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We propose an ecoepidemiological prey predator model, where selective harvest effort on predator population is considered.
Vaccination and taxation are introduced as control instruments, which are utilized to control number of susceptible prey population
and protect predator population from overexploitation, respectively. Conditions which influence nonnegativity and boundedness
of solutions are studied. Global stability analysis around disease-free equilibrium is discussed based on robust Bendixson
criterion, which is theoretically beneficial to studying coexistence and interaction mechanism of population within harvested
ecoepidemiological system. By using Pontryagin’s maximum principle, an optimal control strategy is derived to maximize the total
discounted net economic revenue to society as well as protect prey population from infectious disease. Numerical simulations are
carried out to show the consistency with theoretical analysis.

1. Introduction

In the natural world, prey predator ecosystem with infectious
disease is a well-studied ecological phenomenon. Generally,
species within prey predator ecosystem does not exist alone.
While species spreads the disease, it also competes with the
other species for space or food, or is predated by other
species. Kermack-Mc kendrick made the pioneering work on
(susceptible-infective-removal-susceptible) SIRS [1]. Along
with the line of this research, mathematical epidemiology has
become an important subject of research in recent decades,
where the evolution of a disease which gets transmitted
upon contact is described. In the work done by Hadeler
and Freedman [2], a prey predator model where the prey
is infected by a parasite and in turn infects the predator
with the parasite. Thereafter, plenty of papers were made to
investigate prey predator system with infection in the prey.
Arino et al. [3, 4] observed that the introduction of an infected
population in the classical ratio-dependent predator-prey

model may act as a biological control to save the pop-
ulation from extinction. Hethcote et al. [5, 6] considered
the effects of disease-induced mortality or disease-reduced
reproduction in regulating natural populations, decreasing
their population sizes, reducing their natural fluctuations, or
causing destabilization of equilibria into oscillations of the
population states. In the work done by Haque and Venturino
[7], the mixed terms of the underlying demographic model
describing the mass action law of populations affect each
other, and Holling-type functions are taken into account
[8]. In the above mentioned work, by performing dynamic
analysis with the help of linear approximation to model
systems that consist of nonlinear equations, it concludes that
it is of importance from ecological and mathematical points
of view to study ecological systems subject to epidemiological
factors.

Recently, an eco-epidemiological model consisting of
susceptible prey, infected prey, and predator is proposed and
analyzed in [9]. It is assumed that the predation functional
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response (trophic function) allowsHolling type II (Michaelis-
Menten kinetics). From the above assumptionsmodel system
can be expressed as follows:

d𝑠 (𝑡)
d𝑡

= 𝑟𝑠 (𝑡) (1 −

𝑠 (𝑡) + 𝑖 (𝑡)

𝑘

) −

𝑎
1
𝑠 (𝑡) 𝑝 (𝑡)

1 + 𝑏
1
𝑠 (𝑡) + 𝑏

2
𝑖 (𝑡)

− 𝑐𝑠 (𝑡) 𝑖 (𝑡) ,

d𝑖 (𝑡)
d𝑡

= 𝑐𝑠 (𝑡) 𝑖 (𝑡) −

𝑎
2
𝑖 (𝑡) 𝑝 (𝑡)

1 + 𝑏
1
𝑠 (𝑡) + 𝑏

2
𝑖 (𝑡)

− 𝑒𝑖 (𝑡) ,

d𝑝 (𝑡)
d𝑡

=

(𝑑
1
𝑎
1
𝑠 (𝑡) + 𝑑

2
𝑎
2
𝑖 (𝑡)) 𝑝 (𝑡)

1 + 𝑏
1
𝑠 (𝑡) + 𝑏

2
𝑖 (𝑡)

− 𝑓𝑝 (𝑡) ,

(1)

where 𝑠(𝑡) is the susceptible prey population densities per
hectare and 𝑖(𝑡) is the infected prey population densities
per hectare, so that the total prey population densities at
any time 𝑡 per hectare is 𝑠(𝑡) + 𝑖(𝑡), and it is assumed that
the infected prey population contributes with the susceptible
prey population to the prey population growth towards the
environment carrying capacity. Consequently, the susceptible
prey population grows according to a logistic law with
carrying capacity 𝑘 > 0 and intrinsic growth rate constant
𝑟 > 0 involving the whole prey population (susceptible prey
and infected prey population), which is best regarded as a
purely descriptive equation.The transmission rate among the
susceptible prey population and the infected prey population
follows the simple law of mass action 𝑐𝑠(𝑡) 𝑖(𝑡) for all 𝑡 >

