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We give sufficient conditions for the parameters of the normalized formof the generalized Struve functions to be convex and starlike
in the open unit disk.

1. Introduction and Preliminary Results

It is well known that the special functions (series) play
an important role in geometric function theory, especially
in the solution by de Branges of the famous Bieberbach
conjecture. The surprising use of special functions (hyperge-
ometric functions) has prompted renewed interest in func-
tion theory in the last few decades. There is an extensive
literature dealing with geometric properties of different
types of special functions, especially for the generalized,
Gaussian, and Kummer hypergeometric functions and the
Bessel functions. Many authors have determined sufficient
conditions on the parameters of these functions for belonging
to a certain class of univalent functions, such as convex,
starlike, and close-to-convex functions. More information
about geometric properties of special functions can be found
in [1–9]. In the present investigation our goal is to determine
conditions of starlikeness and convexity of the generalized
Struve functions. In order to achieve our goal in this section,
we recall some basic facts and preliminary results.

LetA denote the class of functions 𝑓 normalized by

𝑓 (𝑧) = 𝑧 + ∑
𝑛≥2

𝑎
𝑛
𝑧𝑛, (1)

which are analytic in the open unit diskU = {𝑧 : |𝑧| < 1}. Let
S denote the subclass of A which are univalent in U. Also
let S∗(𝛼) and C(𝛼) denote the subclasses of A consisting of

functions which are, respectively, starlike and convex of order
𝛼 inU (0 ≤ 𝛼 < 1). Thus, we have (see, for details, [10]),

S
∗

(𝛼) = {𝑓 : 𝑓 ∈ A and R(
𝑧𝑓 (𝑧)

𝑓 (𝑧)
) > 𝛼,

(𝑧 ∈ U; 0 ≤ 𝛼 < 1) } ,

C (𝛼) = {𝑓 : 𝑓 ∈ A and R(1 +
𝑧𝑓 (𝑧)

𝑓 (𝑧)
) > 𝛼,

(𝑧 ∈ U; 0 ≤ 𝛼 < 1) } ,

(2)

where, for convenience,

S
∗

(0) = S
∗, C (0) = C. (3)

We remark that, according to the Alexander duality theorem
[11], the function 𝑓 : U → C is convex of order 𝛼, where
0 ≤ 𝛼 < 1 if and only if 𝑧 → 𝑧𝑓(𝑧) is starlike of order 𝛼. We
note that every starlike (and hence convex) function of the
form (1) is univalent. For more details we refer to the papers
in [10, 12, 13] and the references therein.

Denote by S∗
1
(𝛼), where 𝛼 ∈ [0, 1), the subclass of S∗(𝛼)

consisting of functions 𝑓 for which


𝑧𝑓 (𝑧)

𝑓 (𝑧)
− 1


< 1 − 𝛼, (4)
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for all 𝑧 ∈ U. A function 𝑓 is said to be in C
1
(𝛼) if 𝑧𝑓 ∈

S∗
1
(𝛼).

Lemma 1 (see [4]). If 𝑓 ∈ A and



𝑧𝑓 (𝑧)

𝑓 (𝑧)
− 1



1−𝛽

𝑧𝑓 (𝑧)

𝑓 (𝑧)



𝛽

< (1 − 𝛼)
1−2𝛽(1 −

3𝛼

2
+ 𝛼2)

𝛽

,

(5)

for some fixed 𝛼 ∈ [0, 1/2] and 𝛽 ≥ 0, and for all 𝑧 ∈ U, then
𝑓 is in the class S∗(𝛼).

Lemma 2 (see [14]). Let 𝛼 ∈ [0, 1). A sufficient condition for
𝑓(𝑧) = 𝑧 + ∑

𝑛≥2
𝑎
𝑛
𝑧𝑛 to be in S∗

1
(𝛼) and C

1
(𝛼), respectively,

is that

∑
𝑛≥2

(𝑛 − 𝛼)
𝑎𝑛
 ≤ 1 − 𝛼,

∑
𝑛≥2

𝑛 (𝑛 − 𝛼)
𝑎𝑛
 ≤ 1 − 𝛼,

(6)

respectively.

