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By using a change of variables, we get new equations, whose respective associated functionals are well defined in𝐻1(R𝑁) and satisfy
the geometric hypotheses of the mountain pass theorem. Using this fact, we obtain a nontrivial solution.

1. Introduction

We study the existence of solutions for the following quasi-
linear Schrödinger equations:

− Δ𝑢 + 𝑉 (𝑥) 𝑢 − [Δ(1 + 𝑢
2
)
𝛼/2

]
𝛼𝑢

2(1 + 𝑢2)
(2−𝛼)/2

= 𝑢
𝑞
+ 𝑢
𝑝
,

𝑥 ∈ R
𝑁
,

(1)

where 𝑉 ∈ 𝐶(R𝑁,R+) is bounded and periodic in each
variable of 𝑥

𝑖
, 1 ≤ 𝑖 ≤ 𝑁, 𝑁 ≥ 3, 𝑇(𝛼) < 𝑞 + 1 < 𝑝 + 1 <

𝛼2
∗
:= 2𝛼𝑁/(𝑁 − 2), 𝛼 ≥ 1, and here

𝑇 (𝛼) :=

{{

{{

{

2𝛼, 𝛼
0
≤ 𝛼,

2𝛼
0
, 1 < 𝛼 < 𝛼

0
,

12 − 4√6, 𝛼 = 1,

(2)

where 𝛼
0
is defined in Lemma 2. These equations are related

to existence of standing wave solutions for quasilinear
Schrödinger equations of the form

𝑖𝑧
𝑡
= −Δ𝑧 +𝑊(𝑥) 𝑧 − ℎ (|𝑧|

2
) 𝑧 − Δ𝑔 (|𝑧|

2
) 𝑔
󸀠
(|𝑧|
2
) 𝑧,

𝑥 ∈ R
𝑁
,

(3)

where𝑊 is a given potential and 𝑔 and ℎ are real functions.
Quasilinear equations such as (3) have been accepted asmod-
els of several physical phenomena corresponding to various

types of 𝑔. The case of 𝑔(𝑠) = 𝑠
𝛼 was used for the superfluid

film equation in plasma physics [1]. Besides, (3) also appears
in plasma physics and fluid mechanics [2], in dissipative
quantum mechanics [3], and in the theory of Heisenberg
ferromagnetism and magnons [4, 5]. See also [6, 7] for more
physical backgrounds. Equations (3) with 𝛼 = 1 have been
studied extensively recently; see [8, 9].When𝑔(𝑠) = (1+𝑠)

𝛼/2,
then (3) turn into our equations (1) with ℎ(𝑠) = 𝑠

𝑞
+ 𝑠
𝑝. In

particular if we let 𝛼 = 1, that is, 𝑔(𝑠) = (1 + 𝑠)
1/2, (3) models

the self-channeling of a high-power ultrashort laser in matter
[10]. In this case, few results are known. In [11], the authors
proved global existence and uniqueness of small solutions
in transverse space dimensions 2 and 3 and local existence
without any smallness condition in transverse space dimen-
sion 1. In [12], the authors proved the existence of nontrivial
solution. When 𝛼 > 1, although we do not know the physical
background of (3), in amathematical sense, we give the proof
of the existence of nontrivial solution.

For (1), the main difficulty is that the energy functional
associated to (1) is not well defined in𝐻1(R𝑁). To overcome
this difficulty, enlightened by [8, 9], we give a new change
of variables. Then we reduce the quasilinear problem (1) to a
semilinear one,whichwewill prove has a nontrivial solutions.

Our main result is the following.

Theorem 1. Assume that 𝛼 ≥ 1 and 𝑇(𝛼) < 𝑞 + 1 < 𝑝 + 1 <

𝛼2
∗. Then (1) has a nontrivial solution.

In this paper, 𝐶 denotes positive (possibly different) con-
stant, 𝐿𝑝(R𝑁) denotes the usual Lebesgue space with norm
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|𝑢|
𝑝
= (∫

R𝑁
|𝑢|
𝑝
𝑑𝑥)
1/𝑝, 1 ≤ 𝑝 < ∞, and𝐻1(R𝑁) denotes the

Sobolev space with norm ‖𝑢‖ = (∫
R𝑁
(|∇𝑢|
2
+ 𝑉(𝑥)𝑢

2
)𝑑𝑥)
1/2.

