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We investigate the blow-up phenomena for nonnegative solutions of porousmediumequationwithNeumann boundary conditions.
We find that the absorption and the nonlinear flux on the boundary have some competitions in the blow-up phenomena.

1. Introduction

In this paper, we are concerned with the blow-up of solutions
of porous medium equations with nonlinear flux on the
boundary. Consider

𝑢
𝑡
= Δ𝑢
𝑚

− 𝑓 (𝑢) , (𝑥, 𝑡) ∈ Ω × (0, 𝑡
∗
) , (1)

𝜕𝑢
𝑚

𝜕]
= 𝑔 (𝑢) , (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑡

∗
) , (2)

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω, (3)

where 𝑚 > 1, the nonnegative initial value 𝑢
0
(𝑥) ∈

𝐶(Ω)⋂𝐿
∞

(Ω), Ω is a bounded region in R𝑁 (𝑁 ≥ 2) with
the sufficiently smooth boundary 𝜕Ω, ] is the unit normal
vector on 𝜕Ω, 𝑡∗ is the blow-up time if blow-up occurs, or
else 𝑡
∗

= ∞.
The blow-up phenomena for the nonnegative solutions of

the heat equation with nonlinear sources (𝑚 = 1 and 𝑓(𝑢) =

−𝑢
𝑝 in (1)) in the whole spaceR𝑁 was first found by Fujita in

1966, see [1]. He proved the following results:
(a) if 1 < 𝑝 < 1 + (2/𝑁), then (1) has no global positive

solutions;
(b) if 𝑝 > 1 + (2/𝑁), then there exist global positive

solutions.
The critical case 𝑝 = 1 + (2/𝑁) was proved to belong

to the blow-up case in 1970’s by several authors [2–4]. In

1980, Galaktionov and others [5] considered the nonnegative
solutions of (1) (with 𝑚 > 1 and 𝑓(𝑢) = −𝑢

𝑝) in whole space
R𝑁. They found some results similar to those for the heat
equation (𝑚 = 1) as follows

(a) if 1 < 𝑝 < 𝑚+(2/𝑁), then (1) has no global solutions;
(b) if 𝑝 > 𝑚 + (2/𝑁), then there exist global positive

solutions that decay like 𝑡
−1/(𝑝−1).

In [6, 7], Galaktionov, Mochizuki and Suzuki, had also
revealed that the critical case 𝑝 = 𝑚 + (2/𝑁) belongs to the
blow-up case, see also [8, 9].

In 2010, Payne et al. [10] considered a semilinear heat
equation with nonlinear boundary condition (𝑚 = 1 in
(1)) and established conditions on nonlinearities sufficient
to guarantee that 𝑢(𝑥, 𝑡) exists for all time 𝑡 > 0 as well as
conditions on data forcing the solution 𝑢(𝑥, 𝑡) to blow up at
somefinite time 𝑡∗.When𝑁 = 1, the blow-up phenomena for
the solutions of the porous medium equation with nonlinear
flux on the boundary had also been studied by several authors
[11, 12]. For other interesting results on the large time behavior
on the solutions of the porous medium equation, we refer the
reader to papers [13–16].

Inspired by the above papers, we will study the blow-up
phenomena for the solutions of the porous medium equation
with nonlinear flux on the boundary in higher dimensional
space (𝑁 ≥ 2). In fact, we find that if the absorption is more
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powerful than the boundary flux, then the solutions of the
problem (1)–(3) exist for all time on a bounded star-shaped
region. On the other hand, if the boundary flux is more
powerful, then the solutions of the problem (1)–(3) blow-
up at a finite time. Moreover, we will give the upper-bound
estimates for the blow-up time.

The paper is organized as follows. In Section 2, we
concentrate our attention on the conditions of the global
existence for the solutions of the problem (1)–(3). Section 3
is devoted to the investigation of the blow-up phenomena for
the solutions of the problem (1)–(3).

2. Criterion for Global Existence

In this section, we investigate the global solutions of problem
(1)–(3). The main result of this section is the following
theorem.

