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This paper is concerned with an integer-valued random walk process with qth-order autocorrelation. Some limit distributions
of sums about the nonstationary process are obtained. The limit distribution of conditional least squares estimators of the
autoregressive coefficient in an auxiliary regression process is derived.The performance of the autoregressive coefficient estimators
is assessed through the Monte Carlo simulations.

1. Introduction

In many practical settings, one often encounters integer-
valued time series, that is, counts of events or objects at
consecutive points in time. Typical examples include daily
large transactions of Ericsson B, monthly number of ongoing
strikes in a particular industry, number of patients treated
each day in an emergency department, and daily counts
of new swine flu cases in Mexico. Since most traditional
representations of dependence become either impossible or
impractical; see Silva et al. [1], this area of research did
not attract much attention until the early 1980s. During
the last three decades, a number of time series models
have been developed for discrete-valued data. It has become
increasingly important to gain a better understanding of
the probabilistic properties and to develop new statistical
techniques for integer-valued time series.

The existing models can be broadly classified into two
types: thinning operator models and regression models.
Recently the thinning operator models have been greatly
developed; see a survey byWeiß [2]. A number of innovations
have been made to model various integer-valued time series.
For instance, Ferland et al. [3] proposed an integer-valued
GARCHmodel to study overdispersed counts, and Fokianos
and Fried [4], Weiß [5], and Zhu and Wang [6–8] made
further studies. Bu and McCabe [9] considered the lag-order

selection for a class of integer autoregressive models, while
Enciso-Mora et al. [10] discussed model selection for gen-
eral integer-valued autoregressive moving-average processes.
Silva et al. [1] addressed a forecasting problem in an INAR(1)
model. McCabe et al. [11] derived efficient probabilistic
forecasts of integer-valued random variables. Several other
models and thinning operators were proposed as well.

Random coefficient INARmodels were studied by Zheng
et al. [12, 13] and Gomes and e Castro [14], while random
coefficient INMA models were proposed by Yu et al. [15, 16].
Kachour and Yao [17] introduced a class of autoregressive
models for integer-valued time series using the rounding
operator. Kim andPark [18] proposed an extension of integer-
valued autoregressive INARmodels by using a signed version
of the thinning operator. The signed thinning operator was
developed by Zhang et al. [19] and Kachour and Truquet [20].

However, these models focus exclusively on stationary
processes, whereas nonstationary processes are often encoun-
tered in reality. Some studies have examined asymptotic
properties of nonstationary INAR models for nonstatinaory
time series. Hellström [21] focused on the testing of unit root
in INAR(1) models and provided small sample distributions
for the Dickey-Fuller test statistic. Ispány et al. [22] consid-
ered a nearly nonstationary INAR(1) process. It was shown
that the limiting distribution of the conditional least squares
estimator for the coefficient is normal. Györfi et al. [23]
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proposed a nonstationary inhomogeneous INAR(1) process,
where the autoregressive type coefficient slowly converges to
one. Kim and Park [18] considered a process called integer-
valued autoregressive process with signed binomial thinning
to handle a nonstationary integer-valued time series with
a large dispersion. Drost et al. [24] studied the asymptotic
properties of this “near unit root” situation. They found
that the limit experiment is Poissonian. Barczy et al. [25]
proved that the sequence of appropriately scaled random step
functions formed from an unstable INAR(p) process that
converges weakly towards a squared Bessel process.

However, to our knowledge, few effort has been devoted
to studying nonstationary INAR(1) models with an INMA
innovation. In this paper, we aim to fill in this gap in the
literature. We consider a new nonstatioary INAR(1) process
in which the innovation follows a qth-order moving average
process (NSINARMA(1, 𝑞)). Similar to the studies of nonsta-
tionary processes for continuous time series models, we need
to accommodate two stochastic processes, one as the “true
process” and the other as an “auxiliary regression process.” In
this paper, we study particularly statistical properties of the
conditional least squares (CLS) estimators of the autoregres-
sive coefficient in the auxiliary integer-valued autoregression
process, when the “true process” is nonstationary integer-
valued autoregression with an innovation which has an
integer-valued moving average part.

The rest of this paper is organized as follows. In
Section 2, our nonstationary thinning model with INMA(𝑞)
innovation is described, and some statistical properties are
established. In Section 3, the limiting distribution of the
autoregressive coefficient in the auxiliary regression process is
derived. In Section 4, simulation results for the CLS estimator
are presented. Finally, concluding remarks are made in
Section 5.

2. Definition and Properties of
the NSINARMA(1, 𝑞) Process

In this section, we consider a nonstationary INAR(1) process
which can be used to deal with the autocorrelation of
innovation process.

Definition 1. An integer-valued stochastic process {𝑋
𝑡
} is said

to be the NSINARMA(1, 𝑞) process if it satisfies the following
recursive equations:

𝑋
𝑡
= 𝑋
𝑡−1
+ 𝑢
𝑡
,

𝑢
𝑡
= 𝜀
𝑡
+ 𝜃
1
∘ 𝜀
𝑡−1
+ 𝜃
2
∘ 𝜀
𝑡−2
+ ⋅ ⋅ ⋅ + 𝜃

𝑞
∘ 𝜀
𝑡−𝑞
,

(1)

where {𝜀
𝑡
} is a sequence of i.i.d. nonnegative integer-valued

random variables with finite mean 𝜇
𝜀
< ∞, variance 𝜎2

𝜀
< ∞,

and probability mass function 𝑓
𝜀
. All counting series 𝜃

𝑘
∘ 𝜀
𝑡−𝑘

are mutually independent, and 𝜃
𝑘
∈ [0, 1], 𝑘 = 1, . . . , 𝑞. For

the sake of convenience, we suppose that the process starts
from zero, more precisely,𝑋

0
= 0.

It is easy to see the following results of𝑋
𝑡
hold.

Proposition 2. For 𝑡 ≥ 1, one has

(i) 𝐸(𝑋
𝑡
𝑋
𝑡−1
) = 𝑋

𝑡−1
+ (1 + 𝜃

1
+ ⋅ ⋅ ⋅ + 𝜃

𝑞
)𝜇
𝜀
,

(ii) 𝐸(𝑋
𝑡
) = 𝑡(1 + 𝜃

1
+ ⋅ ⋅ ⋅ + 𝜃

𝑞
)𝜇
𝜀
,

(iii) Var(𝑋
𝑡
𝑋
𝑡−1
) = 𝜇
𝜀
∑
𝑞

𝑘=1
𝜃
𝑘
(1 − 𝜃

𝑘
) + 𝜎2
𝜀
(1 + ∑

𝑞

𝑘=1
𝜃2
𝑘
),

(iv) Var(𝑋
𝑡
) = 𝑡(𝜇

𝜀
∑
𝑞

𝑘=1
𝜃
𝑘
(1 − 𝜃

𝑘
) + 𝜎2
𝜀
(1 + ∑

𝑞

𝑘=1
𝜃2
𝑘
)).

Proof. It is straightforward to get (i) to (iii). We prove (iv) by
induction with

Var (𝑋
𝑡
)

= Var (𝐸 (𝑋
𝑡
| 𝑋
𝑡−1
)) + 𝐸 (Var (𝑋

𝑡
| 𝑋
𝑡−1
))

= Var (𝑋
𝑡−1
) + (𝜇

𝜀

𝑞

∑
𝑘=1

𝜃
𝑘
(1 − 𝜃

𝑘
) + 𝜎
2

𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
2

𝑘
))

(2)

and the initial value𝑋
0
= 0.

3. Estimation Methods

Similar to the continuous time series process with unit roots,
we focus on the properties of the autoregressive coefficient
estimator in an auxiliary regression process when the true
process follows the nonstatioary INAR(1) process defined as
Definition 1.

Suppose that the auxiliary regression process 𝑋
𝑡
is an

INAR(1)model,

𝑋
𝑡
= 𝛼 ∘ 𝑋

𝑡−1
+ V
𝑡
, (3)

where {V
𝑡
} is a sequence of i.i.d. nonnegative integer-valued

random variables with finite mean 𝜇V and variance 𝜎2V . We
are interested in the properties of 𝛼 when the true process is
a nonstatioary INAR(1)model with moving average compo-
nents. In this paper, we consider a conditional least squares
(CLSs) estimator. An advantage of this method is that it does
not require specifying the exact family of distributions for the
innovations.