2. The Change of Variables

We note that the solutions of (1) are the critical points of the
following functional:

𝐼 (𝑢) =
1

2
∫
R𝑁

[1 +
𝛼
2
𝑢
2

2(1 + 𝑢2)
2−𝛼

] |∇𝑢|
2
𝑑𝑥

+
1

2
∫
R𝑁

𝑉 (𝑥) 𝑢
2
𝑑𝑥

−
1

𝑞 + 1
∫
R𝑁

𝑢
𝑞+1

𝑑𝑥 −
1

𝑝 + 1
∫
R𝑁

𝑢
𝑝+1

𝑑𝑥.

(4)

Since the functional 𝐼(𝑢)may not be well defined in the usual
Sobolev spaces𝐻1(R𝑁), we make a change of variables as

V = 𝐺 (𝑢) = ∫

𝑢

0

𝑔 (𝑡) 𝑑𝑡, (5)

where 𝑔(𝑡) = √1 + 𝛼2𝑡2/2(1 + 𝑡2)
2−𝛼. Since 𝑔(𝑡) is mono-

tonous with |𝑡|, the inverse function 𝐺
−1
(𝑡) of 𝐺(𝑡) exists.

Then after the change of variables, 𝐼(𝑢) can be written by

𝐽 (V) =
1

2
∫
R𝑁

|∇V|2𝑑𝑥 +
1

2
∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

𝑞 + 1
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑞+1

𝑑𝑥

−
1

𝑝 + 1
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑝+1

𝑑𝑥.

(6)

By Lemma 2 listed below, we have lim
𝑡→0

𝐺
−1
(𝑡)/𝑡 = 1 and

lim
𝑡→∞

|𝐺
−1
(𝑡)|
𝛼
/𝑡 = √2 (𝛼 > 1) or √2/3 (𝛼 = 1), so 𝐽(V)

is well defined in𝐻1(R𝑁) and 𝐽(V) ∈ 𝐶1.
If 𝑢 is a nontrivial solution of (1), then for all 𝜙 ∈ 𝐶∞

0
(R𝑁)

it should satisfy

∫
R𝑁

[𝑔
2
(𝑢) ∇𝑢∇𝜙 + 𝑔 (𝑢) 𝑔

󸀠
(𝑢) |∇𝑢|

2
𝜙 + 𝑉 (𝑥) 𝑢𝜙

−𝑢
𝑞
𝜙 − 𝑢
𝑝
𝜙] 𝑑𝑥 = 0.

(7)

We show that (7) is equivalent to

𝐽
󸀠
(V) 𝜓 = ∫

R𝑁

[

[

∇V∇𝜓 + 𝑉 (𝑥)
𝐺
−1
(V)

𝑔 (𝐺−1 (V))
𝜓

−

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑔 (𝐺−1 (V))
𝜓 −

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑔 (𝐺−1 (V))
𝜓]

]

𝑑𝑥

= 0, ∀𝜓 ∈ 𝐶
∞

0
(R
𝑁
) .

(8)

Indeed, if we choose 𝜙 = (1/𝑔(𝑢))𝜓 in (7), thenwe get (8). On
the other hand, since𝑢 = 𝐺

−1
(V), if we let𝜓 = 𝑔(𝑢)𝜙 in (8), we

get (7). Therefore, in order to find the nontrivial solutions of
(1), it suffices to study the existence of the nontrivial solutions
of the following equations:

− ΔV = −𝑉 (𝑥)
𝐺
−1
(V)

𝑔 (𝐺−1 (V))
+

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑔 (𝐺−1 (V))
+

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑔 (𝐺−1 (V))
,

𝑥 ∈ R
𝑁
.

(9)

Before we close this section, we give some properties of
the change of variables.