Lemma 3 (see [14]). Let 𝛼 ∈ [0, 1). Suppose that 𝑓(𝑧) = 𝑧 −
∑
𝑛≥2

𝑎
𝑛
𝑧𝑛, 𝑎
𝑛
≥ 0. Then a necessary and sufficient condition

for 𝑓 to be in S∗
1
(𝛼) andC

1
(𝛼), respectively, is that

∑
𝑛≥2

(𝑛 − 𝛼)
𝑎𝑛
 ≤ 1 − 𝛼,

∑
𝑛≥2

𝑛 (𝑛 − 𝛼)
𝑎𝑛
 ≤ 1 − 𝛼,

(7)

respectively. In addition 𝑓 ∈ S∗
1
(𝛼) ⇔ 𝑓 ∈ S∗(𝛼), 𝑓 ∈

C
1
(𝛼) ⇔ 𝑓 ∈ C(𝛼), and 𝑓 ∈ S∗ ⇔ 𝑓 ∈ S.

2. Starlikeness and Convexity of Generalized
Struve Functions

Let us consider the second-order inhomogeneous differential
equation [15, page 341]

𝑧2𝑤 (𝑧) + 𝑧𝑤


(𝑧) + (𝑧
2 − 𝑝2)𝑤 (𝑧) =

4(𝑧/2)𝑝+1

√𝜋Γ (𝑝 + 1/2)
(8)

whose homogeneous part is Bessel’s equation, where 𝑝 is
an unrestricted real (or complex) number. The function 𝐻

𝑝
,

which is called the Struve function of order 𝑝, is defined as a
particular solution of (8). This function has the form

𝐻
𝑝
(𝑧)=∑
𝑛≥0

(−1)𝑛

Γ (𝑛 + 3/2) Γ (𝑝 + 𝑛 + 3/2)
(
𝑧

2
)
2𝑛+𝑝+1

, ∀𝑧 ∈ C.

(9)

The differential equation

𝑧2𝑤 (𝑧) + 𝑧𝑤


(𝑧) − (𝑧
2 + 𝑝2)𝑤 (𝑧) =

4(𝑧/2)𝑝+1

√𝜋Γ (𝑝 + 1/2)
,

(10)

which differs from (8) only in the coefficient of 𝑤. The
particular solution of (10) is called the modified Struve
function of order 𝑝 and is defined by the formula [15, page
353]

𝐿
𝑝
(𝑧) = −𝑖𝑒−𝑖𝑝𝜋/2𝐻

𝑝
(𝑖𝑧)

= ∑
𝑛≥0

1

Γ (𝑛 + 3/2) Γ (𝑝 + 𝑛 + 3/2)
(
𝑧

2
)
2𝑛+𝑝+1

, ∀𝑧 ∈ C.

(11)

Now, let us consider the second-order inhomogeneous linear
differential equation [16],

𝑧2𝑤 (𝑧) + 𝑏𝑧𝑤


(𝑧) + [𝑐𝑧
2 − 𝑝2 + (1 − 𝑏) 𝑝]𝑤 (𝑧)

=
4(𝑧/2)𝑝+1

√𝜋Γ (𝑝 + 𝑏/2)
,

(12)

where 𝑏, 𝑐, 𝑝 ∈ C. If we choose 𝑏 = 1 and 𝑐 = 1, then
we get (8), and if we choose 𝑏 = 1 and 𝑐 = −1, then
we get (10). So this generalizes (8) and (10). Moreover, this
permits to study the Struve and modified Struve functions
together. A particular solution of the differential equation
(12), which is denoted by 𝑤

𝑝,𝑏,𝑐
(𝑧), is called the generalized

Struve function [16] of order 𝑝. In fact we have the following
series representation for the function 𝑤

𝑝,𝑏,𝑐
(𝑧):

𝑤
𝑝,𝑏,𝑐

(𝑧)

=∑
𝑛≥0

(−1)𝑛𝑐𝑛

Γ (𝑛+3/2) Γ (𝑝+𝑛+(𝑏+2) /2)
(
𝑧

2
)
2𝑛+𝑝+1

, ∀𝑧∈C.