Let

𝑄 (𝛽) =

𝑇

∑
𝑡=1

(𝑋
𝑡
− 𝛼 ∘ 𝑋

𝑡−1
− 𝜇V)
2

, (4)

with 𝛽 = (𝛼, 𝜇V), be the CLS criterion function. The CLS
estimators of 𝛼 and 𝜇V are obtained by minimizing 𝑄 and are
given by

�̂� =
𝑇∑
𝑇

𝑡=1
𝑋
𝑡−1
𝑋
𝑡
− (∑
𝑇

𝑡=1
𝑋
𝑡−1
) (∑
𝑇

𝑡=1
𝑋
𝑡
)

𝑇∑
𝑇

𝑡=1
𝑋2
𝑡−1
− (∑
𝑇

𝑡=1
𝑋
𝑡−1
)
2

, (5)

𝜇V = 𝑇
−1
(

𝑇

∑
𝑡=1

𝑋
𝑡
− �̂�

𝑇

∑
𝑡=1

𝑋
𝑡−1
) . (6)

Similar to studying the unit root in continuous time
series, we are only concerned with statistical properties of
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the autoregressive coefficient estimator. For the nonstationary
of continuous-valued time series, we often need to examine
whether the characteristic polynomial of AR(1) process has
a unit root. Thus, we want to see if we can find the limiting
distribution of the autoregressive coefficient estimator. Let us
present a result that is needed later on.

Lemma 3. Suppose that 𝑍
𝑡
follows a random walk without

drift,

𝑍
𝑡
= 𝑍
𝑡−1
+ 𝑤
𝑡
, (7)

where𝑍
0
= 0 and {𝑤

𝑡
} is an i.i.d. sequence withmean zero and

variance 𝜎2
𝑤
> 0. Let “⇒” denote converges in distribution, and

let𝑊(𝑟) denote the standard Brownian motion. Then, one has
the following properties:

(i) 𝑇−1/2∑𝑇
𝑡=1
𝑤
𝑡
⇒ 𝜎
𝑤
𝑊(1),

(ii) 𝑇−1∑𝑇
𝑡=1
𝑍
𝑡−1
𝑤
𝑡
⇒ (1/2)𝜎2

𝑤
[𝑊2(1) − 1],

(iii) 𝑇−3/2∑𝑇
𝑡=1
𝑡𝑤
𝑡
⇒ 𝜎
𝑤
𝑊(1) − 𝜎

𝑤
∫
1

0
𝑊(𝑟)𝑑𝑟,

(iv) 𝑇−3/2∑𝑇
𝑡=1
𝑍
𝑡−1
⇒ 𝜎
𝑤
∫
1

0
𝑊(𝑟)𝑑𝑟,

(v) 𝑇−5/2∑𝑇
𝑡=1
𝑡𝑍
𝑡−1
⇒ 𝜎
𝑤
∫
1

0
𝑟𝑊(𝑟)𝑑𝑟,

(vi) 𝑇−2∑𝑇
𝑡=1
𝑍2
𝑡−1
⇒ 𝜎2
𝑤
∫
1

0
𝑊2(𝑟)𝑑𝑟,

(vii) 𝑇−(𝑛+1)∑𝑇
𝑡=1
𝑡𝑛 → 1/(𝑛 + 1), for 𝑛 = 0, 1, 2, . . ..

Proof. See Proposition 17.1 in Hamilton [26].

Theorem 4. If all the assumptions of Definition 1 hold, then
one has

(i) 𝑇−1∑𝑇
𝑡=1
𝜀
𝑡
(𝜃
𝑘
∘𝜀
𝑡−𝑘
) converges in mean square to 𝜃

𝑘
𝜇2
𝜀
,

for 𝑘 = 1, . . . , 𝑞,

(ii) 𝑇−1∑𝑇
𝑡=1
(𝜃
𝑖
∘ 𝜀
𝑡−𝑖
)(𝜃
𝑗
∘ 𝜀
𝑡−𝑗
) converges in mean square

to 𝜃
𝑖
𝜃
𝑗
𝜇2
𝜀
, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑞.

Proof. (i) First, we prove that 𝑇−1∑𝑇
𝑡=1
𝜀
𝑡
⋅ (𝜃
𝑘
∘ 𝜀
𝑡−𝑘
) is

integrable in mean square. Using the well-known results:

𝐸 (𝑋 (𝛽 ∘ 𝑌)) = 𝐸 (𝑋) 𝐸 (𝛽 ∘ 𝑌) = 𝛽𝐸 (𝑋) 𝐸 (𝑌) ,

𝐸(𝛽 ∘ 𝑌)
2

= 𝐸 (𝐸 ((𝛽 ∘ 𝑌)
2

| 𝑌))

= 𝛽 (1 − 𝛽) 𝐸 (𝑌) + 𝛽
2
𝐸 (𝑌
2
) ,

(8)

where𝑋 and 𝑌 are independent and 𝛽 ∈ [0, 1], we can derive
that

𝐸(𝑇
−1

𝑇

∑
𝑡=1

𝜀
𝑡
(𝜃
𝑘
∘ 𝜀
𝑡−𝑘
))

2

= 𝑇
−2
(

𝑇

∑
𝑡=1

𝐸 [𝜀
2

𝑡
(𝜃
𝑘
∘ 𝜀
𝑡−𝑘
)
2

]

+2 ∑
1≤𝑚<𝑛≤𝑇

𝐸 (𝜀
𝑚
⋅ 𝜃
𝑘
∘ 𝜀
𝑚−𝑘
) (𝜀
𝑛
⋅ 𝜃
𝑘
∘ 𝜀
𝑛−𝑘
))

= 𝑇
−2
(𝑇 ((𝜇

2

𝜀
+ 𝜎
2

𝜀
) (𝜃
𝑘
(1 − 𝜃

𝑘
) 𝜇
𝜀

+𝜃
2

𝑘
(𝜇
2

𝜀
+𝜎
2

𝜀
)))+(𝑇

2
−𝑇) 𝜃

2

𝑘
𝜇
4

𝜀
)

= 𝑇
−1
((𝜇
2

𝜀
+ 𝜎
2

𝜀
) (𝜃
𝑘
(1 − 𝜃

𝑘
) 𝜇
𝜀
+ 𝜃
2

𝑘
(𝜇
2

𝜀
+ 𝜎
2

𝜀
)))

+ (1 − 𝑇
−1
) 𝜃
2

𝑘
𝜇
4

𝜀

≤ ((𝜇
2

𝜀
+ 𝜎
2

𝜀
) (𝜃
𝑘
(1 − 𝜃

𝑘
) 𝜇
𝜀
+ 𝜃
2

𝑘
(𝜇
2

𝜀
+ 𝜎
2

𝜀
)))

+ 𝜃
2

𝑘
𝜇
4

𝜀
< ∞.

(9)

Therefore, 𝑇−1∑𝑇
𝑡=1
𝜀
𝑡
⋅ (𝜃
𝑘
∘ 𝜀
𝑡−𝑘
) is integrable.

Next, we show that it converges to 𝜃
𝑘
𝜇2
𝜀
in mean square.