0, where 𝑐 > 0 denotes the transmission coefficient. The
infectious disease spreads among the prey population only
and that disease is not genetically inherited. The infected
prey population does not recover or become immune. 𝑝(𝑡)
is the predator population densities per hectare which is
assumed to feed on both the susceptible and the infected
prey population. 𝑒 denotes the natural death rate of the
infected prey populations; 𝑓 is the death rate of the predator
population; 𝑑

1
and 𝑑

2
which are within the interval (0, 1)

are the conversion rate of the susceptible and the infected
prey population to the predator population, respectively. 𝑎

1

and 𝑎
2
are the searching efficiency constants or equivalently

the predation rates on the susceptible and the infected prey
populations, respectively. 𝑏

1
and 𝑏
2
are the positive constants.

It is well known that harvesting has a strong impact
on the dynamic evolution of a population. Evidence shows
that many species have already become extinct and many
others are at the verge of extinction due to several natural
or man-made reasons like over exploitation, indiscriminate
harvesting and mismanagement of natural resources, and
so forth. The severity of this impact that may range from
rapid depletion to complete preservation of a population
depends on the implemented harvesting agency [10, 11]. Due
to practical and economic utilization, biological resources in
the prey predator system are extensively harvested nowadays.
Furthermore, exploitation of biological resources has been
increased by people’s multifarious material needs, which
attracts a global concern to protect the limited biological
resources. Therefore, regulation of exploitation of biologi-
cal resources has become a problem of major concern in
view of dwindling resource stocks and the deteriorating

environment. It is necessary to establish a constructive
management of commercial exploitation of the biological
resources. The techniques and issues associated with bioe-
conomic exploitation have been discussed in details by
Clark [12]. Taxation, license fees, lease of property rights,
seasonal harvesting, and so forth are usually considered as
possible governing instruments in regulation for harvesting
as well as regulatory mechanisms to keep the damage to the
ecosystemminimal. Out of these regulating options, taxation
is considered to be superior because of its economic flexibility
[13], and economists are particularly attracted to taxation
because a competitive system can be better maintained under
taxation rather than other regulatory methods. There has
been considerable interest in the modeling of harvesting of
biological resources in recent decades, where harvest effort is
considered to be a dynamic variable, and optimal harvesting
policies with taxation are discussed. Ganguly and Chaudhuri
[14], Krishna et al. [15], and Dubey et al. [16, 17] investigated
the optimal harvesting of a class of models of a single fishery
species with taxation as a control. Kar [18, 19] studied the
optimal tax policies for harvesting of the prey predator
system.

Recently, stimulated by new analytical and numerical
findings, scholars have found interest to discuss the appli-
cations of optimal control theory to eco-epidemiological
model, which can be found in [20–22]. Mathematical mod-
elling of infectious disease with application of optimal control
theory is investigated in [23–25], where vaccination cost is
considered to discuss associated optimal problems. It should
be noted that harvesting issues are also considered in eco-
epidemiological model [26, 27], where dynamical behaviour
and impulsive harvesting control are investigated. However,
to authors’ best knowledge, optimal control strategy associ-
ated with maximum net economic revenue of harvesting and
vaccination cost in eco-epidemiological model has not been
investigated in related research.

In this paper, a harvested eco-epidemiological prey
predator system is established in the second section. We
extend the work done in [9] by incorporating the harvest
effort on predator population. Based on superiority of tax-
ation control in regulating harvesting and effectiveness of
vaccination in protecting population from infectious disease
introduced above, vaccination is introduced to control num-
ber of susceptible prey population, and taxation is chosen
to regulate exploitation of biological resource within the
harvested eco-epidemiological prey predator system. In the
third section, nonnegativity and boundedness of solutions
of the proposed model are discussed. In the fourth section,
global stability analysis of model system around disease-free
equilibrium is studied based on robust Bendixson criterion.
Furthermore, by taking taxation and vaccination control as
time dependent, an optimal strategy associated with net
harvesting revenue and vaccination cost is investigated by
using Pontryagin’s maximum principle in the fifth section. It
is assumed that vaccination cost is considered and exploita-
tion of the predator species is regulated by an authority
by imposing taxation per unit biomass of the harvested
predator, and the imposition of taxation acts as a deterrent to
control harvesting. We aim to find an optimal strategy which
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guarantees a lasting exploitation of the biological resource
and maximize the total discounted net economic revenue to
society as well as protect prey population from infectious
disease. Numerical simulations are provided to support the
analytical findings obtained in this paper. Finally, this paper
ends with a conclusion.