(13)

Although the series defined in (13) is convergent everywhere,
the function 𝑤

𝑝,𝑏,𝑐
(𝑧) is generally not univalent in U. Now,

consider the function 𝑢
𝑝,𝑏,𝑐

(𝑧) defined by the transformation

𝑢
𝑝,𝑏,𝑐

(𝑧) = 2𝑝√𝜋Γ(𝑝 +
𝑏 + 2

2
) 𝑧(−𝑝−1)/2𝑤

𝑝,𝑏,𝑐
(√𝑧) . (14)

By using the Pochhammer (or Appell) symbol, defined in
terms of Euler’s gamma functions, by (𝜆)

𝑛
= Γ(𝜆 + 𝑛)/Γ(𝜆) =

𝜆(𝜆+1) ⋅ ⋅ ⋅ (𝜆 + 𝑛−1), we obtain for the function 𝑢
𝑝,𝑏,𝑐

(𝑧) the
following form:

𝑢
𝑝,𝑏,𝑐

(𝑧) = ∑
𝑛≥0

(−𝑐/4)𝑛

(3/2)
𝑛
(𝜅)
𝑛

𝑧𝑛

= 𝑏
0
+ 𝑏
1
𝑧 + 𝑏
2
𝑧2 + ⋅ ⋅ ⋅ + 𝑏

𝑛
𝑧𝑛 + ⋅ ⋅ ⋅ ,

(15)

where 𝜅 = 𝑝 + (𝑏 + 2)/2 ̸= 0, −1, −2, . . .. This function is
analytic on C and satisfies the second-order inhomogeneous
differential equation

4𝑧2𝑢 (𝑧) + 2 (2𝑝 + 𝑏 + 3) 𝑧𝑢


(𝑧)

+ (𝑐𝑧 + 2𝑝 + 𝑏) 𝑢 (𝑧) = 2𝑝 + 𝑏.
(16)

Orhan and Yağmur [16] have determined various sufficient
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conditions for the parameters 𝑝, 𝑏, and 𝑐 such that the
functions 𝑢

𝑝,𝑏,𝑐
(𝑧) or 𝑧 → 𝑧𝑢

𝑝,𝑏,𝑐
(𝑧) to be univalent, starlike,

convex, and close to convex in the open unit disk. In this
section, our aim is to complete the above-mentioned results.

For convenience, we use the notations: 𝑤
𝑝,𝑏,𝑐

(𝑧) = 𝑤
𝑝
(𝑧)

and 𝑢
𝑝,𝑏,𝑐

(𝑧) = 𝑢
𝑝
(𝑧).

Proposition 4 (see [16]). If 𝑏, 𝑐, 𝑝 ∈ C, 𝜅 = 𝑝 + (𝑏 +
2)/2 ̸= 1, 0, −1, −2, . . ., and 𝑧 ∈ C, then for the generalized
Struve function of order𝑝 the following recursive relations hold:

(i) 𝑧𝑤
𝑝−1

(𝑧) + 𝑐𝑧𝑤
𝑝+1

(𝑧) = (2𝜅 − 3)𝑤
𝑝
(𝑧) +

2(𝑧/2)𝑝+1/√𝜋Γ(𝜅);
(ii) 𝑧𝑤

𝑝
(𝑧) + (𝑝 + 𝑏 − 1)𝑤

𝑝
(𝑧) = 𝑧𝑤

𝑝−1
(𝑧);

(iii) 𝑧𝑤
𝑝
(𝑧) + 𝑐𝑧𝑤

𝑝+1
(𝑧) = 𝑝𝑤

𝑝
(𝑧) + 2(𝑧/2)𝑝+1/√𝜋Γ(𝜅);

(iv) [𝑧−𝑝𝑤
𝑝
(𝑧)]


= −𝑐𝑧−𝑝𝑤
𝑝+1

(𝑧) + 1/2𝑝√𝜋Γ(𝜅);

(v) 𝑢
𝑝
(𝑧) + 2𝑧𝑢

𝑝
(𝑧) + (𝑐𝑧/2𝜅)𝑢

𝑝+1
(𝑧) = 1.

Theorem 5. If the function 𝑢
𝑝
, defined by (15), satisfies the

condition


𝑧𝑢
𝑝
(𝑧)

𝑢
𝑝
(𝑧)


< 1 − 𝛼, (17)

where 𝛼 ∈ [0, 1/2] and 𝑧 ∈ U, then 𝑧𝑢
𝑝
∈ S∗(𝛼).