In fact,

𝐸(𝑇
−1

𝑇

∑
𝑡=1

𝜀
𝑡
⋅ 𝜃
𝑘
∘ 𝜀
𝑡−𝑘
− 𝜃
𝑘
𝜇
2

𝜀
)

2

= 𝐸(𝑇
−1

𝑇

∑
𝑡=1

𝜀
𝑡
⋅ 𝜃
𝑘
∘ 𝜀
𝑡−𝑘
− 𝑇
−1

𝑇

∑
𝑡=1

𝐸(𝜀
𝑡
⋅ 𝜃
𝑘
∘ 𝜀
𝑡−𝑘
))

2

= 𝑇
−2

𝑇

∑
𝑡=1

(𝐸(𝜀
𝑡
⋅ 𝜃
𝑘
∘ 𝜀
𝑡−𝑘
)
2

− (𝐸 (𝜀
𝑡
⋅ 𝜃
𝑘
∘ 𝜀
𝑡−𝑘
))
2

)

+ 2𝑇
−2

𝑇−𝑘

∑
𝑡=𝑘+1

cov (𝜃
𝑘
∘ 𝜀
𝑡−𝑘
⋅ 𝜀
𝑡
, 𝜃
𝑘
∘ 𝜀
𝑡
⋅ 𝜀
𝑡+𝑘
)

= 𝑇
−1
((𝜇
2

𝜀
+ 𝜎
2

𝜀
) (𝜃
𝑘
(1 − 𝜃

𝑘
) 𝜇
𝜀

+ 𝜃
2

𝑘
(𝜇
2

𝜀
+ 𝜎
2

𝜀
)) − 𝜃

2

𝑘
𝜇
4

𝜀
)

+ 2𝑇
−2
(𝑇 − 2𝑘) 𝜃

2

𝑘
𝜇
2

𝜀
𝜎
2

𝜀
.

(10)

From the assumptions 𝜇
𝜀
< ∞, 𝜎2

𝜀
< ∞, and 𝜃

𝑘
∈ [0, 1],

we get lim
𝑇→∞

𝐸(𝑇−1∑
𝑇

𝑡=1
𝜀
𝑡
⋅ (𝜃
𝑘
∘ 𝜀
𝑡−𝑘
) − 𝜃
𝑘
𝜇2
𝜀
)
2

= 0.
This completes the proof for (i).
(ii) Without loss of generality, we assume that 1 ≤ 𝑖 < 𝑗 ≤

𝑞. We have
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𝐸(𝑇
−1

𝑇

∑
𝑡=1

(𝜃
𝑖
∘ 𝜀
𝑡−𝑖
) ⋅ (𝜃
𝑗
∘ 𝜀
𝑡−𝑗
))

2

= 𝑇
−2

𝑇

∑
𝑡=𝑗

𝐸((𝜃
𝑖
∘ 𝜀
𝑡−𝑖
) (𝜃
𝑗
∘ 𝜀
𝑡−𝑗
))
2

+ 2𝑇
−2

∑
1≤𝑚<𝑛≤𝑇

𝐸 ( (𝜃
𝑖
∘ 𝜀
𝑚−𝑖
)

⋅ (𝜃
𝑗
∘ 𝜀
𝑚−𝑗
) (𝜃
𝑖
∘ 𝜀
𝑛−𝑖
)

⋅ (𝜃
𝑗
∘ 𝜀
𝑛−𝑗
))

= 𝑇
−1
(𝜃
𝑖
(1 − 𝜃

𝑖
) 𝜇
𝜀
+ 𝜃
2

𝑖
(𝜇
2

𝜀
+ 𝜎
2

𝜀
))

× (𝜃
𝑗
(1 − 𝜃

𝑗
) 𝜇
𝜀
+ 𝜃
2

𝑗
(𝜇
2

𝜀
+ 𝜎
2

𝜀
))

+ 𝑇
−2 1

2
(𝑇 − 𝑗 − 1) (𝑇 − 𝑗) 𝜃

2

𝑖
𝜃
2

𝑗
𝜇
4

𝜀

≤ (𝜃
𝑖
(1 − 𝜃

𝑖
) 𝜇
𝜀
+ 𝜃
2

𝑖
(𝜇
2

𝜀
+ 𝜎
2

𝜀
))

× (𝜃
𝑗
(1 − 𝜃

𝑗
) 𝜇
𝜀
+ 𝜃
2

𝑗
(𝜇
2

𝜀
+ 𝜎
2

𝜀
))

+
1

2
𝜃
2

𝑖
𝜃
2

𝑗
𝜇
4

𝜀
< ∞.

(11)

Thus, 𝑇−1∑𝑇
𝑡=1
(𝜃
𝑖
∘ 𝜀
𝑡−𝑖
) ⋅ (𝜃
𝑗
∘ 𝜀
𝑡−𝑗
) is integrable.

Next, we prove that the limit holds lim
𝑇→∞

𝐸

(𝑇−1∑
𝑇

𝑡=1
(𝜃
𝑖
∘ 𝜀
𝑡−𝑖
) ⋅ (𝜃
𝑗
∘ 𝜀
𝑡−𝑗
) − 𝜃
𝑖
𝜃
𝑗
𝜇2
𝜀
)
2

= 0,

𝐸(𝑇
−1

𝑇

∑
𝑡=1

(𝜃
𝑖
∘ 𝜀
𝑡−𝑖
) ⋅ (𝜃
𝑗
∘ 𝜀
𝑡−𝑗
) − 𝜃
𝑖
𝜃
𝑗
𝜇
2

𝜀
)

2

= 𝐸(𝑇
−1

𝑇

∑
𝑡=1

(𝜃
𝑖
∘ 𝜀
𝑡−𝑖
) ⋅ (𝜃
𝑗
∘ 𝜀
𝑡−𝑗
)

−𝑇
−1

𝑇

∑
𝑡=1

𝐸 ((𝜃
𝑖
∘ 𝜀
𝑡−𝑖
) ⋅ (𝜃
𝑗
∘ 𝜀
𝑡−𝑗
)))

2

= 𝑇
−2

𝑇

∑
𝑡=1

Var ((𝜃
𝑖
∘ 𝜀
𝑡−𝑖
) (𝜃
𝑗
∘ 𝜀
𝑡−𝑗
))

+ 2𝑇
−2

∑
1≤𝑚<𝑛≤𝑇

cov ((𝜃
𝑖
∘ 𝜀
𝑚−𝑖
) ⋅ (𝜃
𝑗
∘ 𝜀
𝑚−𝑗
) ,

(𝜃
𝑖
∘ 𝜀
𝑛−𝑖
) ⋅ (𝜃
𝑗
∘ 𝜀
𝑛−𝑗
))

= 𝑇
−2

𝑇

∑
𝑡=1

Var ((𝜃
𝑖
∘ 𝜀
𝑡−𝑖
) (𝜃
𝑗
∘ 𝜀
𝑡−𝑗
))

+ 𝑇
−2

𝑇−𝑖+𝑗

∑
𝑘=max{1,1−𝑖+𝑗}

cov ((𝜃
𝑖
∘ 𝜀
𝑘−𝑖
) ⋅ (𝜃
𝑗
∘ 𝜀
𝑘−𝑗
) ,

(𝜃
𝑖
∘ 𝜀
𝑘−2𝑖+𝑗

) ⋅ (𝜃
𝑗
∘ 𝜀
𝑘−𝑖
))

= 𝑇
−1
(𝜃
𝑖
(1 − 𝜃

𝑖
) 𝜇
𝜀
+ 𝜃
2

𝑖
(𝜇
2

𝜀
+ 𝜎
2

𝜀
))

× (𝜃
𝑗
(1 − 𝜃

𝑗
) 𝜇
𝜀
+ 𝜃
2

𝑗
(𝜇
2

𝜀
+ 𝜎
2

𝜀
))

+ 𝑇
−2
((𝑇 − 𝑖 + 𝑗 −max {1, 1 − 𝑖 + 𝑗})

× 𝜃
2

𝑖
𝜃
𝑗
(1 − 𝜃

𝑗
) 𝜇
3

𝜀
+ 𝜃
2

𝑖
𝜃
2

𝑗
𝜇
2

𝜀
𝜎
2

𝜀
) .

(12)

By using 𝜇
𝜀
< ∞, 𝜎2

𝜀
< ∞, and 𝜃

𝑘
∈ [0, 1], with the above

arguments, we get

lim
𝑇→∞

𝐸(𝑇
−1

𝑇

∑
𝑡=1

(𝜃
𝑖
∘ 𝜀
𝑡−𝑖
)(𝜃
𝑗
∘ 𝜀
𝑡−𝑗
) − 𝜃
𝑖
𝜃
𝑗
𝜇
2

𝜀
)

2

= 0. (13)

Then, 𝑇−1∑𝑇
𝑡=1
(𝜃
𝑖
∘ 𝜀
𝑡−𝑖
)(𝜃
𝑗
∘ 𝜀
𝑡−𝑗
) converges in mean square

to 𝜃
𝑖
𝜃
𝑗
𝜇2
𝜀
.