Lemma 2. For all 𝑡 > 0, one has the following:

(1) lim
𝑡→0

(𝐺
−1
(𝑡)/𝑡) = 1,

(2) (i) if 𝛼 > 1 then lim
𝑡→∞

(|𝐺
−1
(𝑡)|
𝛼

/𝑡) = √2, and (ii) if

𝛼 = 1 then lim
𝑡→∞

(|𝐺
−1
(𝑡)|/𝑡) = √2/3,

(3) |𝐺−1(𝑡)| ≤ 𝑡,
(4) (i) if 𝛼

0
≤ 𝛼 then 𝑡𝑔󸀠(𝑡)/𝑔(𝑡) ≤ 𝛼 − 1, (ii) if 1 < 𝛼 ≤

𝛼
0
then 𝑡𝑔󸀠(𝑡)/𝑔(𝑡) ≤ 𝛼

0
− 1, and (iii) if 𝛼 = 1 then

𝑡𝑔
󸀠
(𝑡)/𝑔(𝑡) ≤ 5 − 2√6, where 𝛼

0
≈ 1.36 is a real root of

the equation 𝛼3 − 4𝛼2 + 8𝛼 − 6 = 0.

Proof. (1) We easily get lim
𝑡→0

(𝐺
−1
(𝑡)/𝑡) = (𝐺

−1
(𝑡))
󸀠
|
𝑡=0

=

1/𝑔(𝐺
−1
(0)) = 1.

For (2) if 𝛼 > 1, since 𝑔(𝑡) = √1 + 𝛼2𝑡2/2(1 + 𝑡2)
2−𝛼

=

√1 + (𝛼2𝑡2/2(1 + 𝑡2))(1 + 𝑡2)
𝛼−1, so 𝑔(𝑡) ∼ √(𝛼2/2)𝑡2(𝛼−1) =

(𝛼/√2)𝑡
𝛼−1 as 𝑡 → ∞, then 𝐺(𝑡) = ∫

𝑡

0
𝑔(𝑠)𝑑𝑠 ∼ (1/√2)𝑡

𝛼

as 𝑡 → ∞. Since 𝐺−1(𝑡) is the inverse of 𝐺(𝑡), so 𝐺−1(𝑡) ∼
(√2𝑡)

1/𝛼 as 𝑡 → ∞, thuswe have lim
𝑡→∞

(|𝐺
−1
(𝑡)|
𝛼

/𝑡) = √2.
When 𝛼 = 1, the result is obvious since 𝑔(𝑡) is an increasing
bounded function.

For (3), since [𝐺−1(𝑡) − (1/𝑔(0))𝑡]
󸀠
= 1/𝑔(𝐺

−1
(𝑡)) − 1/

𝑔(0) ≤ 0, so 𝐺−1(𝑡) ≤ (1/𝑔(0))𝑡 = 𝑡, which proves (3).
Now we prove (4), since (𝑡/𝑔(𝑡))𝑔

󸀠
(𝑡) = 𝑡

2
/

2(1 + 𝑡
2
)
2

𝑔
2
(𝑡) = 𝑡

2
/(2 + 5𝑡

2
+ 3𝑡
4
) = 1/(2/𝑡

2
+ 5 + 3𝑡

2
) ≤

5 − 2√6, which is (iii). To prove (i), that is,

𝛼
2
(2 − 𝛼) 𝑡

2
≤ 2 (𝛼 − 1) (1 + 𝑡

2
)
3−𝛼

, (10)

we set 𝑗(𝑡) = 2(𝛼 − 1)(1 + 𝑡
2
)
3−𝛼

− 𝛼
2
(2 − 𝛼)𝑡

2, so 𝑗󸀠(𝑡) =
2𝑡[2(𝛼 − 1)(3 − 𝛼)(1 + 𝑡

2
)
2−𝛼

− 𝛼
2
(2 − 𝛼)] := 2𝑡𝑘

𝛼
(𝑡), where

𝑘
𝛼
(𝑡) = 2(𝛼 − 1)(3 − 𝛼)(1 + 𝑡

2
)
2−𝛼

− 𝛼
2
(2 − 𝛼). Then 𝑘󸀠

𝛼
(𝑡) =

4(𝛼 − 1)(3 − 𝛼)(2 − 𝛼)𝑡(1 + 𝑡
2
)
1−𝛼. If 𝛼 ≤ 2 or 𝛼 ≥ 3, we get

𝑘
󸀠

𝛼
(𝑡) ≥ 0, so 𝑘

𝛼
(𝑡) ≥ 𝑘

𝛼
(0). We notice that 𝑘

𝛼
(0) = 𝛼

3
−4𝛼
2
+

8𝛼 − 6 and 𝑘
𝛼
(0) is an increasing function with respect to 𝛼.

