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Received 5 September 2013; Revised 4 November 2013; Accepted 18 November 2013

Academic Editor: Agacik Zafer

Copyright © 2013 I. Győri and L. Horváth. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

It is proved that any first-order globally periodic linear inhomogeneous autonomous difference equation defined by a linear operator
with closed range in a Banach space has an equilibrium.This result is extended for higher order linear inhomogeneous system in a
real or complex Euclidean space. The work was highly motivated by the early works of Smith (1934, 1941) and the papers of Kister
(1961) and Bas (2011).

1. Introduction

Let𝑋 be a set and let 𝑝 be a positive integer. It is said that the
transformation 𝑇 : 𝑋 → 𝑋 is 𝑝-periodic if

𝑇
𝑝
:= 𝑇 ∘ ⋅ ⋅ ⋅ ∘ 𝑇 = 𝑖𝑑𝑋, (1)

where 𝑖𝑑𝑋 is the identical function on 𝑋 and 𝑝 is the least
positive integer with this property. It follows from (1) that 𝑇
is a bijection. If there is a topology on𝑋 and 𝑇 is continuous,
then (1) implies that 𝑇 is a homeomorphism.

The following question was posed by Smith (see [1]): does
any continuous periodic transformation of a Euclidean 𝑛-
space always admit a fixed point? Smith knew that the answer
is true if the period𝑝 of the transformation is a prime number
(see [2]) or a power of a prime number (see [1]). Moreover,
Smith was able to answer the question affirmatively when
𝑛 ≤ 3 and for suitably regular transformations, when 𝑛 = 4.
But it was shown by Kister (see [3]) that there exist periodic
transformations of a Euclidean space without fixed points.
Kister’s example is based on the results in the paper [4].

Special periodic transformations can be derived from
difference equations.

Consider the 𝑠th order difference equation:

𝑥 (𝑛) = ℎ (𝑥 (𝑛 − 1) , . . . , 𝑥 (𝑛 − 𝑠)) 𝑛 ≥ 0, (2)

where,

(G) 𝑠 is a positive integer,𝑋 is a set, and ℎ : 𝑋𝑠 → 𝑋.

It is clear that the solutions of (2) are uniquely determined
by their initial values:

𝑥 (𝑛) = 𝜑 (𝑛) , −𝑠 ≤ 𝑛 ≤ −1, (3)

where 𝜑(𝑛)∈𝑋. The unique solution of (2) and (3) is denoted
by 𝑥(𝜑) = (𝑥(𝜑)(𝑛))𝑛≥−𝑠, where 𝜑 := (𝜑(−𝑠), . . . , 𝜑(−1))

𝑇
∈

𝑋
𝑠.
We give some basic definitions about the periodicity of

(2).

Definition 1. Assume (G).

(a) A sequence V = (V(𝑛))𝑛≥−𝑠 in 𝑋 is called periodic if
there is a positive integer 𝑝 such that V is 𝑝-periodic,
which means that V(𝑛 + 𝑝) = V(𝑛) for all 𝑛 ≥ −𝑠.

(b) We say that (2) is globally periodic if there is a positive
integer 𝑝 ≥ 𝑠 for which the equation is globally 𝑝-
periodic; that is, every solution of it is 𝑝-periodic.

(c) We say that (2) is globally 𝑝-periodic with prime
period 𝑝 if it is globally 𝑝-periodic and 𝑝 is the least
positive integer with this property.
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It is easy to see that (2) is globally 𝑝-periodic with prime
period 𝑝 if and only if the transformation 𝑇 : 𝑋

𝑠
→ 𝑋

𝑠

defined by

𝑇 (𝑥−𝑠, . . . , 𝑥−1)

:= (𝑥−𝑠+1, . . . , 𝑥−2, ℎ (𝑥−𝑠, . . . , 𝑥−1))

(4)

is 𝑝-periodic.
About periodicity of general difference equations, see [5,

6]. Periodicity of linear difference equations is considered in
[7].

We recall that the solution (𝑥(𝑛))𝑛≥−𝑠 of (2) is a steady
state solution if 𝑥(𝑛) = V(𝑛 ≥ −𝑠), where V ∈ 𝑋 is an
equilibrium of (2); that is, V obeys

V = ℎ (V, . . . , V) . (5)

It is obvious that V ∈ 𝑋 is an equilibrium of (2) exactly if
(V, . . . , V) is a fixed point of the transformation 𝑇 given in (4).