Theorem 5. If the process𝑋
𝑡
is defined as in Definition 1, then

one has

(i) 𝑇−1∑𝑇
𝑡=1
𝑢
𝑡
⇒ 𝜇
𝜀
(1 + ∑

𝑞

𝑘=1
𝜃
𝑘
),

(ii) 𝑇−2∑𝑇
𝑡=1
𝑋
𝑡−1
𝑢
𝑡
⇒ (1/2)𝜇

2

𝜀
(1 + ∑

𝑞

𝑘=1
𝜃
𝑘
)
2,

(iii) 𝑇−2∑𝑇
𝑡=1
𝑡𝑢
𝑡
⇒ (1/2)𝜇

𝜀
(1 + ∑

𝑞

𝑘=1
𝜃
𝑘
),

(iv) 𝑇−2∑𝑇
𝑡=1
𝑋
𝑡−1
⇒ (1/2)𝜇

𝜀
(1 + ∑

𝑞

𝑘=1
𝜃
𝑘
),

(v) 𝑇−3∑𝑇
𝑡=1
𝑡𝑋
𝑡−1
⇒ (1/3)𝜇

𝜀
(1 + ∑

𝑞

𝑘=1
𝜃
𝑘
),

(vi) 𝑇−3∑𝑇
𝑡=1
𝑋2
𝑡−1
⇒ (1/3)𝜇2

𝜀
(1 + ∑

𝑞

𝑘=1
𝜃
𝑘
)
2.

Proof. Let 𝜀∗
𝑡
= 𝜀
𝑡
− 𝜇
𝜀
, 𝜀∗
𝑘,𝑡
= 𝜃
𝑘
∘ 𝜀
𝑡−𝑘
− 𝜃
𝑘
𝜇
𝜀
, 𝑘 = 1, . . . , 𝑞.

Then, we have themeans and variances of 𝜀∗
𝑡
and 𝜀∗
𝑘,𝑡
given

by

𝐸 (𝜀
∗

𝑡
) = 0, 𝜎

𝜀
∗

𝑡

= √Var (𝜀∗
𝑡
) = 𝜎
𝜀
,

𝐸 (𝜀
∗

𝑘,𝑡
) = 0, 𝜎

𝜀
∗

𝑘,𝑡

= √Var (𝜀∗
𝑘,𝑡
) = √𝜃

𝑘
(1 − 𝜃

𝑘
) 𝜇
𝜀
+ 𝜃2
𝑘
𝜎2
𝜀
.

(14)

It is easy to see that {𝜀∗
𝑡
} is a sequence of i.i.d. random

variables. For a fixed 𝑘, {𝜀∗
𝑘,𝑡
} is also a sequence of i.i.d. random

variables.
(i) Straightforward using the law of large numbers.
(ii) One has
𝑇

∑
𝑡=1

𝑋
𝑡−1
𝑢
𝑡
= 𝑋
0
𝑢
1
+ 𝑋
1
𝑢
2
+ ⋅ ⋅ ⋅ + 𝑋

𝑇−1
𝑢
𝑇

= 0 + 𝑢
1
𝑢
2
+ (𝑢
1
+ 𝑢
2
) 𝑢
3

+ ⋅ ⋅ ⋅ + (𝑢
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑇−1
) 𝑢
𝑇

= 𝑢
1
(𝑢
2
+ ⋅ ⋅ ⋅ + 𝑢

𝑇
) + 𝑢
2
(𝑢
3
+ ⋅ ⋅ ⋅ + 𝑢

𝑇
)

+ ⋅ ⋅ ⋅ + 𝑢
𝑇−1
𝑢
𝑇

= ∑
𝑖<𝑗

𝑢
𝑖
𝑢
𝑗
=
1

2
((

𝑇

∑
𝑡=1

𝑢
𝑡
)

2

−

𝑇

∑
𝑡=1

𝑢
2

𝑡
) .

(15)
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From the conclusion in (i), we get

(𝑇
−1

𝑇

∑
𝑡=1

𝑢
𝑡
)

2

⇒ 𝜇
2

𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)

2

. (16)

Note that

𝑇

∑
𝑡=1

𝑢
2

𝑡
=

𝑇

∑
𝑡=1

𝜀
2

𝑡
+

𝑞

∑
𝑘=1

(

𝑇

∑
𝑡=1

(𝜃
𝑘
∘ 𝜀
𝑡−𝑘
)
2

)𝜇
𝑋

+

𝑞

∑
𝑘=1

(

𝑇

∑
𝑡=1

𝜀
𝑡
⋅ (𝜃
𝑘
∘ 𝜀
𝑡−𝑘
))

+ 2 ∑
1≤𝑖<𝑗≤𝑞

(

𝑇

∑
𝑡=1

(𝜃
𝑖
∘ 𝜀
𝑡−𝑖
) ⋅ (𝜃
𝑗
∘ 𝜀
𝑡−𝑗
)) .

(17)

Using the law of large numbers, we obtain

𝑇
−1

𝑇

∑
𝑡=1

𝜀
2

𝑡
⇒ 𝐸(𝜀

2

𝑡
) = (𝜇

2

𝜀
+ 𝜎
2

𝜀
) ,

𝑇
−1

𝑇

∑
𝑡=1

(𝜃
𝑘
∘ 𝜀
𝑡−𝑘
)
2

⇒ 𝐸(𝜃
𝑘
∘ 𝜀
𝑡−𝑘
)
2

= 𝜃
𝑘
(1 − 𝜃

𝑘
) 𝜇
𝜀
+ 𝜃
2

𝑘
(𝜇
2

𝜀
+ 𝜎
2

𝜀
)

= 𝜎
2

𝜀
∗

𝑘,𝑡

, 𝑘 = 1, . . . , 𝑞.

(18)

Recall Theorem 4, where 𝑇−1∑𝑇
𝑡=1
𝜀
𝑡
(𝜃
𝑘
∘ 𝜀
𝑡−𝑘
) converges

in mean square to 𝜃
𝑘
𝜇2
𝜀
and 𝑇−1∑𝑇

𝑡=1
(𝜃
𝑖
∘ 𝜀
𝑡−𝑖
)(𝜃
𝑗
∘ 𝜀
𝑡−𝑗
)

converges in mean square to 𝜃
𝑖
𝜃
𝑗
𝜇2
𝜀
, and thus

𝑇
−1

𝑇

∑
𝑡=1

𝜀
𝑡
⋅ (𝜃
𝑘
∘ 𝜀
𝑡−𝑘
) ⇒ 𝜃

𝑘
𝜇
2

𝜀
,

𝑇
−1

𝑇

∑
𝑡=1

(𝜃
𝑖
∘ 𝜀
𝑡−𝑖
) (𝜃
𝑗
∘ 𝜀
𝑡−𝑗
) ⇒ 𝜃

𝑖
𝜃
𝑗
𝜇
2

𝜀
.

(19)

Then, we get 𝑇−1∑𝑇
𝑡=1
𝑢2
𝑡
⇒ (𝜇2

𝜀
+ 𝜎2
𝜀
) + ∑

𝑞

𝑘=1
𝜎2
𝜀
∗

𝑘,𝑡

+

2(∑
𝑞

𝑘=1
𝜃
𝑘
+ ∑
1≤𝑖<𝑗≤𝑞

𝜃
𝑖
𝜃
𝑗
)𝜇2
𝜀
.

Therefore,

𝑇
−2

𝑇

∑
𝑡=1

𝑋
𝑡−1
𝑢
𝑡
=
1

2
((𝑇
−1

𝑇

∑
𝑡=1

𝑢
𝑡
)

2

− 𝑇
−1
(𝑇
−1

𝑇

∑
𝑡=1

𝑢
2

𝑡
))

⇒
1

2
(𝜇
2

𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)

2

− 0)

=
1

2
𝜇
2

𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)

2

.