Theorem 1. Let Ω be a bounded star-shaped region and
assume that 𝑞 > 𝑚 satisfy

2𝑞 < 𝑚 + 𝑝. (4)

If 𝑓 and 𝑔 satisfy the following conditions:

𝑓 (𝜉) ≥ 𝑘
1
𝜉
𝑝
, 𝜉 ≥ 0, (5)

0 ≤ 𝑔 (𝜉) ≤ 𝑘
2
𝜉
𝑞
, 𝜉 ≥ 0, (6)

where 𝑘
1
, 𝑘
2
are nonnegative constants, then the nonnegative

solutions 𝑢(𝑥, 𝑡) of the problem (1)–(3) do not blow up.

Proof. Let

Φ (𝑡) = ∫

Ω

𝑢
2
𝑑𝑥. (7)

Differentiating (7) and making use of (1), we obtain that

Φ
󸀠
(𝑡) = 2∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 = 2∫

Ω

𝑢 [Δ𝑢
𝑚

− 𝑓 (𝑢)] 𝑑𝑥. (8)

From the hypothesis (5), we get

Φ
󸀠
(𝑡) ≤ 2∫

Ω

𝑢 (Δ𝑢
𝑚

− 𝑘
1
𝑢
𝑝
) 𝑑𝑥. (9)

By (2), (6) and the divergence theorem, we have

∫

Ω

𝑢Δ𝑢
𝑚
𝑑𝑥 = ∫

𝜕Ω

𝑢∇𝑢
𝑚

⋅ ]𝑑𝑠 − ∫

Ω

∇𝑢 ⋅ ∇𝑢
𝑚
𝑑𝑥

= ∫

𝜕Ω

𝑢

𝜕𝑢
𝑚

𝜕]
𝑑𝑠 − ∫

Ω

∇𝑢 ⋅ ∇𝑢
𝑚
𝑑𝑥

≤ 𝑘
2
∫

𝜕Ω

𝑢
𝑞+1

𝑑𝑠 − ∫

Ω

∇𝑢 ⋅ ∇𝑢
𝑚
𝑑𝑥.

(10)

Here we used the identity div(𝑢∇𝑢
𝑚
) = 𝑢Δ𝑢

𝑚
+ ∇𝑢 ⋅ ∇𝑢

𝑚. By
the divergence theorem again, we get

∫

𝜕Ω

(𝑢
𝑞+1

𝑥) ⋅ ] 𝑑𝑠 = ∫

Ω

div (𝑢
𝑞+1

𝑥) 𝑑𝑥. (11)

Let

𝜌
0
= min
𝜕Ω

(𝑥 ⋅ ]) , 𝑑 = max
𝜕Ω

|𝑥| . (12)

Point out that 𝜌
0
is positive because Ω is star-shaped by

hypothesis. Notice also that

div (𝑢
𝑞+1

𝑥) = div [(𝑢
(𝑚+1)/2

)

2(𝑞+1)/(𝑚+1)

𝑥]

= 𝑁𝑢
𝑞+1

+

2 (𝑞 + 1)

𝑚 + 1

𝑢
(2𝑞−𝑚+1)/2

(𝑥 ⋅ ∇𝑢
(𝑚+1)/2

) .

(13)

We thus have

∫

𝜕Ω

𝑢
𝑞+1

𝑑𝑠 ≤

𝑁

𝜌
0

∫

Ω

𝑢
𝑞+1

𝑑𝑥 +

2𝑑 (𝑞 + 1)

𝜌
0
(𝑚 + 1)

× ∫

Ω

𝑢
(2𝑞−𝑚+1)/2 󵄨󵄨

󵄨
󵄨
󵄨
∇𝑢
(𝑚+1)/2󵄨󵄨

󵄨
󵄨
󵄨
𝑑𝑥.