2. Model Formulation

In 1954, Gordon [28] proposed the economic theory of
a common property resource, which studies the effect of
harvest effort on ecosystem from an economic perspective.
It is well known that the harvested predator is usually sold
as commodity in the market in order to achieve economic
interest, which implies that the unit price of harvested
population is influenced by the fluctuation of supply and
demand for harvested population in the market, and the
unit cost of harvest effort depends on fecundity of harvested
population [12, 28]. Consequently, the unit price and unit
cost are not always constant, but time varying. Assuming that
there is always constant demand for harvested predator, then
V
1
(𝑡) the unit price of harvested predator and V

2
(𝑡) the unit

cost of harvest effort can be expressed as

V
1
(𝑡) =

ℎ − 𝜎

𝛽 + 𝐸 (𝑡) 𝑝 (𝑡)

, V
2
(𝑡) =

𝑔

𝑝 (𝑡)

, (2)

respectively, where 𝐸(𝑡) represents the harvest effort on
predator population 𝑝(𝑡) at any time 𝑡 > 0, ℎ, 𝜎, 𝛽 and
𝑔 are all positive constants. To conserve the population in
the harvested eco-epidemiological prey predator system, the
regulatory agency imposes a tax 𝜎 > 0 per unit biomass of the
predator, and 𝜎 < 0 denotes the subsidies given to the harvest
effort. 𝐸(𝑡)𝑝(𝑡) denotes supply amount of harvested predator
into the market.

By simple computation, it can be found that the unit price
will decrease if the supply of harvested predator is larger than
the demand for harvested predator; on the other hand, the
unit price will increase if the supply of harvested predator
cannot meet the demand for harvested predator, and the
maximum unit price is (ℎ − 𝜎)/𝛽. It is also obvious that

lim
𝑝(𝑡)→0

V
2
(𝑡) = lim
𝑝(𝑡)→0

𝑔

𝑝 (𝑡)

= ∞,

lim
𝑝(𝑡)→∞

V
2
(𝑡) = lim
𝑝(𝑡)→∞

𝑔

𝑝 (𝑡)

= 0,

(3)

which imply that the unit cost of harvest effort is inversely
proportional to the population density of harvested predator.
More richer the population density of harvested predator
becomes, more lower the unit cost of harvest effort is; on the
other hand, the unit cost of harvest effort will increase if the
population density of harvested predator becomes relatively
rare.

According to the above analysis, a harvested eco-ep-
idemiological prey predator model with vaccination and
taxation is proposed based on (1) and (2), which can be
governed by the following differential equations:

d𝑠 (𝑡)
d𝑡

= 𝑟𝑠 (𝑡) (1 −

𝑠 (𝑡) + 𝑖 (𝑡)

𝑘

)

−
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− 𝑐𝑠 (𝑡) 𝑖 (𝑡) − 𝑢𝑠 (𝑡) ,
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𝑎
2
𝑖 (𝑡) 𝑝 (𝑡)

1 + 𝑏
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𝑠 (𝑡) + 𝑏

2
𝑖 (𝑡)

− 𝑒𝑖 (𝑡) ,

d𝑝 (𝑡)
d𝑡

=
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𝑎
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𝑎
2
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𝛽 + 𝐸 (𝑡) 𝑝 (𝑡)
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𝑔

𝑝 (𝑡)

) .

(4)

The initial conditions ofmodel system (4) are given as follows:

𝑠 (0) ≥ 0, 𝑖 (0) ≥ 0, 𝑝 (0) ≥ 0, 𝐸 (0) ≥ 0, (5)

where 𝛼 describes stiffness parameter measuring the strength
of reaction of harvest effort and susceptible prey population is
vaccinated at vaccination rate 𝑢. Other parameters that share
the same interpretations are mentioned in (1) and (2).