(20)

(iii) Morever,

𝑇
−2

𝑇

∑
𝑡=1

𝑡𝑢
𝑡
= 𝑇
−2

𝑇

∑
𝑡=1

𝑡 (𝜀
𝑡
+ 𝜃
1
∘ 𝜀
𝑡−1
+ ⋅ ⋅ ⋅ + 𝜃

𝑞
∘ 𝜀
𝑡−𝑞
)

= 𝑇
−2

𝑇

∑
𝑡=1

𝑡 (𝜀
∗

𝑡
+ 𝜇
𝜀
) +

𝑞

∑
𝑘=1

(𝑇
−2

𝑇

∑
𝑡=1

𝑡 (𝜀
∗

𝑘,𝑡
+ 𝜃
𝑘
𝜇
𝜀
))

= 𝑇
−1/2

(𝑇
−3/2

𝑇

∑
𝑡=1

𝑡𝜀
∗

𝑡
+

𝑞

∑
𝑘=1

(𝑇
−3/2

𝑇

∑
𝑡=1

𝑡𝜀
∗

𝑘,𝑡
))

+ 𝜇
𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)(𝑇

−2

𝑇

∑
𝑡=1

𝑡) .

(21)

From (iii) and (vii) of Lemma 3, we have

𝑇
−3/2

𝑇

∑
𝑡=1

𝑡𝜀
∗

𝑡
⇒ 𝜎
𝜀
∗

𝑡

𝑊(1) − 𝜎
𝜀
∗

𝑡

∫
1

0

𝑊(𝑟) 𝑑𝑟,

𝑇
−3/2

𝑇

∑
𝑡=1

𝑡𝜀
∗

𝑘,𝑡
⇒ 𝜎
𝜀
∗

𝑘,𝑡

𝑊(1) − 𝜎
𝜀
∗

𝑘,𝑡

∫
1

0

𝑊(𝑟) 𝑑𝑟,

𝑘 = 1, . . . , 𝑞,

𝑇
−2

𝑇

∑
𝑡=1

𝑡 →
1

2
.

(22)

Therefore, 𝑇−2∑𝑇
𝑡=1
𝑡𝑢
𝑡
⇒ 0 + 0 + (1/2)𝜇

𝜀
(1 + ∑

𝑞

𝑘=1
𝜃
𝑘
) =

(1/2)𝜇
𝜀
(1 + ∑

𝑞

𝑘=1
𝜃
𝑘
). Consider the following:

(iv)

𝑇
−2

𝑇

∑
𝑡=1

𝑋
𝑡−1
= 𝑇
−2

𝑇−1

∑
𝑡=1

(𝑇 − 𝑡) 𝑢
𝑡

= 𝑇
−2

𝑇−1

∑
𝑡=1

(𝑇 − 𝑡) (𝜀
𝑡
+ 𝜃
1
∘ 𝜀
𝑡−1
+ ⋅ ⋅ ⋅ + 𝜃

𝑞
∘ 𝜀
𝑡−𝑞
)

= 𝑇
−2

𝑇

∑
𝑡=1

(𝑇 − 𝑡) (𝜀
∗

𝑡
+ 𝜇
𝜀
)

+ 𝑇
−2

𝑞

∑
𝑘=1

𝑇

∑
𝑡=1

(𝑇 − 𝑡) (𝜀
∗

𝑘,𝑡
+ 𝜃
𝑘
𝜇
𝜀
)

= 𝑇
−2

𝑇

∑
𝑡=1

(𝑇 − 𝑡) 𝜀
∗

𝑡
+

𝑞

∑
𝑘=1

(𝑇
−2

𝑇

∑
𝑡=1

(𝑇 − 𝑡) 𝜀
∗

𝑘,𝑡
)

+ 𝜇
𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)(𝑇

−2

𝑇

∑
𝑡=1

(𝑇 − 𝑡))
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= 𝑇
−1

𝑇

∑
𝑡=1

𝜀
∗

𝑡
− 𝑇
−1/2

(𝑇
−3/2

𝑇

∑
𝑡=1

𝑡𝜀
∗

𝑡
)

+

𝑞

∑
𝑘=1

(𝑇
−1

𝑇

∑
𝑡=1

𝜀
∗

𝑘,𝑡
− 𝑇
−1/2

(𝑇
−3/2

𝑇

∑
𝑡=1

𝑡𝜀
∗

𝑘,𝑡
))

+ 𝜇
𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)(𝑇

−2

𝑇

∑
𝑡=1

(𝑇 − 𝑡)) .

(23)

By the law of large numbers, we have

𝑇
−1

𝑇

∑
𝑡=1

𝜀
∗

𝑡
⇒ 0,

𝑇
−1

𝑇

∑
𝑡=1

𝜀
∗

𝑘,𝑡
⇒ 0, 𝑘 = 1, . . . , 𝑞.

(24)

From the (iii) and (vii) of Lemma 3, we get

𝑇
−3/2

𝑇

∑
𝑡=1

𝑡𝜀
∗

𝑡
⇒ 𝜎
𝜀
∗

𝑡

𝑊(1) − 𝜎
𝜀
∗

𝑡

∫
1

0

𝑊(𝑟) 𝑑𝑟,

𝑇
−3/2

𝑇

∑
𝑡=1

𝑡𝜀
∗

𝑘,𝑡
⇒ 𝜎
𝜀
∗

𝑘,𝑡

𝑊(1) − 𝜎
𝜀
∗

𝑘,𝑡

∫
1

0

𝑊(𝑟) 𝑑𝑟,

𝑘 = 1, . . . , 𝑞,

𝑇
−2

𝑇

∑
𝑡=1

(𝑇 − 𝑡) →
1

2
.

(25)

Then, we have

𝑇
−2

𝑇

∑
𝑡=1

𝑋
𝑡−1
⇒ 0 + 0 + 0 +

1

2
𝜇
𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)

=
1

2
𝜇
𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
) .

(26)

(v) Elementary algebra gives us that

𝑋
𝑡
=

𝑡

∑
𝑘=1

𝑢
𝑘
=

𝑡

∑
𝑘=1

(𝜀
𝑘
+ 𝜃
1
∘ 𝜀
𝑘−1
+ ⋅ ⋅ ⋅ + 𝜃

𝑞
∘ 𝜀
𝑘−𝑞
)

=

𝑡

∑
𝑘=1

𝜀
∗

𝑘
+

𝑡

∑
𝑘=1

𝜀
∗

1,𝑘
+ ⋅ ⋅ ⋅ +

𝑡

∑
𝑘=1

𝜀
∗

𝑞,𝑘
+ (1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)𝜇
𝜀
𝑡

= 𝜉
𝑡
+

𝑞

∑
𝑖=1

𝜂
𝑖,𝑡
+ (1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)𝜇
𝜀
𝑡,

(27)

where 𝜉
𝑡
= ∑
𝑡

𝑘=1
𝜀∗
𝑘
, 𝜂
𝑖,𝑡
= ∑
𝑡

𝑘=1
𝜀∗
𝑖,𝑘
, 𝑖 = 1, . . . , 𝑞 and, as

assumed, 𝜉
0
= 𝜂
1,0
= ⋅ ⋅ ⋅ = 𝜂

𝑞,0
= 0. It is easy to see that

𝜉
𝑡
and 𝜂
𝑖,𝑡
, 𝑖 = 1, . . . , 𝑞, follow a randomwalk process without

drift. Using (v) and (vii) of Lemma 3, we get

𝑇
−5/2

𝑇

∑
𝑡=1

𝑡𝜉
𝑡−1
⇒ 𝜎
𝜀
∗

𝑡

∫
1

0

𝑟𝑊 (𝑟) 𝑑𝑟,

𝑇
−5/2

𝑇

∑
𝑡=1

𝑡𝜂
𝑖,𝑡−1

⇒ 𝜎
𝜀
∗

𝑖,𝑡

∫
1

0

𝑟𝑊 (𝑟) 𝑑𝑟, 𝑖 = 1, . . . , 𝑞,

𝑇
−3

𝑇

∑
𝑡=1

𝑡 (𝑡 − 1) →
1

3
.