By Cardano’s formula for cubic equations, we know that 𝑘
𝛼
(0)

has one real root and two complex roots. If we set 𝛼
0
≈ 1.36

to be the real root of 𝑘
𝛼
(0), then 𝑘

𝛼
(𝑡) ≥ 𝑘

𝛼
(0) ≥ 0 as 𝛼 ≥ 𝛼

0
.
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So 𝑗󸀠(𝑡) = 2𝑡𝑘
𝛼
(𝑡) ≥ 0. That is 𝑗(𝑡) is a increasing function,

so 𝑗(𝑡) ≥ 𝑗(0) = 2(𝛼 − 1) > 0 as 𝛼 > 1. If 2 < 𝛼 < 3, we get
𝑘
󸀠

𝛼
(𝑡) < 0, so 𝑘

𝛼
(𝑡) is a decreasing function, but in this case

lim
𝑡→∞

𝑘
𝛼
(𝑡) = (𝛼 − 2)𝛼

2
> 0, so 𝑘

𝛼
(𝑡) ≥ 0 for all 𝑡 > 0. Thus

we have the same result as 𝛼 ≤ 2 or 𝛼 ≥ 3, which proves (i).
For (ii), by the definition of 𝛼

0
, we have

𝛼
2

0
𝑡
2
(1 + (𝛼

0
− 1) 𝑡
2
)

2(1 + 𝑡2)
3−𝛼0

+ 𝛼
2

0
𝑡2 (1 + 𝑡2)

≤ 𝛼
0
− 1, (11)

so

𝛼
2

0
𝑡
2
(1 + (𝛼

0
− 1) 𝑡
2
)

≤ 2 (𝛼
0
− 1) (1 + 𝑡

2
)
3−𝛼0

+ 𝛼
2

0
(𝛼
0
− 1) 𝑡
2
(1 + 𝑡

2
) .

(12)

We add (𝛼
0
−1)(𝛼

2
−𝛼
2

0
)𝑡
2
(1 + 𝑡
2
) to both sides of (12), where

𝛼 < 𝛼
0
. Then

𝛼
2

0
𝑡
2
+ 𝛼
2

0
(𝛼
0
− 1) 𝑡
4
+ (𝛼
0
− 1) (𝛼

2
− 𝛼
2

0
) (𝑡
2
+ 𝑡
4
)

≤ 2 (𝛼
0
− 1) (1 + 𝑡

2
)
3−𝛼0

+ (𝛼
0
− 1) 𝛼

2
𝑡
2
(1 + 𝑡

2
) ,

∴ (𝛼
2

0
+ (𝛼
0
− 1) (𝛼

2
− 𝛼
2

0
)) 𝑡
2
+ (𝛼
0
− 1) 𝛼

2
𝑡
4

≤ (𝛼
0
− 1) [2(1 + 𝑡

2
)
3−𝛼

+ 𝛼
2
𝑡
2
(1 + 𝑡

2
)] .

(13)

We notice that 𝛼2
0
+(𝛼
0
−1)(𝛼

2
−𝛼
2

0
) ≥ 𝛼
2. In fact, 𝛼2

0
+𝛼
0
𝛼
2
−

𝛼
3

0
− 𝛼
2
+ 𝛼
2

0
≥ 𝛼
2
⇔ 2(𝛼

2

0
− 𝛼
2
) + 𝛼
0
(𝛼
2
− 𝛼
2

0
) ≥ 0 ⇔

(𝛼
2

0
− 𝛼
2
)(2 − 𝛼

0
) > 0, and the last inequality is obvious. So

𝛼
2
𝑡
2
+ (𝛼
0
− 1) 𝛼

2
𝑡
4

≤ (𝛼
0
− 1) [2(1 + 𝑡

2
)
3−𝛼

+ 𝛼
2
𝑡
2
(1 + 𝑡

2
)]

(14)

∴ 𝛼
2
𝑡
2
+ (𝛼 − 1) 𝛼

2
𝑡
4

≤ (𝛼
0
− 1) [2(1 + 𝑡

2
)
3−𝛼

+ 𝛼
2
𝑡
2
(1 + 𝑡

2
)] ,

(15)

which implies that 𝑡𝑔󸀠(𝑡)/𝑔(𝑡) ≤ 𝛼
0
− 1.