Remark 1. It should be noted that it is assumed that harvest-
ing issue in model system (4) does not affect the growth of
prey population (susceptible prey and infected prey) directly.
Effect of harvest effort and harvesting regulation on prey
population is biologically functioned through the predator
population.

Remark 2. It is further assumed that vaccination rate 𝑢 such
that constraint 0 ≤ 𝑢 < 1 for any time, which vividly
reflects the fact that vaccination on the entire susceptible prey
population is impossible.

3. Nonnegativity and Boundedness of Solution

Theorem 3. All solutions of model system (4) with initial
conditions are nonnegative.

Proof. Themodel system (4) can be interpreted as the matrix
form:

d𝑋(𝑡)

d𝑡
= 𝐻 (𝑋 (𝑡)) , (6)

where 𝑋(𝑡) = (𝑠(𝑡), 𝑖(𝑡), 𝑝(𝑡), 𝐸(𝑡))
𝑇

∈ R4 and 𝐻(𝑋(𝑡)) is
given as follows:
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𝐻(𝑋 (𝑡)) = (

𝐻
1
(𝑋 (𝑡))

𝐻
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𝐻
3
(𝑋 (𝑡))
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=
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𝑎
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2
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𝑎
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)

)

)
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)
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(7)

Let R4
+

= [0,∞)
4 be the nonnegative octant in R4, then

𝐿 : R4+1
+

→ R4 is locally Lipschitz and satisfy the condition
𝐻
𝑖
(𝑋(𝑡))|

𝑋∈R4 ≥ 0, 𝑖 = 1, 2, 3, 4.
Due to lemma in [29] and [30,TheoremA.4], any solution

of the model system (4) with nonnegative initial conditions
exist uniquely, and each component of the solution remains
within the interval [0, 𝐴

0
) for some 𝐴

0
> 0. Standard and

simple arguments show that solutions of model system (4)
always exist and stay nonnegative. Hence, this completes the
nonnegativity of the solutions of model system (4).

Theorem 4. If ℎ − 𝜎 > 0 and 𝑑
1
≥ 𝑑
2
, then all solutions of

model system (4) are bounded within a regionΩ for all 𝑡 > 0,

Ω = { (𝑠 (𝑡) , 𝑖 (𝑡) , 𝑝 (𝑡) , 𝐸 (𝑡)) |

𝑠 (𝑡) ≤ 𝑘, 𝐸 (𝑡) ≤

ℎ − 𝜎

𝑔

,

𝑤
1
(𝑡) ≤

𝑘(𝑟 + 𝑒)
2

4𝑒𝑟

, 𝑤
2
(𝑡) ≤

𝑘𝑑
1
𝑟

4𝑚
1

} .

(8)

On the other hand, if ℎ − 𝜎 > 0 and 𝑑
1
< 𝑑
2
, then all so-

lutions of model system (4) are bounded within a region Ω for
all 𝑡 > 0,

Ω = { (𝑠 (𝑡) , 𝑖 (𝑡) , 𝑝 (𝑡) , 𝐸 (𝑡)) |

𝑠 (𝑡) ≤ 𝑘, 𝐸 (𝑡) ≤

ℎ − 𝜎

𝑔

, 𝑤
1
(𝑡) ≤

𝑘(𝑟 + 𝑒)
2

4𝑒𝑟

,

𝑤
2
(𝑡) ≤

𝑘𝑒𝑑
1
𝑟
2
+ 𝑐𝑘
2
𝑚
1
(𝑑
2
− 𝑑
1
) (𝑟 + 𝑒)

2

4𝑒𝑟𝑚
1

} ,

(9)

where 𝑤
1
(𝑡) = 𝑠(𝑡) + 𝑖(𝑡), 𝑤

2
(𝑡) = 𝑑

1
𝑠(𝑡) + 𝑑

2
𝑖(𝑡) + 𝑝(𝑡), and

𝑚
1
= min{𝑒, 𝑢, 𝑓}.