Proof. If we define the function𝑔 : U → C by 𝑔(𝑧) = 𝑧𝑢
𝑝
(𝑧)

for 𝑧 ∈ U. The given condition becomes



𝑧𝑔 (𝑧)

𝑔 (𝑧)
− 1


< 1 − 𝛼, (18)

where 𝑧 ∈ U. By taking 𝛽 = 0 in Lemma 1, we thus conclude
from the previous inequality that 𝑔 ∈ S∗(𝛼), which proves
Theorem 5.

Theorem 6. If the function 𝑢
𝑝
, defined by (15), satisfies the

condition


𝑧𝑢
𝑝
(𝑧)

𝑢
𝑝
(𝑧)


<
1 − 3𝛼/2 + 𝛼2

1 − 𝛼
, (19)

where 𝛼 ∈ [0, 1/2] and 𝑧 ∈ U, then it is starlike of order 𝛼with
respect to 1.

Proof. Define the function ℎ : U → C by ℎ(𝑧) = [𝑢
𝑝
(𝑧) −

𝑏
0
]/𝑏
1
. Then ℎ ∈ A and



𝑧ℎ (𝑧)

ℎ (𝑧)


=



𝑧𝑢
𝑝
(𝑧)

𝑢
𝑝
(𝑧)


<
1 − 3𝛼/2 + 𝛼2

1 − 𝛼
, (20)

where 𝛼 ∈ [0, 1/2] and 𝑧 ∈ U. By taking 𝛽 = 1 in Lemma 1,
we deduce that ℎ ∈ S∗(𝛼); that is, ℎ is starlike of order 𝛼with
respect to the origin for 𝛼 ∈ [0, 1/2]. So, Theorem 6 follows
from the definition of the function ℎ, because 𝑏

0
= 1.

Theorem 7. If for 𝛼 ∈ [0, 1/2] and 𝑐 ̸= 0 one has



𝑧𝑢
𝑝+1

(𝑧)

𝑢
𝑝+1

(𝑧)


< 1 − 𝛼, (21)

for all 𝑧 ∈ U, then 𝑢
𝑝
+ 2𝑧𝑢

𝑝
is starlike of order 𝛼 with respect

to 1.

Proof. Theorem 5 implies that 𝑧𝑢
𝑝+1

∈ S∗(𝛼). On the other
hand, the part (v) of Proposition 4 yields

𝑢
𝑝
(𝑧) + 2𝑧𝑢



𝑝
(𝑧) =

−𝑐

2𝜅
𝑧𝑢
𝑝+1

(𝑧) + 1. (22)

Since the addition of any constant and the multiplication
by a nonzero quantity do not disturb the starlikeness. This
completes the proof.

Lemma 8. If 𝑏, 𝑝 ∈ R, 𝑐 ∈ C, and 𝜅 = 𝑝 + (𝑏 + 2)/2 such that
𝜅 > |𝑐|/2, then the function 𝑢

𝑝
: U → C satisfies the following

inequalities:

6𝜅 − 2 |𝑐|

6𝜅 − |𝑐|
≤
𝑢𝑝 (𝑧)

 ≤
6𝜅

6𝜅 − |𝑐|
, (23)

|𝑐| (2𝜅 − |𝑐|)

3𝜅 (4𝜅 − |𝑐|)
≤
𝑢


𝑝
(𝑧)

 ≤
2 |𝑐|

3 (4𝜅 − |𝑐|)
, (24)

𝑧𝑢


𝑝
(𝑧)

 ≤
|𝑐|2

4𝜅 (4𝜅 − |𝑐|)
. (25)

Proof. We first prove the assertion (23) of Lemma 8. Indeed,
by using the well-known triangle inequality:

𝑧1 + 𝑧2
 ≤

𝑧1
 +

𝑧2
 , (26)

and the inequalities (3/2)
𝑛
≥ (3/2)𝑛, (𝜅)

𝑛
≥ 𝜅𝑛 (𝑛 ∈ N), we

have

𝑢𝑝 (𝑧)
 =


1 + ∑
𝑛≥1

(−𝑐/4)𝑛

(3/2)
𝑛
(𝜅)
𝑛

𝑧𝑛


≤ 1 + ∑
𝑛≥1

(
|−𝑐/4|

(3/2) 𝜅
)
𝑛

= 1 +
|𝑐|

6𝜅
∑
𝑛≥1

(
|𝑐|

6𝜅
)
𝑛−1

=
6𝜅

6𝜅 − |𝑐|
, (𝜅 >

|𝑐|

6
) .