3. Mountain Pass Geometry

In this section, we establish the geometric hypotheses of the
mountain pass theorem.

Lemma 3. There exist 𝜌
0
, 𝑎
0
> 0 such that 𝐽(V) ≥ 𝑎

0
for all

‖V‖ = 𝜌
0
.

Proof. Let

𝑄 (𝑥, 𝑡) := −
1

2
𝑉 (𝑥)

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨

2

+
1

𝑞 + 1

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑞+1

+
1

𝑝 + 1

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝+1

.

(16)

Then, by Lemma 2 and 𝑝 + 1 < 𝛼2
∗, we have

lim
𝑡→0

𝑄 (𝑥, 𝑡)

𝑡2
= lim
𝑡→0

[−
1

2
𝑉 (𝑥) (

𝐺
−1
(𝑡)

𝑡
)

2

+
1

𝑞 + 1
(
𝐺
−1
(𝑡)

𝑡
)

2

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑞−1

+
1

𝑝 + 1
(
𝐺
−1
(𝑡)

𝑡
)

2

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝−1

]

= −
1

2
𝑉 (𝑥) ,

lim
𝑡→∞

𝑄 (𝑥, 𝑡)

𝑡2
∗ = lim
𝑡→∞

[

[

−
1

2
𝑉 (𝑥)(

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝛼

𝑡
)

2/𝛼

1

𝑡2
∗
−2/𝛼

+
1

𝑞 + 1
(

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝛼

𝑡
)

(𝑞+1)/𝛼

1

𝑡2
∗
−(𝑞+1)/𝛼

+
1

𝑝 + 1
(

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝛼

𝑡
)

(𝑝+1)/𝛼

1

𝑡2
∗
−(𝑝+1)/𝛼

]

]

= 0.

(17)

Thus, for 𝜖 > 0 sufficiently small, there exists a constant 𝐶
𝜖
>

0 such that

𝑄 (𝑥, 𝑡) ≤ (−
1

2
𝑉 (𝑥) + 𝜖) 𝑡

2
+ 𝐶
𝜖|𝑡|
2
∗

. (18)

Then, we have

𝐽 (V) =
1

2
∫
R𝑁

|∇V|2𝑑𝑥 +
1

2
∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

𝑞 + 1
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑞+1

𝑑𝑥 −
1

𝑝 + 1

× ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑝+1

𝑑𝑥

≥
1

2
∫
R𝑁

|∇V|2𝑑𝑥 +
1

2
∫
R𝑁

𝑉 (𝑥) V2𝑑𝑥 − 𝜖

× ∫
R𝑁

V2𝑑𝑥 − 𝐶
𝜖
∫
R𝑁

V2
∗

𝑑𝑥

≥ 𝐶‖V‖2 − 𝐶‖V‖2
∗

.

(19)

Thus, by choosing 𝜌
0
small, we get the result when ‖V‖ = 𝜌

0
.

Lemma 4. There exists V ∈ 𝐻1(R𝑁) such that 𝐽(V) < 0.

Proof. Given 𝜙 ∈ 𝐶
∞

0
(R𝑁, [0, 1]) with supp𝜙 := 𝐵

1
, we will

prove that 𝐽(𝑠𝜙) → −∞ as 𝑠 → ∞, which will prove
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the result if we take V = 𝑠𝜙 with 𝑠 large enough. By the proof
of Lemma 2, we have 𝐺−1(𝑡) ≥ 𝐶𝑡

1/𝛼 as 𝑡 ≥ 1, so

𝐽 (𝑠𝜙) ≤
1

2
𝑠
2
∫
R𝑁

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
1

2
𝑠
2

× ∫
R𝑁

𝑉 (𝑥) 𝜙
2
𝑑𝑥 − 𝑠

(𝑝+1)/𝛼

× ∫
{|𝑠𝜙|≥1}

𝜙
(𝑝+1)/𝛼

𝑑𝑥 󳨀→ −∞,

(20)

as 𝑠 → ∞. Thus, we get the result.