(14)

On the another hand

∇𝑢 ⋅ ∇𝑢
𝑚

= ∇𝑢 ⋅ (𝑚𝑢
𝑚−1

∇𝑢)

= 𝑚(𝑢
(𝑚−1)/2

∇𝑢) (𝑢
(𝑚−1)/2

∇𝑢)

=

4𝑚

(𝑚 + 1)
2

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
(𝑚+1)/2󵄨󵄨

󵄨
󵄨
󵄨

2

.

(15)

Therefore, from (10)–(15), we have

Φ
󸀠
(𝑡) ≤ 2𝑘

2
∫

𝜕Ω

𝑢
𝑞+1

𝑑𝑠 − 2∫

Ω

∇𝑢 ⋅ ∇𝑢
𝑚
𝑑𝑥

− 2𝑘
1
∫

Ω

𝑢
𝑝+1

𝑑𝑥

≤

2𝑘
2
𝑁

𝜌
0

∫

Ω

𝑢
𝑞+1

𝑑𝑥

+

4𝑘
2
𝑑 (𝑞 + 1)

𝜌
0
(𝑚 + 1)

∫

Ω

𝑢
(2𝑞−𝑚+1)/2 󵄨󵄨

󵄨
󵄨
󵄨
∇𝑢
(𝑚+1)/2󵄨󵄨

󵄨
󵄨
󵄨
𝑑𝑥

−

8𝑚

(𝑚 + 1)
2
∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
(𝑚+1)/2󵄨󵄨

󵄨
󵄨
󵄨

2

𝑑𝑥 − 2𝑘
1
∫

Ω

𝑢
𝑝+1

𝑑𝑥.

(16)

We obtain from the Young inequality that

∫

Ω

𝑢
(2𝑞−𝑚+1)/2 󵄨󵄨

󵄨
󵄨
󵄨
∇𝑢
(𝑚+1)/2󵄨󵄨

󵄨
󵄨
󵄨
𝑑𝑥

≤

𝜎

2

∫

Ω

𝑢
2𝑞−𝑚+1

𝑑𝑥 +

1

2𝜎

∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
(𝑚+1)/2󵄨󵄨

󵄨
󵄨
󵄨

2

𝑑𝑥,

(17)

where

𝜎 =

𝑘
2
𝑑 (𝑞 + 1) (𝑚 + 1)

4𝑚𝜌
0

. (18)
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This 𝜎 leads to

4𝑘
2
𝑑 (𝑞 + 1)

𝜌
0
(𝑚 + 1)

∫

Ω

𝑢
(2𝑞−𝑚+1)/2 󵄨󵄨

󵄨
󵄨
󵄨
∇𝑢
(𝑚+1)/2󵄨󵄨

󵄨
󵄨
󵄨
𝑑𝑥

≤

8𝑚

(𝑚 + 1)
2
𝜎
2
∫

Ω

𝑢
2𝑞−𝑚+1

𝑑𝑥

+

8𝑚

(𝑚 + 1)
2
∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
(𝑚+1)/2󵄨󵄨

󵄨
󵄨
󵄨

2

𝑑𝑥.

(19)

Combining this with (16), we get

Φ
󸀠
(𝑡) ≤

2𝑘
2
𝑁

𝜌
0

∫

Ω

𝑢
𝑞+1

𝑑𝑥 +

8𝑚

(𝑚 + 1)
2
𝜎
2

× ∫

Ω

𝑢
2𝑞−𝑚+1

𝑑𝑥 − 2𝑘
1
∫

Ω

𝑢
𝑝+1

𝑑𝑥.