(28)

Then, we get

𝑇
−3

𝑇

∑
𝑡=1

𝑡𝑋
𝑡−1
= 𝑇
−3

𝑇

∑
𝑡=1

𝑡𝜉
𝑡−1
+

𝑞

∑
𝑖=1

(𝑇
−3

𝑇

∑
𝑡=1

𝑡𝜂
𝑖,𝑡−1
)

+ (1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)𝜇
𝜀
(𝑇
−3

𝑇

∑
𝑡=1

𝑡 (𝑡 − 1))

= 𝑇
−1/2

(𝑇
−5/2

𝑇

∑
𝑡=1

𝑡𝜉
𝑡−1
)

+ 𝑇
−1/2

𝑞

∑
𝑖=1

(𝑇
−5/2

𝑇

∑
𝑡=1

𝑡𝜂
𝑖,𝑡−1
)

+ (1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)𝜇
𝜀
(𝑇
−3

𝑇

∑
𝑡=1

𝑡 (𝑡 − 1))

⇒ 0 + 0 +
1

3
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)𝜇
𝜀

=
1

3
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)𝜇
𝜀
.

(29)

(vi) One has

𝑇
−3

𝑇

∑
𝑡=1

𝑋
2

𝑡−1

= 𝑇
−3

𝑇

∑
𝑡=1

(𝜉
𝑡−1
+

𝑞

∑
𝑖=1

𝜂
𝑖,𝑡−1

+ (1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)𝜇
𝜀
(𝑡 − 1))

2

= 𝑇
−3

𝑇

∑
𝑡=1

𝜉
2

𝑡−1
+ 𝑇
−3

𝑞

∑
𝑖=1

𝑇

∑
𝑡=1

𝜂
2

𝑖,𝑡−1

+ (1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)

2

𝜇
2

𝜀
(𝑇
−3

𝑇

∑
𝑡=1

(𝑡 − 1)
2
)

+ 2

𝑞

∑
𝑖=1

(𝑇
−3

𝑇

∑
𝑡=1

𝜉
𝑡−1
𝜂
𝑖,𝑡−1
)

+2(1+

𝑞

∑
𝑘=1

𝜃
𝑘
)𝜇
𝜀
(𝑇
−3

𝑇

∑
𝑡=1

(𝜉
𝑡−1
+

𝑞

∑
𝑖=1

𝜂
𝑖,𝑡−1
) (𝑡−1)) .

(30)
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Firstly, we prove 𝑇−3∑𝑇
𝑡=1
(𝜉
𝑡−1
+ ∑
𝑞

𝑖=1
𝜂
𝑖,𝑡−1
)(𝑡 − 1) ⇒ 0.

By (iii) and (v) of Lemma 3, we have

𝑇
−3/2

𝑇

∑
𝑡=1

𝑡𝜀
∗

𝑡
⇒ 𝜎
𝜀
∗

𝑡

𝑊(1) − 𝜎
𝜀
∗

𝑡

∫
1

0

𝑊(𝑟) 𝑑𝑟,

𝑇
−5/2

𝑇

∑
𝑡=1

𝑡𝜉
𝑡−1
⇒ 𝜎
𝜀
∗

𝑡

∫
1

0

𝑟𝑊 (𝑟) 𝑑𝑟.

(31)

It is easy to see that 𝑇−2𝜉
𝑇−1

⇒ 0 and 𝑇−2𝜀∗
𝑇
⇒ 0.

Thus,

𝑇
−3

𝑇

∑
𝑡=1

(𝑡 − 1) 𝜉
𝑡−1

= 𝑇
−3

𝑇−1

∑
𝑡=1

𝑡𝜉
𝑡
= 𝑇
−3

𝑇−1

∑
𝑡=1

𝑡 (𝜉
𝑡−1
+ 𝜀
∗

𝑡
)

= 𝑇
−3

𝑇

∑
𝑡=1

𝑡 (𝜉
𝑡−1
+ 𝜀
∗

𝑡
) − 𝑇
−2
𝜉
𝑇−1

− 𝑇
−2
𝜀
∗

𝑇

= 𝑇
−1/2

(𝑇
−5/2

𝑇−1

∑
𝑡=1

𝑡𝜉
𝑡−1
) + 𝑇

−3/2
(𝑇
−3/2

𝑇−1

∑
𝑡=1

𝑡𝜀
∗

𝑡
)

− 𝑇
−2
𝜉
𝑇−1

− 𝑇
−2
𝜀
∗

𝑇
⇒ 0.

(32)

By using a similar approach, we get𝑇−3∑𝑇
𝑡=1
(𝑡−1)𝜂

𝑖,𝑡−1
⇒

0, 𝑖 = 1, . . . , 𝑞.
Therefore,

𝑇
−3

𝑇

∑
𝑡=1

(𝜉
𝑡−1
+

𝑞

∑
𝑖=1

𝜂
𝑖,𝑡−1
) (𝑡 − 1)

= 𝑇
−3

𝑇

∑
𝑡=1

(𝑡 − 1) 𝜉
𝑡−1

+

𝑞

∑
𝑖=1

(𝑇
−3

𝑇

∑
𝑡=1

(𝑡 − 1) 𝜂
𝑖,𝑡−1
) ⇒ 0 + 0 = 0.

(33)

Secondly, we prove that the limit 𝑇−3∑𝑇
𝑡=1
𝜉
𝑡−1
𝜂
𝑖,𝑡−1

⇒

0, 𝑖 = 1, . . . , 𝑞, holds.
Using the well-known inequality |𝜉

𝑡−1
𝜂
𝑖,𝑡−1
| ≤ (1/2)(𝜉2

𝑡−1
+

𝜂2
𝑖,𝑡−1
), we find that


𝑇
−3

𝑇

∑
𝑡=1

𝜉
𝑡−1
𝜂
𝑖,𝑡−1



≤ 𝑇
−3

𝑇

∑
𝑡=1

𝜉𝑡−1𝜂𝑖,𝑡−1


≤
1

2
(𝑇
−3

𝑇

∑
𝑡=1

𝜉
2

𝑡−1
+ 𝑇
−3

𝑇

∑
𝑡=1

𝜂
2

𝑖,𝑡−1
) .

(34)

From (vi) of Lemma 3, we get

𝑇
−2

𝑇

∑
𝑡=1

𝜉
2

𝑡−1
⇒ 𝜎

2

𝜀
∗

𝑡

∫
1

0

𝑊
2
(𝑟) 𝑑𝑟,

𝑇
−2

𝑇

∑
𝑡=1

𝜂
2

𝑖,𝑡−1
⇒ 𝜎

2

𝜀
∗

𝑖,𝑡

∫
1

0

𝑊
2
(𝑟) 𝑑𝑟.

(35)

The two limits imply that

𝑇
−3

𝑇

∑
𝑡=1

𝜉
2

𝑡−1
⇒ 0, 𝑇

−3

𝑇

∑
𝑡=1

𝜂
2

𝑖,𝑡−1
⇒ 0. (36)

By the Cauchy-Schwarz theorem, we obtain 𝑇−3∑𝑇
𝑡=1
𝜉
𝑡−1

𝜂
𝑖,𝑡−1

⇒ 0, 𝑖 = 1, . . . , 𝑞.
From (iii), (vi), and (vii) of Lemma 3, we obtain

𝑇
−2

𝑇

∑
𝑡=1

𝜉
2

𝑡−1
⇒ 𝜎

2

𝜀
∗

𝑡

∫
1

0

𝑊
2
(𝑟) 𝑑𝑟,

𝑇
−2

𝑇

∑
𝑡=1

𝜂
2

𝑖,𝑡−1
⇒ 𝜎

2

𝜀
∗

𝑖,𝑡

∫
1

0

𝑊
2
(𝑟) 𝑑𝑟,

𝑇
−3

𝑇

∑
𝑡=1

(𝑡 − 1)
2
→

1

3
,

𝑇
−3/2

𝑇

∑
𝑡=1

𝑡𝜀
∗

𝑡
⇒ 𝜎
𝜀
∗

𝑡

𝑊(1) − 𝜎
𝜀
∗

𝑡

∫
1

0

𝑊(𝑟) 𝑑𝑟,

𝑇
−3/2

𝑇

∑
𝑡=1

𝑡𝜀
∗

𝑖,𝑡
⇒ 𝜎
𝜀
∗

𝑖,𝑡

𝑊(1) − 𝜎
𝜀
∗

𝑖,𝑡

∫
1

0

𝑊(𝑟) 𝑑𝑟.