4. Existence

In consequence of Lemmas 3 and 4 of the Ambrosetti-
Rabinowitz mountain passTheorem [13], see also [14–16], for
the constant

𝑐 = inf
𝛾∈Γ

sup
𝑡∈[0,1]

𝐽 (𝛾 (𝑡)) > 0, (21)

where Γ = {𝛾 ∈ 𝐶([0, 1],𝐻
1
(R𝑁)) : 𝛾(0) = 0, 𝛾(1) ̸= 0,

𝐽(𝛾(1)) < 0}, and there exists a Palais-Smale seq-uence at level
𝑐; that is, 𝐽(V

𝑛
) → 𝑐 and 𝐽󸀠(V

𝑛
) → 0 as 𝑛 → ∞.

Lemma 5. The Palais-Smale sequence {V
𝑛
} for 𝐽 is bounded in

𝐻
1
(R𝑁).

Proof. Since {V
𝑛
} ⊂ 𝐻

1
(R𝑁) satisfies

𝐽 (V
𝑛
) =

1

2
∫
R𝑁

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
1

2
∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

−
1

𝑝 + 1
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝+1

𝑑𝑥

−
1

𝑞 + 1
∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑞+1

𝑑𝑥 = 𝑐 + 𝑜 (1)

(22)

and for any 𝜓 ∈ 𝐶
∞

0
(R𝑁),

𝐽
󸀠
(V
𝑛
) 𝜓 = ∫

R𝑁

[

[

∇V
𝑛
∇𝜓 + 𝑉 (𝑥)

𝐺
−1
(V
𝑛
)

𝑔 (𝐺−1 (V
𝑛
))
𝜓

−

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑔 (𝐺−1 (V
𝑛
))
𝜓−

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑔 (𝐺−1 (V
𝑛
))
𝜓]

]

𝑑𝑥

= 𝑜 (1)
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 .

(23)

Now, we consider the function 𝐺
−1
(V
𝑛
)𝑔(𝐺
−1
(V
𝑛
)). Note by

Lemma 2 that
󵄨󵄨󵄨󵄨󵄨
∇ (𝐺
−1
(V
𝑛
) 𝑔 (𝐺

−1
(V
𝑛
)))

󵄨󵄨󵄨󵄨󵄨

= [1 +
𝐺
−1
(V
𝑛
)

𝑔 (𝐺−1 (V
𝑛
))
𝑔
󸀠
(𝐺
−1
(V
𝑛
))]

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

≤
1

2
𝑇 (𝛼)

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨 .

(24)

Combining Lemma 2,we have𝐺−1(V
𝑛
)𝑔(𝐺
−1
(V
𝑛
)) ∈ 𝐻

1
(R𝑁).

Thus, since 𝐶∞
0
(R𝑁) is dense in 𝐻

1
(R𝑁), by choosing 𝜓 =

𝐺
−1
(V
𝑛
)𝑔(𝐺
−1
(V
𝑛
)) in (23), we deduce that

𝑜 (1)
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩 = 𝐽
󸀠
(V
𝑛
) 𝐺
−1
(V
𝑛
) 𝑔 (𝐺

−1
(V
𝑛
))

= ∫
R𝑁

[(1 +
𝐺
−1
(V
𝑛
)

𝑔 (𝐺−1 (V
𝑛
))
𝑔
󸀠
(𝐺
−1
(V
𝑛
)))

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

2

+ 𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑞+1

−
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝+1

]𝑑𝑥

≤ ∫
R𝑁

[
1

2
𝑇 (𝛼)

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

2

+ 𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑞+1

−
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝+1

] 𝑑𝑥.

(25)

Therefore, by (22) and (25), we have

(𝑞 + 1) 𝐽 (V
𝑛
) − 𝐽
󸀠
(V
𝑛
) 𝐺
−1
(V
𝑛
) 𝑔 (𝐺

−1
(V
𝑛
))

≥ (
𝑞 + 1

2
−
1

2
𝑇 (𝛼))

× ∫
R𝑁

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
𝑞 − 1

2
∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ (1 −
𝑞 + 1

𝑝 + 1
)∫

R𝑁

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝+1

𝑑𝑥

≥ (
𝑞 + 1

2
−
1

2
𝑇 (𝛼))∫

R𝑁

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
𝑞 − 1

2

× ∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥.