(20)

Let

𝛼 =

𝑞 − 𝑚

𝑝 − 𝑞

. (21)

Therefore, the hypotheses that 𝑞 > 𝑚 and 2𝑞 < 𝑚 + 𝑝 imply
that

0 < 𝛼 < 1. (22)

So, by Hölder’s inequality, we have

∫

Ω

𝑢
2𝑞−𝑚+1

𝑑𝑥 ≤ (∫

Ω

𝑢
𝑞+1

𝑑𝑥)

𝛼

(∫

Ω

𝑢
𝑝+1

𝑑𝑥)

1−𝛼

. (23)

For 𝜖 > 0, we obtain from (23) that

∫

Ω

𝑢
2𝑞−𝑚+1

𝑑𝑥 ≤ (𝜖∫

Ω

𝑢
𝑝+1

𝑑𝑥)

1−𝛼

(𝜖
(𝛼−1)/𝛼

∫

Ω

𝑢
𝑞+1

𝑑𝑥)

𝛼

≤ (1 − 𝛼) 𝜖 ∫

Ω

𝑢
𝑝+1

𝑑𝑥 + 𝛼𝜖
(𝛼−1)/𝛼

∫

Ω

𝑢
𝑞+1

𝑑𝑥.

(24)

Thus, inserting (24) in (20), we obtain

Φ
󸀠
(𝑡) ≤

2𝑘
2
𝑁

𝜌
0

∫

Ω

𝑢
𝑞+1

𝑑𝑥 +

8𝑚

(𝑚 + 1)
2
𝜎
2

× {(1 − 𝛼) 𝜖 ∫

Ω

𝑢
𝑝+1

𝑑𝑥 + 𝛼𝜖
(𝛼−1)/𝛼

∫

Ω

𝑢
𝑞+1

𝑑𝑥}

− 2𝑘
1
∫

Ω

𝑢
𝑝+1

𝑑𝑥

= (

2𝑘
2𝑁

𝜌
0

+

8𝑚𝜎
2
𝛼

(𝑚 + 1)
2
𝜖
(𝛼−1)/𝛼

)

× ∫

Ω

𝑢
𝑞+1

𝑑𝑥 + (

8𝑚𝜎
2
𝜖 (1 − 𝛼)

(𝑚 + 1)
2

− 2𝑘
1
)

× ∫

Ω

𝑢
𝑝+1

𝑑𝑥 = 𝑀
1
∫

Ω

𝑢
𝑞+1

𝑑𝑥 − 𝑀
2
∫

Ω

𝑢
𝑝+1

𝑑𝑥,

(25)

where

𝑀
1
=

2𝑘
2𝑁

𝜌
0

+

8𝑚𝜎
2
𝛼

(𝑚 + 1)
2
𝜖
(𝛼−1)/𝛼

> 0,

𝑀
2
= 2𝑘
1
−

8𝑚𝜎
2
𝜖 (1 − 𝛼)

(𝑚 + 1)
2

,

(26)

and let 𝜖 be sufficiently small to ensure 𝑀
2
> 0. By Hölder’s

inequality again, we have

∫

Ω

𝑢
𝑞+1

𝑑𝑥 ≤ (∫

Ω

𝑢
𝑝+1

𝑑𝑥)

(𝑞+1)/(𝑝+1)

|Ω|
(𝑝−𝑞)/(𝑝+1)

, (27)

where we assume throughout the paper that |Ω| = ∫
Ω

𝑑𝑥 is
the measure of Ω. Using (25) and (27), we obtain

Φ
󸀠
(𝑡) ≤ 𝑀

1
(∫

Ω

𝑢
𝑝+1

𝑑𝑥)

(𝑞+1)/(𝑝+1)

× {|Ω|
(𝑝−𝑞)/(𝑝+1)

−

𝑀
2

𝑀
1

(∫

Ω

𝑢
𝑝+1

𝑑𝑥)

(𝑝−𝑞)/(𝑝+1)

} .

(28)

Moreover, using Hölder’s inequality once more, we have

Φ (𝑡) = ∫

Ω

𝑢
2
𝑑𝑥 ≤ (∫

Ω

𝑢
𝑝+1

𝑑𝑥)

2/(𝑝+1)

|Ω|
(𝑝−1)/(𝑝+1)

, (29)

that is,

(∫

Ω

𝑢
𝑝+1

𝑑𝑥)

(𝑝−𝑞)/(𝑝+1)

≥ Φ(𝑡)
(𝑝−𝑞)/2

|Ω|
(1−𝑝)(𝑝−𝑞)/2(𝑝+1)

.