(37)

Therefore,𝑇−3∑𝑇
𝑡=1
𝑋2
𝑡−1
⇒ 0+0+(1/3)(1 + ∑

𝑞

𝑘=1
𝜃
𝑘
)
2

𝜇2
𝜀
+

0 + 0 = (1/3)(1 + ∑
𝑞

𝑘=1
𝜃
𝑘
)
2

𝜇2
𝜀
.

The proof of this theorem is complete.

Theorem 6. The conditional least squares estimators of 𝛼
given by (5) converges in distribution to constant 1, when the
true process is a nonstationary INAR(1)model with INMA(𝑞)
innovation.

Proof. We first derive the numerator limit of (5):

𝑇
−4
(𝑇

𝑇

∑
𝑡=1

𝑋
𝑡−1
𝑋
𝑡
− (

𝑇

∑
𝑡=1

𝑋
𝑡−1
)(

𝑇

∑
𝑡=1

𝑋
𝑡
))

= 𝑇
−3

𝑇

∑
𝑡=1

𝑋
𝑡−1
𝑋
𝑡
− (𝑇
−2

𝑇

∑
𝑡=1

𝑋
𝑡−1
)(𝑇

−2

𝑇

∑
𝑡=1

𝑋
𝑡
)

= 𝑇
−3

𝑇

∑
𝑡=1

𝑋
2

𝑡−1
+ 𝑇
−1
(𝑇
−2

𝑇

∑
𝑡=1

𝑋
𝑡−1
𝑢
𝑡
)

− (𝑇
−2

𝑇

∑
𝑡=1

𝑋
𝑡−1
)(𝑇

−2

𝑇

∑
𝑡=1

𝑋
𝑡
) .

(38)
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Table 1: Bias and MSE results of 𝛼 for NSINARMA(1,1) model.

CLS
𝜆 = 0.3 𝜆 = 5

Sample size 100 300 800 100 300 800
𝜃
1
= 0.1

Bias(𝛼) −2.3411𝑒 − 03 −1.3253𝑒 − 04 −2.4503𝑒 − 05 −9.7709𝑒 − 05 1.2879𝑒 − 05 9.7185𝑒 − 07

MSE(𝛼) 1.6443𝑒 − 03 5.2694𝑒 − 06 1.8012𝑒 − 07 2.8641𝑒 − 06 4.9761𝑒 − 08 2.8335𝑒 − 10

𝜃
1
= 0.4

Bias(𝛼) −1.8837𝑒 − 03 −6.2751𝑒 − 05 −1.9073𝑒 − 05 −9.3204𝑒 − 05 1.1088𝑒 − 05 2.1430𝑒 − 06

MSE(𝛼) 1.0645𝑒 − 03 1.1813𝑒 − 06 1.0913𝑒 − 07 2.6061𝑒 − 06 3.6884𝑒 − 08 1.3778𝑒 − 09

𝜃
1
= 0.7

Bias(𝛼) −1.3353𝑒 − 03 −8.5133𝑒 − 05 −1.3719𝑒 − 05 −7.6709𝑒 − 05 2.1019𝑒 − 05 2.5092𝑒 − 06

MSE(𝛼) 5.3488𝑒 − 04 2.1743𝑒 − 06 5.6460𝑒 − 08 1.7653𝑒 − 06 1.3254𝑒 − 07 1.8889𝑒 − 09

𝜃
1
= 0.9

Bias(𝛼) −4.6077𝑒 − 04 −6.1094𝑒 − 05 6.5116𝑒 − 06 −2.1260𝐸 − 04 1.8841𝐸 − 05 1.3932𝐸 − 06

MSE(𝛼) 6.3694𝑒 − 05 1.1197𝑒 − 06 1.2720𝑒 − 08 1.3559𝐸 − 05 1.0649𝐸 − 07 5.8233𝐸 − 10

By the (ii), (iv), and (vi) of Theorem 5, we have

𝑇
−2

𝑇

∑
𝑡=1

𝑋
𝑡−1
𝑢
𝑡
⇒

1

2
𝜇
2

𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)

2

,

𝑇
−2

𝑇

∑
𝑡=1

𝑋
𝑡−1
⇒

1

2
𝜇
𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
) ,

𝑇
−2

𝑇

∑
𝑡=1

𝑋
𝑡
= 𝑇
−2

𝑇

∑
𝑡=1

𝑋
𝑡−1
+ 𝑇
−1
(𝑇
−1

𝑇

∑
𝑡=1

𝑢
𝑡
)

⇒
1

2
𝜇
𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
) ,

𝑇
−3

𝑇

∑
𝑡=1

𝑋
2

𝑡−1
⇒

1

3
𝜇
2

𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)

2

.

(39)

Then, we get

𝑇
−4
(𝑇

𝑇

∑
𝑡=1

𝑋
𝑡−1
𝑋
𝑡
− (

𝑇

∑
𝑡=1

𝑋
𝑡−1
)(

𝑇

∑
𝑡=1

𝑋
𝑡
))

⇒
1

3
𝜇
2

𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)

2

+ 0 − (
1

2
𝜇
𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
))

2

=
1

12
𝜇
2

𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)

2

.

(40)

Similarly, we have the denominator limit of (5):

𝑇
−4
(𝑇

𝑇

∑
𝑡=1

𝑋
2

𝑡−1
− (

𝑇

∑
𝑡=1

𝑋
𝑡−1
)

2

)

⇒
1

12
𝜇
2

𝜀
(1 +

𝑞

∑
𝑘=1

𝜃
𝑘
)

2

.

(41)

Using the Slutsky theorem, we obtain

�̂� =
𝑇∑
𝑇

𝑡=1
𝑋
𝑡−1
𝑋
𝑡
− (∑
𝑇

𝑡=1
𝑋
𝑡−1
) (∑
𝑇

𝑡=1
𝑋
𝑡
)

𝑇∑
𝑇

𝑡=1
𝑋2
𝑡−1
− (∑
𝑇

𝑡=1
𝑋
𝑡−1
)
2

=
𝑇
−4
(𝑇∑
𝑇

𝑡=1
𝑋
𝑡−1
𝑋
𝑡
− (∑
𝑇

𝑡=1
𝑋
𝑡−1
) (∑
𝑇

𝑡=1
𝑋
𝑡
))

𝑇−4 (𝑇∑
𝑇

𝑡=1
𝑋2
𝑡−1
− (∑
𝑇

𝑡=1
𝑋
𝑡−1
)
2

)

⇒
(1/12) 𝜇

2

𝜀
(1 + ∑

𝑞

𝑘=1
𝜃
𝑘
)
2

(1/12) 𝜇2
𝜀
(1 + ∑

𝑞

𝑘=1
𝜃
𝑘
)
2
= 1.

(42)

This completes the proof.

4. Simulation Study

To study the empirical performance of the CLS estimator
of the autoregressive coefficient for an auxiliary regression
process, while the true process is NSINARMA(1, 𝑞) process,
a brief simulation study is conducted.

Consider the true process,

𝑋
𝑡
= 𝑋
𝑡−1
+ 𝑢
𝑡
,

𝑢
𝑡
= 𝜀
𝑡
+ 𝜃
1
∘ 𝜀
𝑡−1
+ ⋅ ⋅ ⋅ + 𝜃

𝑞
∘ 𝜀
𝑡−𝑞
,

(43)
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Table 2: Bias and MSE results of 𝛼 for NSINARMA(1,2) model.