(26)

Combining (22) and (26), we get ∫
R𝑁

|𝐺
−1
(V
𝑛
)|
𝑝+1

𝑑𝑥 is
bounded. To verify that {V

𝑛
} is bounded in 𝐻1(R𝑁) we start

splitting

∫
R𝑁

𝑉 (𝑥) V2
𝑛
𝑑𝑥 = ∫

{𝑥:|V𝑛(𝑥)|>1}
𝑉 (𝑥) V2

𝑛
𝑑𝑥

+ ∫
{𝑥:|V𝑛(𝑥)|≤1}

𝑉 (𝑥) V2
𝑛
𝑑𝑥.

(27)

By the proof of Lemma 2, we have𝐺−1(𝑡) ≥ 𝐶𝑡
1/𝛼, for all 𝑡 > 1

and 𝐺(1) = ∫
1

0
𝑔(𝑡)𝑑𝑡 ≥ ∫

1

0
𝑑𝑡 = 1. Therefore

∫
{𝑥:|V𝑛(𝑥)|>1}

𝑉 (𝑥) V2
𝑛
𝑑𝑥

≤ 𝐶∫
{𝑥:|V𝑛(𝑥)|>1}

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2𝛼

𝑑𝑥

≤ 𝐶∫
{𝑥:|V𝑛(𝑥)|>1}

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝+1

𝑑𝑥 ≤ 𝐶.

(28)
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Since 𝑔(𝑡) is increasing and𝐺(𝑡) = ∫
𝑡

0
𝑔(𝑠)𝑑𝑠 ≤ 𝑔(𝑡)𝑡, we have

∫
{𝑥:|V𝑛(𝑥)|≤1}

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≥
1

𝑔2 (𝐺−1 (1))
∫
{𝑥:|V𝑛(𝑥)|≤1}

𝑉 (𝑥) V2
𝑛
𝑑𝑥.

(29)

Hence {V
𝑛
} is bounded in𝐻1(R𝑁), and this proves Lemma 5.

Now we give the completion of the proof of Theorem 1.

Proof. First, we will prove that 𝐽󸀠(V) = 0. That is, V is a weak
solution of (9). To prove this, it suffices to show that

𝐽
󸀠
(V) 𝜓 = ∫

R𝑁

[

[

∇V∇𝜓 + 𝑉 (𝑥)
𝐺
−1
(V)

𝑔 (𝐺−1 (V))
𝜓

−

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑔 (𝐺−1 (V))
𝜓 −

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑔 (𝐺−1 (V))
𝜓]

]

𝑑𝑥 = 0,

∀𝜓 ∈ 𝐶
∞

0
(R
𝑁
) .

(30)

FromLemma 5, {V
𝑛
} is a bounded Palais-Smale sequence, and

there exists V ∈ 𝐻1(R𝑁) such that V
𝑛
⇀ V weakly in𝐻1(R𝑁).

By the Lebesgue dominated theorem, we have

𝐽
󸀠
(V
𝑛
) 𝜓 − 𝐽

󸀠
(V) 𝜓

= ∫
R𝑁

(∇V
𝑛
− ∇V) ∇𝜓𝑑𝑥

+ ∫
R𝑁

𝑉 (𝑥) [
𝐺
−1
(V
𝑛
)

𝑔 (𝐺−1 (V
𝑛
))
−

𝐺
−1
(V)

𝑔 (𝐺−1 (V))
]𝜓𝑑𝑥

− ∫
R𝑁

[

[

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑔 (𝐺−1 (V
𝑛
))
−

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑔 (𝐺−1 (V))
]

]

𝜓𝑑𝑥

− ∫
R𝑁

[

[

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑔 (𝐺−1 (V
𝑛
))
−

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V)

󵄨󵄨󵄨󵄨󵄨

𝑝

𝑔 (𝐺−1 (V))
]

]

𝜓𝑑𝑥 󳨀→ 0.