(30)

Finally, from (28) and (30), we obtain

Φ
󸀠
(𝑡) ≤ 𝑀

1
(∫

Ω

𝑢
𝑝+1

𝑑𝑥)

(𝑞+1)/(𝑝+1)

× {|Ω|
(𝑝−𝑞)/(𝑝+1)

−

𝑀
2

𝑀
1

Φ(𝑡)
(𝑝−𝑞)/2

|Ω|
(1−𝑝)(𝑝−𝑞)/2(𝑝+1)

} .

(31)

We deduced from (31) thatΦ(𝑡) ≤ max{Φ(0), (𝑀
2
/𝑀
1
)
2/(𝑞−𝑝)

|Ω|}. On the other hand, Φ(𝑡) is nonnegative function by
assumption. So thatΦ(𝑡) keeps bounded continuously under
the conditions given in Theorem 1, the solutions exsit for all
time 𝑡 > 0.That is, we find that the global solution exists when
the absorption ismore powerful than the nonlinear boundary
flux and this accomplishes the proof of Theorem 1.

3. Criterion for Blow-Up

In this section, we concentrate on the finite time 𝑡
∗ on which

blow-up occurs. We construct two auxiliary functions to
redefine 𝑓 and 𝑔, then the nonlinear boundary-flux is more
powerful than the absorption, and we obtain the following
result.
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Theorem 2. Suppose

0 ≤ 𝛼 ≤ 𝛽. (32)

Let

𝐹 (𝜉) = ∫

𝜉

0

𝑓 (𝜂) 𝑑𝜂 −

𝑚 (𝑚 − 1)

2

∫

𝜉

0

󵄨
󵄨
󵄨
󵄨
∇𝜂

󵄨
󵄨
󵄨
󵄨

2

𝜂
𝑚−2

𝑑𝜂,

𝐺 (𝜉) = ∫

𝜉

0

𝑔 (𝜂) 𝑑𝜂,

Ψ (𝑡) = 2∫

𝜕Ω

𝐺 (𝑢) 𝑑𝑠 − ∫

Ω

∇𝑢 ⋅ ∇𝑢
𝑚
𝑑𝑥 − 2∫

Ω

𝐹 (𝑢) 𝑑𝑥.

(33)

If

Ψ (0) > 0,

𝜉𝑓 (𝜉) ≤ 2 (1 + 𝛼) 𝐹 (𝜉) , 𝜉 ≥ 0,

𝜉𝑔 (𝜉) ≥ 2 (1 + 𝛽)𝐺 (𝜉) , 𝜉 ≥ 0,

(34)

then the solutions 𝑢(𝑥, 𝑡) of the problem (1)–(3) blow up at time
𝑡
∗

< 𝑇 with

𝑇 =

Φ (0)

2𝛽 (1 + 𝛽)Ψ (0)

. (35)

Here Φ(𝑡) is defined in (7). Moreover, if 𝛽 = 0, then 𝑇 = ∞.

Proof. Differentiating (7) and using the hypothesis (33), we
have

Φ
󸀠
(𝑡) = 2∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 = 2∫

Ω

𝑢 [Δ𝑢
𝑚

− 𝑓 (𝑢)] 𝑑𝑥

= 2∫

𝜕Ω

𝑢𝑔 (𝑢) 𝑑𝑠 − 2∫

Ω

∇𝑢 ⋅ ∇𝑢
𝑚
𝑑𝑥

− 2∫

Ω

𝑢𝑓 (𝑢) 𝑑𝑥 ≥ 2 (1 + 𝛽)Ψ (𝑡) .

(36)

Differentiating (33), we thus obtain from (15) that

Ψ
󸀠
(𝑡) = 2∫

𝜕Ω

𝑔 (𝑢) 𝑢
𝑡
𝑑𝑠 −

4𝑚

(𝑚 + 1)
2
∫

Ω

(

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
(𝑚+1)/2󵄨󵄨

󵄨
󵄨
󵄨

2

)

𝑡

𝑑𝑥

− 2∫

Ω

𝑓 (𝑢) 𝑢
𝑡
𝑑𝑥 + 𝑚 (𝑚 − 1) ∫

Ω

|∇𝑢|
2
𝑢
𝑚−2

𝑢
𝑡
𝑑𝑥.