(27)

Similarly, by using reverse triangle inequality:

𝑧1 − 𝑧2
 ≥


𝑧1
 −

𝑧2

 , (28)
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and the inequalities (3/2)
𝑛
≥ (3/2)𝑛, (𝜅)

𝑛
≥ 𝜅𝑛 (𝑛 ∈ N), then

we get

𝑢𝑝 (𝑧)
 =


1 + ∑
𝑛≥1

(−𝑐/4)𝑛

(3/2)
𝑛
(𝜅)
𝑛

𝑧𝑛


≥ 1 − ∑
𝑛≥1

(
|−𝑐/4|

(3/2) 𝜅
)
𝑛

= 1 −
|𝑐|

6𝜅
∑
𝑛≥1

(
|𝑐|

6𝜅
)
𝑛−1

=
6𝜅 − 2 |𝑐|

6𝜅 − |𝑐|
, (𝜅 >

|𝑐|

6
) ,

(29)

which is positive if 𝜅 > |𝑐|/3.
In order to prove assertion (24) of Lemma 8, we make

use of the well-known triangle inequality and the inequalities
(3/2)
𝑛
≥ (3/2)𝑛, (𝜅)

𝑛
≥ 𝜅𝑛 (𝑛 ∈ N), and we obtain

𝑢


𝑝
(𝑧)

 =


∑
𝑛≥1

𝑛(−𝑐/4)𝑛

(3/2)
𝑛
(𝜅)
𝑛

𝑧𝑛−1


≤
2

3
∑
𝑛≥1

(
|𝑐|

4𝜅
)
𝑛

=
2

3

|𝑐|

4𝜅
∑
𝑛≥1

(
|𝑐|

4𝜅
)
𝑛−1

=
2 |𝑐|

3 (4𝜅 − |𝑐|)
, (𝜅 >

|𝑐|

4
) .

(30)

Similarly, by using the reverse triangle inequality and the
inequalities (3/2)

𝑛
≥ (3/2)𝑛, (𝜅)

𝑛
≥ 𝜅𝑛 (𝑛 ∈ N), we have

𝑢


𝑝
(𝑧)

 =


∑
𝑛≥1

𝑛(−𝑐/4)𝑛

(3/2)
𝑛
(𝜅)
𝑛

𝑧𝑛−1


≥
|𝑐|

6𝜅
−
2

3
(
|𝑐|

4𝜅
)
2

∑
𝑛≥2

(
|𝑐|

4𝜅
)
𝑛−1

=
|𝑐| (2𝜅 − |𝑐|)

3𝜅 (4𝜅 − |𝑐|)
, (𝜅 >

|𝑐|

4
) ,

(31)

which is positive if 𝜅 > |𝑐|/2.
We now prove assertion (25) of Lemma 8 by using again

the triangle inequality and the inequalities (3/2)
𝑛
≥ 𝑛(𝑛 − 1),

(𝜅)
𝑛
≥ 𝜅𝑛 (𝑛 ∈ N), and we arrive at the following:

𝑧𝑢


𝑝
(𝑧)

 =


∑
𝑛≥2

𝑛 (𝑛 − 1) (−𝑐/4)𝑛

(3/2)
𝑛
(𝜅)
𝑛

𝑧𝑛−1


≤
|𝑐|

4𝜅
∑
𝑛≥2

(
|𝑐|

4𝜅
)
𝑛−1

=
|𝑐|2

4𝜅 (4𝜅 − |𝑐|)
, (𝜅 >

|𝑐|

4
) .

(32)

Thus, the proof of Lemma 8 is completed.

Theorem 9. If 𝑏, 𝑝 ∈ R, 𝑐 ∈ C and 𝜅 = 𝑝 + (𝑏 + 2)/2, then the
following assertions are true.

(i) If 𝜅 > (7/8)|𝑐|, then 𝑢
𝑝
(𝑧) is convex inU.

(ii) If 𝜅 > ((11 + √41)/24)|𝑐|, then 𝑧𝑢
𝑝
(𝑧) is starlike of

order 1/2 in U, and consequently the function 𝑧 →
𝑧−𝑝𝑤
𝑝
(𝑧) is starlike inU.