(31)

Hence, 𝐽󸀠(V) = 0. That is, V is a weak solution of (1).
Next, in order to complete the proof of Theorem 1, we

must show that V is nontrivial. By contradiction, we assume
V = 0. To prove this, we claim that, for all 𝑅 > 0,

lim
𝑛→∞

sup
𝑦∈R𝑁

∫
𝐵𝑅(𝑦)

V2
𝑛
𝑑𝑥 = 0 (32)

cannot occur. Suppose by contradiction that (32) occurs; that
is, {V
𝑛
} vanishes. Then by the Lions compactness lemma [16],

V
𝑛

→ 0 in 𝐿
𝑟
(R𝑁) for any 𝑟 ∈ (2, 2

∗
). By the proof of

Lemma 2, we get 𝐺−1(𝑡) : (√2𝑡)1/𝛼 as 𝑡 → ∞, so there exists

a suitable constant 𝐶 such that 𝐺−1(𝑡) ≤ 𝐶𝑡
1/𝛼. In addition,

since 𝐺(𝑡) ≤ 𝑔(𝑡)𝑡, we have

lim
𝑛→∞

∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑔 (𝐺−1 (V
𝑛
))
V
𝑛
𝑑𝑥

≤ lim
𝑛→∞

∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝+1

𝑑𝑥

≤ lim
𝑛→∞

𝐶∫
R𝑁

V(𝑝+1)/𝛼
𝑛

𝑑𝑥 = 0,

lim
𝑛→∞

∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑞+1

𝑑𝑥

= lim
𝑛→∞

∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝+1

𝑑𝑥 = 0,

(33)

and lim
𝑛→∞

∫
R𝑁
(|𝐺
−1
(V
𝑛
)|
𝑞
/𝑔(𝐺
−1
(V
𝑛
)))V
𝑛
𝑑𝑥 = 0 is obvious

since 𝑞 < 𝑝, which implies that

0 = lim
𝑛→∞

𝐽
󸀠
(V
𝑛
) V
𝑛

= lim
𝑛→∞

∫
R𝑁

[

[

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

2

+ 𝑉 (𝑥)
𝐺
−1
(V
𝑛
)

𝑔 (𝐺−1 (V
𝑛
))
V
𝑛

−

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑔 (𝐺−1 (V
𝑛
))
V
𝑛
−

󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑔 (𝐺−1 (V
𝑛
))
V
𝑛
]

]

𝑑𝑥

= lim
𝑛→∞

∫
R𝑁

[
󵄨󵄨󵄨󵄨∇V𝑛

󵄨󵄨󵄨󵄨

2

+ 𝑉 (𝑥)
𝐺
−1
(V
𝑛
)

𝑔 (𝐺−1 (V
𝑛
))
V
𝑛
]𝑑𝑥.

(34)

Then,

lim
𝑛→∞

∫
R𝑁

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑥 = 0, (35)

lim
𝑛→∞

∫
R𝑁

𝑉 (𝑥)
𝐺
−1
(V
𝑛
)

𝑔 (𝐺−1 (V
𝑛
))
V
𝑛
𝑑𝑥 = 0. (36)

On the other hand, by (25), we have

lim
𝑛→∞

∫
R𝑁

𝑉 (𝑥)
󵄨󵄨󵄨󵄨󵄨
𝐺
−1
(V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 = 0. (37)

Combining (35) and (37), we get a contradiction since
𝐽(V
𝑛
) → 𝑐 > 0. Thus, {V

𝑛
} does not vanish and there exist

𝑘, 𝑅 > 0 and {𝑦
𝑛
} ⊂ R𝑁 such that

lim
𝑛→∞

∫
𝐵𝑅(𝑦𝑛)

V2
𝑛
𝑑𝑥 ≥ 𝑘 > 0. (38)

Define Ṽ
𝑛
(𝑥) = V

𝑛
(𝑥 + 𝑦

𝑛
). We may assume that the

components of {𝑦
𝑛
} are integer multiples of the periods of

𝑉(𝑥). Since {V
𝑛
} is a Palais-Smale sequence for 𝐽 and 𝑉(𝑥) is

periodic in 𝑥
𝑖
, 1 ≤ 𝑖 ≤ 𝑁, {Ṽ

𝑛
} is also a Palais-Smale sequence

for 𝐽 with 𝐽󸀠(Ṽ) = 0 if Ṽ
𝑛
⇀ Ṽ in𝐻1(R𝑁). Since {Ṽ

𝑛
} does not

vanish, we have that Ṽ ̸= 0 is a nontrivial solution of (9).
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