Even if there is a metric on 𝑋 and ℎ is continuous, it is
still an open problem to determine whether (2) has or not an
equilibrium point, or equivalently, the transformation (4) has
a fixed point, if (2) is globally periodic.

In this paper we solve this problem for some linear
equations.

Let K stand for either the field of real numbers R or
the field of complex numbers C. Throughout this paper, the
term vector space in which the scalar field is not explicitly
mentioned will refer to a vector space over R or over C.

Consider the 𝑠th order inhomogeneous linear difference
equation:

𝑥 (𝑛) =

𝑠

∑

𝑖=1

𝐿 𝑖 (𝑥 (𝑛 − 𝑖)) + 𝑏, 𝑛 ≥ 0, (6)

where,

(A) 𝑠 is a positive integer,𝑋 is a vector space, 𝐿 𝑖 : 𝑋 → 𝑋

is a linear transformation (1 ≤ 𝑖 ≤ 𝑠), and 𝑏 ∈ 𝑋 is a
vector.

The 𝑠th order homogeneous linear difference equation
associated (6) is

𝑥 (𝑛) =

𝑠

∑

𝑖=1

𝐿 𝑖 (𝑥 (𝑛 − 𝑖)) , 𝑛 ≥ 0. (7)

Clearly, if that (6) is globally 𝑝-periodic, the difference
of any two solutions of it is also 𝑝-periodic. On the other
hand, the general solution of the inhomogeneous equation
(6) can be written as the sum of the general solution of the
homogeneous equation (7) and an arbitrarily fixed particular
solution of the inhomogeneous equation. Thus the global
𝑝-periodicity of the inhomogeneous equation implies the
global 𝑝-periodicity of the related homogeneous equation.
One can easily see that the opposite statement is also true
if the inhomogeneous equation has a steady state solution
which is obviously 𝑝-periodic for any 𝑝 ≥ 1.

From this we conclude the following.

Conclusion. If (6) has an equilibrium, then (6) and (7) both
behave in the same way regarding the global periodicity; that
is, they both are globally periodic or both are not globally
periodic.

The crux in the application of the above self-evident
statement is that not all autonomous inhomogeneous linear
difference equations have an equilibrium. But this crux is
eliminated by the main theorems of this work in two special
cases of (6).

In the first result𝑋 is finite dimensional.

Theorem 2. Consider the system of the 𝑠th order inhomoge-
neous linear difference equations:

𝑥 (𝑛) =

𝑠

∑

𝑖=1

𝐴 𝑖𝑥 (𝑛 − 𝑖) + 𝑏, 𝑛 ≥ 0, (8)

where,

(𝐵) 𝑠 is a positive integer, 𝐴 𝑖 ∈ K𝑑×𝑑 (1 ≤ 𝑖 ≤ 𝑠) are
matrices, and 𝑏 ∈ K𝑑 is vector.

If (8) is globally periodic, then it has an equilibrium.

Let 𝑋 be a vector space. 𝐼 and 𝑂 mean the identity and
the zero operator on𝑋, respectively. If 𝐿 : 𝑋 → 𝑋 is a linear
transformation, we define the kernel and the image of 𝐿 in the
usual way:

ker (𝐿) := {𝑥 ∈ 𝑋 | 𝐿 (𝑥) = 0} ,

im (𝐿) := {𝐿 (𝑥) | 𝑥 ∈ 𝑋} .
(9)

In the next result first-order equations are investigated.

Theorem 3. Consider the first order inhomogeneous linear
difference equation:

𝑥 (𝑛) = 𝐿 (𝑥 (𝑛 − 1)) + 𝑏, 𝑛 ≥ 0, (10)

where,

(𝐶) 𝐿 is a bounded linear operator of the Banach space 𝑋
into itself such that im(𝐼 − 𝐿) is closed and 𝑏 ∈ 𝑋 is a
vector.

If (10) is globally periodic, then it has an equilibrium.

2. Existence of an Equilibrium in an
Abstract First-Order Inhomogeneous
Linear Equation

In this section we proveTheorem 3.
First, we need the following lemma about global period-

icity.