(iii) If 𝜅 > ((11 + √41)/24)|𝑐| − 1, then the function 𝑧 →
𝑢
𝑝
(𝑧) + 2𝑧𝑢

𝑝
(𝑧) is starlike of order 1/2 with respect to

1 for all 𝑧 ∈ U.

Proof. (i) By combining the inequalities (24) with (25), we
immediately see that



𝑧𝑢
𝑝
(𝑧)

𝑢
𝑝
(𝑧)


≤

3 |𝑐|

4 (2𝜅 − |𝑐|)
. (33)

So, for 𝜅 > (
7

8
) |𝑐|, we have



𝑧𝑢
𝑝
(𝑧)

𝑢
𝑝
(𝑧)


< 1. (34)

This shows 𝑢
𝑝
(𝑧) is convex inU.

(ii) If we let 𝑔(𝑧) = 𝑧𝑢
𝑝
(𝑧) and ℎ(𝑧) = 𝑧𝑢

𝑝
(𝑧2), then

ℎ (𝑧) =
𝑔 (𝑧2)

𝑧
= 2𝑝√𝜋Γ (𝜅) 𝑧

−𝑝𝑤
𝑝,𝑏,𝑐

(𝑧) ,

𝑧ℎ (𝑧)

ℎ (𝑧)
− 1 = 2[

𝑧2𝑔 (𝑧2)

𝑔 (𝑧2)
− 1] = 2

𝑧2𝑢
𝑝
(𝑧2)

𝑢
𝑝
(𝑧2)

,

(35)

so that


𝑧ℎ (𝑧)

ℎ (𝑧)
− 1


< 1, ∀𝑧 ∈ U, (36)

if and only if



𝑧2𝑢
𝑝
(𝑧2)

𝑢
𝑝
(𝑧2)



<
1

2
, ∀𝑧 ∈ U. (37)

It follows that 𝑧𝑢
𝑝
(𝑧) is starlike of order 1/2 if (37) holds.

From (24) and (23), we have

𝑧
2𝑢
𝑝
(𝑧2)

 ≤
2 |𝑐|

3 (4𝜅 − |𝑐|)
, (𝜅 >

|𝑐|

4
) , (38)

6𝜅 − 2 |𝑐|

6𝜅 − |𝑐|
≤
𝑢𝑝 (𝑧

2)
 , (𝜅 >

|𝑐|

3
) , (39)

respectively.
By combining the inequalities (38) with (39), we see that



𝑧2𝑢
𝑝
(𝑧2)

𝑢
𝑝
(𝑧2)



≤
|𝑐| (6𝜅 − |𝑐|)

3 (3𝜅 − |𝑐|) (4𝜅 − |𝑐|)
, (40)
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where 𝜅 > |𝑐|/3, and the above bound is less than or equal to
1/2 if and only if 𝜅 > ((11 + √41)/24)|𝑐|. It follows that 𝑧𝑢

𝑝

is starlike of order 1/2 inU and 𝑧−𝑝𝑤
𝑝,𝑏,𝑐

is starlike inU.
(iii) The part (ii) of Theorem 9 implies that for 𝜅 > ((11 +

√41)/24)|𝑐|−1, the function 𝑧 → 𝑧𝑢
𝑝+1

(𝑧) is starlike of order
1/2 in U. On the other hand, the part (v) of Proposition 4
yields

𝑢
𝑝
(𝑧) + 2𝑧𝑢



𝑝
(𝑧) =

−𝑐

2𝜅
𝑧𝑢
𝑝+1

(𝑧) + 1. (41)

So the function 𝑧 → 𝑢
𝑝
(𝑧) + 2𝑧𝑢

𝑝
(𝑧) is starlike of order 1/2

with respect to 1 for all 𝑧 ∈ U.
This completes the proof.

Struve Functions. Choosing 𝑏 = 𝑐 = 1, we obtain the
differential equation (8) and the Struve function of order 𝑝,
defined by (9), satisfies this equation. In particular, the results
of Theorem 9 are as follows.

Corollary 10. Let H
𝑝
: U → C be defined by H

𝑝
(𝑧) =

2𝑝√𝜋Γ(𝑝 + 3/2)𝑧−𝑝−1𝐻
𝑝
(𝑧) = 𝑢

𝑝,1,1
(𝑧2), where𝐻

𝑝
stands for

the Struve function of order𝑝.Then the following assertions are
true.