Proof. Firstly, we consider the first equation of model system
(4). We have

d𝑠 (𝑡)
d𝑡

≤ 𝑟𝑠 (𝑡) (1 −

𝑠 (𝑡)

𝑘

) , (10)

which implies that

lim
𝑡→∞

sup 𝑠 (𝑡) ≤ 𝑘. (11)

Now, defining the function𝑤
1
(𝑡) = 𝑠(𝑡) + 𝑖(𝑡) by calculat-

ing the time derivative of 𝑤
1
(𝑡) along the solutions of model

system (4), we get

d𝑤
1
(𝑡)

d𝑡
≤ (𝑟 + 𝑒) 𝑠 (𝑡) −

𝑟𝑠
2
(𝑡)

𝑘

− 𝑒𝑤
1
(𝑡) . (12)

By utilizing the standard comparison principle, it follows that

lim
𝑡→∞

sup𝑤
1
(𝑡) ≤

𝑘(𝑟 + 𝑒)
2

4𝑒𝑟

. (13)

Furthermore, by using nonnegativity of solution ofmodel
system (4), if ℎ − 𝜎 > 0, then it derives that

d𝐸 (𝑡)
d𝑡

≤ 𝛼 (ℎ − 𝜎) − 𝛼𝑔𝐸 (𝑡) , (14)

which implies that

lim
𝑡→∞

sup𝐸 (𝑡) ≤ ℎ − 𝜎

𝑔

. (15)

Let 𝑤
2
(𝑡) = 𝑑

1
𝑠(𝑡) + 𝑑

2
𝑖(𝑡) + 𝑝(𝑡), and by calculating the

time derivative of 𝑤
2
(𝑡) along the solutions of model system

(4), it can be obtained that

d𝑤
2
(𝑡)

d𝑡
≤ 𝑟𝑑
1
𝑠 (𝑡) (1 −

𝑠 (𝑡)

𝑘

) + 𝑐 (𝑑
2
− 𝑑
1
) 𝑠 (𝑡) 𝑖 (𝑡)

− 𝑚
1
(𝑑
1
𝑠 (𝑡) + 𝑑

2
𝑖 (𝑡) + 𝑝 (𝑡))

= 𝑟𝑑
1
𝑠 (𝑡) (1 −

𝑠 (𝑡)

𝑘

) + 𝑐 (𝑑
2
− 𝑑
1
) 𝑠 (𝑡) 𝑖 (𝑡)

− 𝑚
1
𝑤
2
(𝑡) .

(16)
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Hence, it derives that

lim
𝑡→∞

sup𝑤
2
(𝑡)

=

{
{
{
{

{
{
{
{

{

𝑘𝑑
1
𝑟

4𝑚
1

, 𝑑
1
≥ 𝑑
2
,

𝑘𝑒𝑑
1
𝑟
2
+ 𝑐𝑚
1
𝑘
2
(𝑑
2
− 𝑑
1
) (𝑟 + 𝑒)

2

4𝑒𝑟𝑚
1

, 𝑑
2
> 𝑑
1
,

(17)

where𝑚
1
= min{𝑒, 𝑢, 𝑓}.

Consequently, If ℎ − 𝜎 > 0 and 𝑑
1
≥ 𝑑
2
, then all solutions

of model system (4) are bounded within a region Ω for all
𝑡 > 0,

Ω = { (𝑠 (𝑡) , 𝑖 (𝑡) , 𝑝 (𝑡) , 𝐸 (𝑡)) |

𝑠 (𝑡) ≤ 𝑘, 𝐸 (𝑡) ≤

ℎ − 𝜎

𝑔

,

𝑤
1
(𝑡) ≤

𝑘(𝑟 + 𝑒)
2

4𝑒𝑟

, 𝑤
2
(𝑡) ≤

𝑘𝑑
1
𝑟

4𝑚
1

} .

(18)

On the other hand, if ℎ − 𝜎 > 0 and 𝑑
1
< 𝑑
2
, then all

solutions of model system (4) are bounded within a regionΩ
for all 𝑡 > 0,

Ω = { (𝑠 (𝑡) , 𝑖 (𝑡) , 𝑝 (𝑡) , 𝐸 (𝑡)) |

𝑠 (𝑡) ≤ 𝑘, 𝐸 (𝑡) ≤

ℎ − 𝜎

𝑔

, 𝑤
1
(𝑡) ≤

𝑘(𝑟 + 𝑒)
2

4𝑒𝑟

,

𝑤
2
(𝑡) ≤

𝑘𝑒𝑑
1
𝑟
2
+ 𝑐𝑘
2
𝑚
1
(𝑑
2
− 𝑑
1
) (𝑟 + 𝑒)

2

4𝑒𝑟𝑚
1

} .