Lemma 4. Consider the first order inhomogeneous linear
difference equation:

𝑥 (𝑛) = 𝐿 (𝑥 (𝑛 − 1)) + 𝑏, 𝑛 ≥ 0, (11)
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where,

(𝐷) 𝑋 is a vector space, 𝐿 : 𝑋 → 𝑋 is a linear
transformation, and 𝑏 ∈ 𝑋 is a vector.

Let 𝑝 be a positive integer. Equation (11) is globally 𝑝 -
periodic if and only if

𝐿
𝑝
= 𝐼,

𝑝−1

∑

𝑖=0

𝐿
𝑖
(𝑏) = 0. (12)

Proof. It is easy to check that (11) is globally 𝑝-periodic if and
only if

(𝐿
𝑝
− 𝐼) 𝜑 +

𝑝−1

∑

𝑖=0

𝐿
𝑖
(𝑏) = 0, (13)

for every 𝜑 ∈ 𝑋, but this condition and (12) are equivalent.

Remark 5. (a) Condition (12) is equivalent to

(

𝑝−1

∑

𝑖=0

𝐿
𝑖
) (𝐼 − 𝐿) = 𝑂, 𝑏 ∈ ker(

𝑝−1

∑

𝑖=0

𝐿
𝑖
) . (14)

The first part of (14) implies that

im (𝐼 − 𝐿) ⊂ ker(
𝑝−1

∑

𝑖=0

𝐿
𝑖
) . (15)

Since (11) has an equilibrium point exactly if the linear
equation

(𝐼 − 𝐿) 𝑥 = 𝑏 (16)

has a solution, it follows from the previous establishments
that the following two assertions are equivalent. Let 𝑝 be a
positive integer.

(i) If (11) is globally 𝑝-periodic, then it has an equilib-
rium.

(ii) If 𝐿𝑝 = 𝐼, then

im (𝐼 − 𝐿) = ker(
𝑝−1

∑

𝑖=0

𝐿
𝑖
) . (17)

(b) 𝐿𝑝 = 𝐼 implies that 𝐿 is invertible. If 𝐼 − 𝐿 is also
invertible, then (16) obviously has a solution (or (17) holds),
and therefore the only interesting case is when 𝐼 − 𝐿 is not
invertible.

We can see that if (11) is globally periodic, then the
problem of the existence or nonexistence of an equilibrium
leads to a pure linear algebraic problem.

Problem. Let 𝑋 be a vector space and let 𝐿 : 𝑋 → 𝑋 be a
linear transformation such that𝐿𝑝 = 𝐼 for some integer𝑝 ≥ 2.
Either prove that

im (𝐼 − 𝐿) = ker(
𝑝−1

∑

𝑖=0

𝐿
𝑖
) , (18)

or give an example when im(𝐼 − 𝐿) is a proper subset of

ker(
𝑝−1

∑

𝑖=0

𝐿
𝑖
) . (19)

If 𝐿 is a linear operator of the Banach space 𝑋 into itself
such that im(𝐼 − 𝐿) is closed, thenTheorem 3 shows that (18)
holds.

Henceforth we need some notations (see [8]).

Definition 6. Let𝑋 be a Banach space.

(a) 𝑋∗ means its dual space, and let (𝑤, 𝑢) denote the
value of the functional 𝑤 ∈ 𝑋

∗ at 𝑢 ∈ 𝑋. For a
bounded linear operator 𝐿 of𝑋 into itself, 𝐿∗ : 𝑋∗ →
𝑋
∗ denotes its adjoint operator.

(b) Suppose that𝑀 is a subspace of𝑋 and𝑁 is a subspace
of𝑋∗. Their annihilators are defined as follows:

𝑀
⊥
:= {𝑤 ∈ 𝑋

∗
| (𝑤, 𝑢) = 0, 𝑢 ∈ 𝑀} ,

⊥
𝑁 := {𝑢 ∈ 𝑋 | (𝑤, 𝑢) = 0, 𝑤 ∈ 𝑁} .

(20)

In the proof of Theorem 3 the following result will be
used, which is related to the Fredholm alternative (see [9]).

Lemma 7. Let 𝑋 be a Banach space and let 𝐿 be a bounded
linear operator of 𝑋 into itself such that im(𝐼 − 𝐿) is closed.
The equation (𝐼 − 𝐿)𝑥 = 𝑏 is solvable for given 𝑏 ∈ 𝑋 if and
only if 𝑏 ∈⊥(ker(𝐼 − 𝐿∗)).