(i) If 𝑝 > −5/8, thenH
𝑝
(𝑧1/2) is convex inU.

(ii) If 𝑝 > (−25 + √41)/24, then 𝑧H
𝑝
(𝑧1/2) is starlike of

order 1/2 in U, and consequently the function 𝑧 →
𝑧−𝑝𝐻
𝑝
(𝑧) is starlike inU.

(iii) If 𝑝 > (−49 + √41)/24, then the function 𝑧 →

H
𝑝
(𝑧1/2) + 2𝑧H

𝑝
(𝑧1/2) is starlike of order 1/2 with

respect to 1 for all 𝑧 ∈ U.

Modified Struve Functions. Choosing 𝑏 = 1 and 𝑐 = −1, we
obtain the differential equation (10) and the modified Struve
function of order 𝑝, defined by (11). For the function L

𝑝
:

U → C defined by L
𝑝
(𝑧) = 2𝑝√𝜋Γ(𝑝 + 3/2)𝑧−𝑝−1𝐿

𝑝
(𝑧) =

𝑢
𝑝,1,−1

(𝑧2), where 𝐿
𝑝
stands for the modified Struve function

of order 𝑝. The properties are same like for function H
𝑝
,

because we have |𝑐| = 1.More precisely, we have the following
results.

Corollary 11. The following assertions are true.

(i) If 𝑝 > −5/8, thenL
𝑝
(𝑧1/2) is convex inU.

(ii) If 𝑝 > (−25 + √41)/24, then 𝑧L
𝑝
(𝑧1/2) is starlike of

order 1/2 in U, and consequently the function 𝑧 →
𝑧−𝑝𝐿
𝑝
(𝑧) is starlike inU.

(iii) If 𝑝 > (−49 + √41)/24, then the function 𝑧 →

L
𝑝
(𝑧1/2) + 2𝑧L

𝑝
(𝑧1/2) is starlike of order 1/2 with

respect to 1 for all 𝑧 ∈ U.

Example 12. If we take 𝑝 = −1/2, then from part (ii) of
Corollary 10, the function 𝑧 → 𝑧1/2𝐻

−1/2
(𝑧) = √2/𝜋 sin 𝑧

is starlike inU. So the function 𝑓(𝑧) = sin 𝑧 is also starlike in

0 0.2 0.4 0.6 0.8

0.5

1

−0.2

−0.5

−0.4−0.6−0.8

−1

with (plots):

Complexplot ([sin(𝑧)], 𝑡 = 0..2 ∗ 𝜋) ;
𝑧: = cos(𝑡) + 𝐼 ∗ sin(𝑡):

Figure 1: 𝑓(𝑧) = sin 𝑧.

U. We have the image domain of 𝑓(𝑧) = sin 𝑧 illustrated by
Figure 1.

Theorem 13. If 𝛼 ∈ [0, 1), 𝑐 < 0, and 𝜅 > 0, then a sufficient
condition for 𝑧𝑢

𝑝
to be in S∗

1
(𝛼) is

𝑢
𝑝
(1) +

𝑢
𝑝
(1)

1 − 𝛼
≤ 2. (42)

Moreover, (42) is necessary and sufficient for 𝜓(𝑧) = 𝑧[2 −
𝑢
𝑝
(𝑧)] to be in S∗

1
(𝛼).

Proof. Since 𝑧𝑢
𝑝
(𝑧) = 𝑧+∑

𝑛≥2
𝑏
𝑛−1

𝑧𝑛, according to Lemma 2,
we need only show that

∑
𝑛≥2

(𝑛 − 𝛼) 𝑏
𝑛−1

≤ 1 − 𝛼. (43)

We notice that
∑
𝑛≥2

(𝑛 − 𝛼) 𝑏
𝑛−1

= ∑
𝑛≥2

(𝑛 − 1) 𝑏
𝑛−1

+ ∑
𝑛≥2

(1 − 𝛼) 𝑏
𝑛−1

= ∑
𝑛≥2

(𝑛 − 1) (−𝑐/4)𝑛−1

(3/2)
𝑛−1

(𝜅)
𝑛−1

+ (1 − 𝛼) [𝑢
𝑝
(1) − 1]

= 𝑢
𝑝
(1) + (1 − 𝛼) [𝑢

𝑝
(1) − 1] .