CLS
𝜆 = 0.3 𝜆 = 5

Sample size 100 300 800 100 300 800
(𝜃
1
, 𝜃
2
) = (0.1, 0.1)

Bias(𝛼) −9.8012𝑒 − 04 −8.0314𝑒 − 05 −1.2149𝑒 − 05 1.6030𝑒 − 05 −2.6319𝑒 − 05 −7.9892𝑒 − 06

MSE(𝛼) 2.8819𝑒 − 04 1.9351𝑒 − 06 4.4280𝑒 − 08 7.7085𝑒 − 07 2.0781𝑒 − 07 1.9148𝑒 − 08

(𝜃
1
, 𝜃
2
) = (0.1, 0.6)

Bias(𝛼) −9.0876𝑒 − 04 −1.4515𝑒 − 04 3.6936𝑒 − 06 −4.5047𝑒 − 05 −3.6633𝑒 − 05 −1.7588𝑒 − 06

MSE(𝛼) 2.4775𝑒 − 04 6.3203𝑒 − 06 4.0928𝑒 − 09 6.0877𝑒 − 07 4.0259𝑒 − 07 9.2803𝑒 − 10

(𝜃
1
, 𝜃
2
) = (0.2, 0.3)

Bias(𝛼) −5.8582𝑒 − 04 −8.2571𝑒 − 05 −1.1720𝑒 − 05 4.7792𝑒 − 05 −2.2042𝑒 − 05 −7.8901𝑒 − 06

MSE(𝛼) 1.0296𝑒 − 04 2.0454𝑒 − 06 4.1208𝑒 − 08 6.8522𝑒 − 07 1.4575𝑒 − 07 1.8676𝑒 − 08

(𝜃
1
, 𝜃
2
) = (0.3, 0.4)

Bias(𝛼) −1.0548𝑒 − 03 −1.3550𝑒 − 04 −2.1872𝑒 − 06 −6.0986𝑒 − 05 −2.1873𝑒 − 05 −1.6658𝑒 − 08

MSE(𝛼) 3.3379𝑒 − 04 5.5082𝑒 − 06 1.4352𝑒 − 09 1.1158𝑒 − 06 1.4353𝑒 − 07 8.3243𝑒 − 14

(𝜃
1
, 𝜃
2
) = (0.4, 0.4)

Bias(𝛼) −8.9921𝑒 − 04 −1.4099𝑒 − 04 −8.5553𝑒 − 07 −6.6568𝑒 − 05 −2.2816𝑒 − 05 1.0669𝑒 − 07

MSE(𝛼) 2.4257𝑒 − 04 5.9633𝑒 − 06 2.1958𝑒 − 10 1.3294𝑒 − 06 1.5617𝑒 − 07 3.4148𝑒 − 12

Table 3: Bias and MSE results of 𝛼 for NSINARMA(1,3) model.

CLS
𝜆 = 0.3 𝜆 = 5

Sample size 100 300 800 100 300 800
(𝜃
1
, 𝜃
2
, 𝜃
3
) = (0.1, 0.1, 0.1)

Bias(𝛼) −1.3742𝑒 − 03 −1.4097𝑒 − 04 −3.3819𝑒 − 05 −4.4965𝑒 − 05 4.5510𝑒 − 06 −5.1844𝑒 − 06

MSE(𝛼) 5.6651𝑒 − 04 5.9616𝑒 − 06 3.4312𝑒 − 07 6.0655𝑒 − 07 6.2135𝑒 − 08 8.0635𝑒 − 09

(𝜃
1
, 𝜃
2
, 𝜃
3
) = (0.1, 0.2, 0.4)

Bias(𝛼) −2.0218𝑒 − 03 −9.3641𝑒 − 05 8.2901𝑒 − 06 −1.4846𝑒 − 04 −8.0926𝑒 − 06 −8.4087𝑒 − 07

MSE(𝛼) 1.2263𝑒 − 03 2.6306𝑒 − 06 2.0618𝑒 − 08 6.6121𝑒 − 06 1.9647𝑒 − 08 2.1212𝑒 − 10

(𝜃
1
, 𝜃
2
, 𝜃
3
) = (0.2, 0.1, 0.2)

Bias(𝛼) −1.0825𝑒 − 03 −1.1218𝑒 − 04 −3.0775𝑒 − 05 −2.0846𝑒 − 05 7.8758𝑒 − 06 −4.3565𝑒 − 06

MSE(𝛼) 3.5154𝑒 − 04 3.7751𝑒 − 06 2.8413𝑒 − 07 1.3037𝑒 − 07 1.8608𝑒 − 08 5.6936𝑒 − 09

(𝜃
1
, 𝜃
2
, 𝜃
3
) = (0.3, 0.3, 0.3)

Bias(𝛼) −1.6766𝑒 − 03 −1.3506𝑒 − 04 8.8713𝑒 − 06 −1.3902𝑒 − 04 −2.6374𝑒 − 06 −2.3441𝑒 − 07

MSE(𝛼) 8.4330𝑒 − 04 5.4723𝑒 − 06 2.3610𝑒 − 08 5.7980𝑒 − 06 2.0868𝑒 − 09 1.6485𝑒 − 11

(𝜃
1
, 𝜃
2
, 𝜃
3
) = (0.5, 0.3, 0.1)

Bias(𝛼) −1.5676𝑒 − 03 −1.3084𝑒 − 04 7.6103𝑒 − 06 −1.5146𝑒 − 04 −2.5173𝑒 − 06 −2.9431𝑒 − 07

MSE(𝛼) 7.3722𝑒 − 04 5.1355𝑒 − 06 1.7375𝑒 − 08 6.8819𝑒 − 06 1.9010𝑒 − 09 2.5985𝑒 − 11

where {𝜀
𝑡
} is an an i.i.d. sequence of the Poisson random

variables with parameter 𝜆 = 0.3, 5. The lag orders and
coefficient parameters values considered are

(i) for 𝑞 = 1, 𝜃
1
∈ {0.1, 0.4, 0.7, 0.9},

(ii) for 𝑞 = 2, (𝜃
1
, 𝜃
2
) ∈ {(0.1, 0.1), (0.2, 0.3), (0.1, 0.6),

(0.3, 0.4), (0.4, 0.4)},
(iii) for 𝑞 = 3, (𝜃

1
, 𝜃
2
, 𝜃
3
) ∈ {(0.1, 0.1, 0.1), (0.1, 0.2, 0.4),

(0.2, 0.1, 0.2), (0.3, 0.3, 0.3), (0.5, 0.3, 0.1)}.
The auxiliary regression process is an INAR(1) process,

𝑋
𝑡
= 𝛼 ∘ 𝑋

𝑡−1
+ V
𝑡
, (44)

where {V
𝑡
} is a sequence of i.i.d. nonnegative integer-valued

random variables. This simulation study is conducted to
indicate the large sample performances of the CLS estimator
of 𝛼 when the true process is NSINARMA(1, 𝑞) process. In
the simulation, we use 𝑋

0
= 𝜀
0
= 𝜀
−1
= ⋅ ⋅ ⋅ = 𝜀

−𝑞
= 0. The

study is based on 300 replications. For each replication, we
estimate the model parameter 𝛼 and calculate the bias and
MSE of the parameter estimates. The sample size is varied to
be 𝑇 = 100, 300, and 800.

From the results reported in Tables 1, 2, and 3, we can
see that CLS is a good estimation method.The estimates’ bias
and MSE values are all small. Most of the biases are negative.
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All the bias and MSE values decrease with an increasing
sample size 𝑇. When the coefficient 𝜃 of innovation process
and the sample size are fixed, we find that the absolute values
of bias and MSE become smaller with an increasing 𝜆. When
the sample size is increased, the MSE and bias values both
converge to zero. For example, the smallest bias and MSE
values in the simulation showed in Table 1 are 9.7185𝑒 − 07
and 2.8335𝑒 − 10. This illustrates that the CLS estimator �̂�
given by (5) converges to a constant.

5. Conclusions

In this paper, we have proposed a nonstationary INAR
model for nonstationary integer-valued data. We have used
an extended structure of the innovation process to allow
the innovation with correlation to follow an INMA(𝑞)
process. We have presented the moments and conditional
moments for this model, proposed a CLS estimator for
the autoregressive coefficient in auxiliary regression model,
and obtained the asymptotic distribution for the estimator
of coefficient. The simulation results indicate that our CLS
method produces good estimates for large samples.
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