Proof. It is well known (see [8]) that

⊥
(ker (𝐼 − 𝐿∗)) =

⊥

(im(𝐼 − 𝐿)⊥) , (21)

and ⊥(im(𝐼−𝐿)⊥) is the norm closure of im(𝐼−𝐿) in𝑋. Since
im(𝐼 − 𝐿) is closed,

⊥
(ker (𝐼 − 𝐿∗)) = im (𝐼 − 𝐿) , (22)

which gives the result.

Remark 8. If𝑋 is finite dimensional, then im(𝐼−𝐿) is closed,
since every subspace of 𝑋 is closed. In this case Lemma 7 is
exactly the Fredholm alternative.

Proof of Theorem 3. We can obviously suppose that 𝑝 ≥ 2.
Equation (10) has an equilibrium point exactly if the

linear equation

(𝐼 − 𝐿) 𝑥 = 𝑏 (23)

has a solution. By Lemma 7, it is enough to show that

𝑏 ∈
⊥
(ker (𝐼 − 𝐿∗)) . (24)

To prove (24), assume that

𝑤 ∈ ker (𝐼 − 𝐿∗) . (25)
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Recalling Lemma 4, we have

(𝑤, 𝑏) = (𝐿
∗
(𝑤) , −

𝑝−1

∑

𝑖=1

𝐿
𝑖
(𝑏))

= − (𝑤,

𝑝−1

∑

𝑖=1

𝐿
𝑖+1
(𝑏))

= − (𝑤, 𝑏 +

𝑝−1

∑

𝑖=2

𝐿
𝑖
(𝑏))

= − ⟨𝑤, 𝑏⟩ − (

𝑝−1

∑

𝑖=2

(𝐿
∗
)
𝑖
𝑤, 𝑏) .

(26)

𝑤 = 𝐿
∗
(𝑤) gives 𝑤 = (𝐿∗)𝑖(𝑤). Consequently,

(𝑤, 𝑏) = − (𝑝 − 1) (𝑤, 𝑏) , (27)

which means that (𝑤, 𝑏) = 0.
The proof is complete.

By Remark 8, we have the following.

Corollary 9. Consider the first order inhomogeneous linear
difference equation:

𝑥 (𝑛) = 𝐿 (𝑥 (𝑛 − 1)) + 𝑏, 𝑛 ≥ 0, (28)

where 𝐿 is a linear operator of the finite dimensional space 𝑋
into itself and 𝑏 ∈ 𝑋 is a vector. If (28) is globally periodic, then
it has an equilibrium.

We illustrate by an example that the conditions involved
in Theorem 3 can be satisfied and not only the finite dimen-
sional case.

Example 10. Let 𝐵([0, 1]) be the Banach space of bounded
scalar-valued functions on [0, 1], with the supremum norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞

:= sup {󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 | 𝑡 ∈ [0, 1]} . (29)

Define the function 𝛼 ∈ 𝐵([0, 1]) by

𝛼 (𝑡) := {
1, if 𝑡 is rational
−1, if 𝑡 is irrational,

(30)

and introduce the following bounded linear operator 𝐿 on
𝐵([0, 1]):

𝐿 (𝑓) := 𝛼𝑓, 𝑓 ∈ 𝐵 ([0, 1]) . (31)

Then 𝐿2 = 𝐼, 𝐼 − 𝐿 is not invertible (by Remark 5 (b), this
is an interesting case), and

im (𝐼 − 𝐿) = {𝑔 ∈ 𝐵 ([0, 1]) | 𝑔 (𝑡) = 0 if 𝑡 is rational} (32)

is a closed subspace of 𝐵([0, 1]).
It is easy to see that equation

𝑥 (𝑛) = 𝐿 (𝑥 (𝑛 − 1)) + 𝑏,

𝑥, 𝑏 ∈ 𝐵 ([0, 1]) , 𝑛 ≥ 0,

(33)

or equivalently, for every 𝑡 ∈ [0, 1]

𝑥 (𝑛) (𝑡) = 𝛼 (𝑡) 𝑥 (𝑛 − 1) (𝑡) + 𝑏 (𝑡) ,

𝑥, 𝑏 ∈ 𝐵 ([0, 1]) , 𝑛 ≥ 0,

(34)

is globally 2-periodic if and only if 𝑏 ∈ im(𝐼 − 𝐿), and in this
case it has the equlibrium point (1/2)𝑏.