(44)

This sum is bounded above by 1 − 𝛼 if and only if (42) holds.
Since

𝑧 [2 − 𝑢
𝑝
(𝑧)] = 𝑧 − ∑

𝑛≥2

𝑏
𝑛−1

𝑧𝑛, (45)

the necessity of (42) for 𝜓 to be in S∗
1
(𝛼) follows from

Lemma 3.
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Corollary 14. If 𝑐 < 0 and 𝜅 > 0, then a sufficient condition
for 𝑧𝑢

𝑝
to be in S∗

1
(1/2) is

𝑢
𝑝+1

(1) ≤ −
2𝜅

𝑐
. (46)

Moreover, (46) is necessary and sufficient for 𝜓(𝑧) = 𝑧[2 −
𝑢
𝑝
(𝑧)] to be in S∗

1
(1/2).

Proof. For 𝛼 = 1/2, the condition (42) becomes 𝑢
𝑝
(1) +

2𝑢
𝑝
(1) ≤ 2. From the part (v) of Proposition 4 we get

𝑢
𝑝
(1) + 2𝑧𝑢



𝑝
(1) = 1 −

𝑐

2𝜅
𝑢
𝑝+1

(1) . (47)

So, 𝑢
𝑝
(1) + 2𝑢

𝑝
(1) ≤ 2 if and only if 1 − (𝑐/2𝜅)𝑢

𝑝+1
(1) ≤ 2.

Thus, we obtain the condition (46).
Furthermore, from the proof of Theorem 13, we have

necessary and sufficient condition for 𝜓(𝑧) = 𝑧[2 − 𝑢
𝑝
(𝑧)]

to be in S∗
1
(1/2).

Theorem 15. If 𝛼 ∈ [0, 1), 𝑐 < 0 and 𝜅 > 0, then a sufficient
condition for 𝑧𝑢

𝑝
to be inC

1
(𝛼) is

𝑢
𝑝
(1) + (3 − 𝛼) 𝑢



𝑝
(1) + (1 − 𝛼) 𝑢

𝑝
(1) − 2𝛼 ≤ 2. (48)

Moreover, (48) is necessary and sufficient for 𝜓(𝑧) = 𝑧[2 −
𝑢
𝑝
(𝑧)] to be inC

1
(𝛼).

Proof. In view of Lemma 2, we need only to show that

∑
𝑛≥2

𝑛 (𝑛 − 𝛼) 𝑏
𝑛−1

≤ 1 − 𝛼. (49)

If we let 𝑔(𝑧) = 𝑧𝑢
𝑝
(𝑧), we notice that

∑
𝑛≥2

𝑛 (𝑛 − 𝛼) 𝑏
𝑛−1

= ∑
𝑛≥2

𝑛 (𝑛 − 1) 𝑏
𝑛−1

+ (1 − 𝛼) ∑
𝑛≥2

𝑛𝑏
𝑛−1

= 𝑔 (1) + (1 − 𝛼) [𝑔


(1) − 1]

= 𝑢
𝑝
(1) + (3 − 𝛼) 𝑢



𝑝
(1) + (1 − 𝛼) 𝑢

𝑝
(1) − 1 + 𝛼.

(50)

This sum is bounded above by 1 − 𝛼 if and only if (48) holds.
Lemma 3 implies that (48) is also necessary for 𝜓 to be in
C
1
(𝛼).

Theorem 16. If 𝑐 < 0, 𝜅 > 0, and 𝑢
𝑝
(1) ≤ 2, then

∫
𝑧

0

𝑢
𝑝
(𝑡)𝑑𝑡 ∈ S∗.

Proof. Since

∫
𝑧

0

𝑢
𝑝
(𝑡) 𝑑𝑡 = ∑

𝑛≥0

𝑏
𝑛

𝑛 + 1
𝑧𝑛+1 = 𝑧 + ∑

𝑛≥2

𝑏
𝑛−1

𝑛
𝑧𝑛, (51)

we note that

∑
𝑛≥2

𝑛
𝑏
𝑛−1

𝑛
= ∑
𝑛≥2

𝑏
𝑛−1

= 𝑢
𝑝
(1) − 1 ≤ 1, (52)

if and only if 𝑢
𝑝
(1) ≤ 2.
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