(37)

Note the identity that

(

󵄨
󵄨
󵄨
󵄨
󵄨
∇𝑢
(𝑚+1)/2󵄨󵄨

󵄨
󵄨
󵄨

2

)

𝑡

=

(𝑚 + 1)
2
(𝑚 − 1)

4

× |∇𝑢|
2
𝑢
𝑚−2

𝑢
𝑡
+

(𝑚 + 1)
2

2

𝑢
𝑚−1

∇𝑢 ⋅ ∇𝑢
𝑡
.

(38)

So, from (37), we get

Ψ
󸀠
(𝑡) = 2∫

𝜕Ω

𝑔 (𝑢) 𝑢
𝑡
𝑑𝑠 − 2∫

Ω

∇𝑢
𝑡
⋅ ∇𝑢
𝑚
𝑑𝑥

− 2∫

Ω

𝑓 (𝑢) 𝑢
𝑡
𝑑𝑥.

(39)

Therefore,

Ψ
󸀠
(𝑡) = 2∫

Ω

𝑢
2

𝑡
𝑑𝑥 > 0. (40)

Here, we have used the identities

div (𝑢
𝑡
∇𝑢
𝑚
) = 𝑢
𝑡
Δ𝑢
𝑚

+ ∇𝑢
𝑡
⋅ ∇𝑢
𝑚
,

∫

Ω

∇𝑢
𝑡
⋅ ∇𝑢
𝑚
𝑑𝑥 = ∫

𝜕Ω

𝑢
𝑡
∇𝑢
𝑚

⋅ ] 𝑑𝑠 − ∫

Ω

𝑢
𝑡
Δ𝑢
𝑚
𝑑𝑥.

(41)

So, the hypothesisΨ(0) > 0 implies that for all 𝑡 ∈ (0, 𝑡
∗
), the

following inequality holds (𝑡) > 0:

Ψ (𝑡) > 0. (42)

By the Schwarz inequality, we have

(Φ
󸀠
(𝑡))

2

= 4(∫

Ω

𝑢𝑢
𝑡
𝑑𝑥)

2

≤ 2Φ (𝑡) Ψ
󸀠
(𝑡) . (43)

Together with (36), we have

Φ (𝑡)Ψ
󸀠
(𝑡) ≥

1

2

[Φ
󸀠
(𝑡)]

2

≥ (1 + 𝛽)Φ
󸀠
(𝑡) Ψ (𝑡) . (44)

That is,

(ΨΦ
−(1+𝛽)

)

󸀠

≥ 0. (45)

Integrating this from 0 to 𝑡, we obtain

Ψ (𝑡) (Φ (𝑡))
−(1+𝛽)

≥ Ψ (0) (Φ (0))
−(1+𝛽)

= 𝑀. (46)

Substituting (46) in (36) we obtain the differential inequality

Φ
󸀠
(𝑡) ≥ 2 (1 + 𝛽)Ψ ≥ 2 (1 + 𝛽)𝑀Φ

1+𝛽
. (47)

If 𝛽 > 0, then

(Φ (𝑡))
−𝛽

≤ (Φ (0))
−𝛽

− 2𝛽 (1 + 𝛽)𝑀𝑡. (48)

This leads to

𝑡
∗

≤ 𝑇 =

1

2𝛽 (1 + 𝛽)𝑀

(Φ (0))
−𝛽

=

Φ (0)

2𝛽 (1 + 𝛽)Ψ (0)

. (49)

If 𝛼 = 𝛽 = 0, then

Φ (𝑡) ≥ Φ (0) 𝑒
2𝑀𝑡 (50)

holds for 𝑡 > 0. This implies that 𝑡∗ = ∞ and completes the
proof of Theorem 2.
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