The previous example can be extended if the scalars are
the complex numbers. Let 𝑝 ≥ 3 be an integer, and define the
function 𝛼 ∈ 𝐵([0, 1]) by

𝛼 (𝑡) := {
1, if 𝑡 is rational
𝜀𝑝, if 𝑡 is irrational,

(35)

where

𝜀𝑝 := 𝑒
(2𝜋/𝑝)𝑖 (36)

is a primitive 𝑝th root of unity. Then 𝐿𝑝 = 𝐼; equation

𝑥 (𝑛) = 𝐿 (𝑥 (𝑛 − 1)) ,

𝑥 ∈ 𝐵 ([0, 1]) , 𝑛 ≥ 0,

(37)

is globally 𝑝-periodic, and it has solutions with prime period
𝑝.

3. The Proof of Theorem 2

We will use the following notations.

Definition 11. Let𝑚 ≥ 1 be an integer.

(a) 𝐵𝑉𝑚,𝑑 will mean the 𝑚𝑑-dimensional real vector
space of block vectors with entries in K𝑑.

(b) The real vector space of 𝑚 × 𝑚 block matrices with
entries inK𝑑×𝑑 will be denoted by𝐵𝑀𝑚,𝑑 (𝐵𝑀𝑚,𝑑 and
K𝑚𝑑×𝑚𝑑 can be treated as being identical).

(c) The zero matrix and the identity matrix in K𝑑×𝑑 are
denoted by 𝑂𝑑 and 𝐼𝑑, respectively.

Let (𝑥(𝑛))𝑛≥−𝑠 be a given sequence in K𝑑. Then for any
fixed 𝑛 ≥ 0 we introduce an 𝑠𝑑-dimensional state vector:

x𝑛 = (x𝑛 (−𝑠) , . . . , x𝑛 (−1))
𝑇
∈ 𝐵𝑉
𝑠,𝑑
, (38)

defined by x𝑛(𝑖) := 𝑥(𝑛 + 𝑖) (−𝑠 ≤ 𝑖 ≤ −1).
As it is well known (see [10]), by using the state vector

notation, (8) may be written as an 𝑠𝑑-dimensional system of
first order difference equations.

Lemma 12. For any 𝜑 = (𝜑(−𝑠), . . . , 𝜑(−1))𝑇 ∈ 𝐵𝑉𝑠,𝑑, 𝑥(𝜑) =
(𝑥(𝜑)(𝑛))𝑛≥−𝑠 is the solution of (8) and (3) exactly if

(x𝑘 (𝜑))𝑘≥1 = ((x𝑘 (𝜑) (−𝑠) , . . . , x𝑘 (𝜑) (−1))
𝑇
)
𝑘≥1

(39)

is the solution of

x𝑘 = Cx𝑘−1 +B, 𝑘 ≥ 1,

x0 = 𝜑,
(40)



Abstract and Applied Analysis 5

where the companion matrix C ∈ 𝐵𝑀
𝑠,𝑑

K
and the block vector

B can be written in the forms

C =(

𝑂𝑑 𝐼𝑑 𝑂𝑑 . . . 𝑂𝑑

𝑂𝑑 𝑂𝑑 𝐼𝑑 . . . 𝑂𝑑
...

...
... d

...
𝑂𝑑 𝑂𝑑 𝑂𝑑 . . . 𝐼𝑑

𝐴 𝑠 𝐴 𝑠−1 𝐴 𝑠−2 . . . 𝐴1

), (41)

B =(

0

0

...
0

𝑏

). (42)

Another companion matrix is developed in [11].
There is a one-to-one correspondence between the global

periodicity of (8) and that of (40) and also between equilib-
rium of (8) and that of (40).

Lemma 13. (a) Let𝑝 ≥ 𝑠 be an integer. Equation (8) is globally
𝑝 -periodic if and only if (40) is also globally 𝑝-periodic.

(b) c ∈ K𝑑 is an equilibrium of (8) exactly if c =

(𝑐, . . . , 𝑐)
𝑇
∈ 𝐵𝑉
𝑠,𝑑 is an equilibrium of (40).

Now we prove the first main result.

Proof of Theorem 2. We can apply Theorem 3 and Lemma 13.
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