (23)

After introducing the dimensionless angular velocity Ω =

𝑐𝜔/𝑉 and a new variable 𝜒 = 𝑐𝜃, the equation takes a more
clear expression:

Ω
𝑇


𝜌𝑉2 − 𝑇
= 𝜒

[
1 − Ω𝜒



1 − 𝜒
2
] . (24)

The quantity 𝜒

= 𝑐𝜃
 is always smaller than 1 when the yarn

slides on the package surface, since the length of one loop of
yarn on the package is at least 2𝜋𝑐. A simple consideration
(and the help of Figure 4) can convince us that the derivative
𝜒
 is related with the tangential direction of the yarn on the

package surface. In fact, one has 𝜒

= cos𝜙. Using a similar

consideration one can also establish that 𝑧 = tan𝜙.
Equation (24) can be integrated analytically.The left hand

side is the derivative of the function−Ω ln |𝑇−𝜌𝑉
2
|, while the

right hand side is the derivate of the function ((Ω−1)/2) ln |1−

𝜒

| + ((Ω + 1)/2) ln |1 + 𝜒


|.
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(a)

𝜙

𝜒

𝑧
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Figure 4: (a) The surface of the cylinder is cut along the long edge and the surface is flattened. (b) The flattened surface is a plane with axes
𝑧 and 𝜒. The angle 𝜙 is the angle of the yarn in the (𝑧𝜒) plane.

As can be easily verified, we thus obtain

− Ω ln 
𝑇 − 𝜌𝑉

2

(Ω − 1)

2
ln 

1 − 𝜒


+
(Ω + 1)

2
ln 

1 + 𝜒


+ const.
(25)

The tension𝑇 is always larger than the quantity 𝜌𝑉
2, which is

twice the linear density of the kinetic energy which the yarn
has because of it being pulled through the eyelet [19, 20]. We
have also already established that 𝜒 < 1. For this reason, all
quantities between the absolute value brackets are positive,
thus the brackets do not need to be written.

Exponentiating the expression we had obtained and
rearranging it slightly, we obtain

𝑇 − 𝜌𝑉
2
= 𝐾[(1 − 𝑐𝜃


)
((1−Ω)/2Ω)

(1 + 𝑐𝜃

)
−((1+Ω)/2Ω)

] ,

(26)

where 𝐾 is an integration constant. It can be determined by
considering the behavior at the lift-off point. If the winding
angle is Φ, then the change of the arc length 𝑠 by 2𝜋𝑐/ cosΦ
(i.e., the length of one loop) corresponds to a change of 𝜃 by
2𝜋.

Therefore at the lift-off point 𝜃 is equal to cosΦ/𝑐, and
finally 𝜒

(Od) = cosΦ. (The winding angle Φ is by definition
equal to the angle of the yarn in the (𝑧𝜒) plane, therefore this
result is in full agreement with the expression 𝜒


= cos𝜙

which we had established before.) In this point the tension in
the yarn is equal to the residual tension of the yarn inside the
package, 𝑇res. If both expressions are used in (26), we obtain

𝑇res − 𝜌𝑉
2
= 𝐾 [(1 − cosΦ)

((1−Ω)/2Ω)
(1 + cosΦ)

−((1+Ω)/2Ω)
] .

(27)

Equation (26) may therefore be written as

𝑇 − 𝜌𝑉
2

𝑇res − 𝜌𝑉2

= [(
1 − 𝑐𝜃



1 − cos |Φ|
)

((1−Ω)/2Ω)

(
1 + 𝑐𝜃



1 + cos |Φ|
)

−((1+Ω)/2Ω)

] .

(28)

In parallel cylindrical package with dense parallel winding,
the dimensionless angular velocity Ω = 𝑐𝜔/𝑉 is approxi-
mately equal to 1. Setting Ω = 1 in (26) we obtain

𝑇 − 𝜌𝑉
2
=

𝐾

1 + 𝑐𝜃
. (29)

This result had already been established by Fraser et al.
[6], but our equation (26) holds in general. In cross-wound
package one namely has

Ω =
cosΦ

1 − sinΦ
, (30)

where Φ is the winding angle at the point where the yarn is
currently being unwound. This implies that in cross-wound
packages, the dimensionless angular velocity is not equal
to one, but it is larger than 1 during the unwinding in the
backward direction (Φ > 1) and smaller than 1 during the
unwinding in the forward direction (Φ < 1).

In the section of yarn which slides on the surface and
experiences friction from the lower layers, the tension
decreases from the value at the lift-off point to the residual va-
lue. At the same time, the angle 𝜙 increases from its value at
the unwinding point to the value ofΦ at the lift-off point.The
relation between these two phenomena is given precisely by
(28).

Equation (19) can be rewritten as

𝑇

=

𝜇𝑛 (𝑉Ω cos𝜙 − 𝑉)

√𝑉2(Ω − cos𝜙)2 + 𝑉2tan2𝜙

=
𝜇𝑛 (Ω cos𝜙 − 1)

√(Ω − cos𝜙)2 + tan2𝜙
.

(31)

Using the approximation of Ω = 1 and cos𝜙 ∼ 1 − 𝜙
2
/2,

tan𝜙 ∼ 𝜙, we obtain

𝑇

≈

−𝜇𝑛𝜙

2
. (32)

The decrease of the tension along the yarn is proportional
to the coefficient of friction, as expected. The larger the
coefficient of friction is, the shorter is the sliding segment of
the yarn. The derivative is also proportional to the angle 𝜙,
thus the decrease is larger near the lift-off point where 𝜙 is
large, but smaller at the unwinding point where in the case of
dense parallel winding the angle 𝜙 is almost equal to zero.
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7. Conclusion

We have shown how the equation of motion on the package
surface can be obtained from the general equation of yarn
motion by considering the force of friction.The external force
has two components: the normal force of the package surface
and the force of friction. We have described the conditions
for the validity of the quasi-stationary approximation which
was then used to simplify the equation of motion to a two-
dimensional problem. We have also shown that the simpli-
fication of the equation of motion for the sliding motion of
the yarn to a two-dimensional problem makes it possible to
establish the main conclusions analytically. We have shown
how the section of the yarn which slides on the package
surface makes it possible that the tension in the yarn reduces
to its residual yarn and how this is related to the form of
the sliding yarn. More accurate solutions of the problem can,
however, only be obtained using a full numerical solution of
the equations using the shooting method [6, 19, 20]. Another
very interesting approach for solving the equation of motion
for the yarn would be the use of the methods described by Ji-
Huan He. The analytical solution can be obtained using the
variational iteration method or the homotopy perturbation
method reviewed in [8, 21, 22].
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