(19)

Remark 5. Since the components (𝑠(𝑡), 𝑖(𝑡), and 𝑝(𝑡)) of
solution of model system (4) represent the population in
the harvested eco-epidemiological prey predator system,
boundedness reveals a natural restriction to growth as a
consequence of limited resources. Especially, boundedness
of 𝑖(𝑡) epidemiologically interprets infectious disease in prey
population, it can not spread without limitation, and prey
population may not die out due to rampant spread of infec-
tious disease. Furthermore, with the purpose of maintaining
the sustainable development of prey predator system, the
harvesting can not increase without any restriction, which is
reflected by the boundedness of 𝐸(𝑡). It is of inspiration for
people to regulate the harvesting effort bymeans of economic
instrument.

4. Global Stability Analysis around
Disease-Free Equilibrium

In this section, global stability analysis around disease-free
equilibrium is discussed. It is utilized to discuss stability

mechanism of model system due to variation of taxation
and vaccination control. It should be noted that we only
concentrate on the dynamical behavior and stability analysis
around disease-free equilibrium, since biological interpreta-
tion of disease-free equilibrium implies that susceptible prey,
predator population all exist under infectious disease-free
environment, only susceptible prey population is predated
and harvest effort on predator population exists, which are
relevant to our main study in this paper.

For simplicity, model system (4) is nondimensionalized
with the following scaling: 𝑆 = 𝑠/𝑘, 𝐼 = 𝑖/𝑘, 𝑃 = 𝑎

1
𝑝/𝑟, 𝑌 =

𝐸/𝑟, 𝑇 = 𝑟𝑡. By using these quantities, model system (4) can
be transformed into a dimensionless form as follows:

d𝑆 (𝑇)
d𝑇

= 𝑆 (𝑇) (1 − 𝑆 (𝑇) − 𝐼 (𝑇)) −

𝑆 (𝑇) 𝑃 (𝑇)

1 + 𝑏
3
𝑆 (𝑇) + 𝑏

4
𝐼 (𝑇)

− 𝑐
1
𝑆 (𝑇) 𝐼 (𝑇) − 𝑢

1
𝑆 (𝑇) ,

d𝐼 (𝑇)
d𝑇

= 𝑐
1
𝑆 (𝑇) 𝐼 (𝑇) −

𝑎
3
𝐼 (𝑇) 𝑃 (𝑇)

1 + 𝑏
3
𝑆 (𝑇) + 𝑏

4
𝐼 (𝑇)

− 𝑒
1
𝐼 (𝑇) ,

d𝑃 (𝑇)
d𝑇

=

(𝑑
3
𝑆 (𝑇) + 𝑑

4
𝐼 (𝑇)) 𝑃 (𝑇)

1 + 𝑏
3
𝑆 (𝑇) + 𝑏

4
𝐼 (𝑇)

− 𝑓
1
𝑃 (𝑇)

− 𝑃 (𝑇) 𝑌 (𝑇) ,

d𝑌 (𝑇)

d𝑇
= 𝛼
1
𝑃 (𝑇) 𝑌 (𝑇) (

ℎ
1
− 𝜎
1

𝛽
1
+ 𝑃 (𝑇) 𝑌 (𝑇)

−

𝑔
1

𝑃 (𝑇)

) ,

(20)

where 𝑐
1
= 𝑐𝑘/𝑟, 𝑒

1
= 𝑒/𝑟, 𝑎

3
= 𝑎
2
/𝑎
1
, 𝑏
3
= 𝑏
1
𝑘, 𝑏
4
= 𝑏
2
𝑘, 𝑓
1
=

𝑓/𝑟, 𝑑
3
= (𝑑
1
𝑎
1
𝑘)/𝑟, 𝑑

4
= 𝑑
2
𝑎
2
𝑘/𝑟, 𝛼

1
= 𝛼/𝑎

1
, 𝛽
1
= (𝑎
1
𝛽)/𝑟
2,

ℎ
1
− 𝜎
1
= (𝑎
1
(ℎ − 𝜎))/𝑟

2, 𝑢
1
= 𝑢/𝑟, and 𝑔

1
= (𝑎
1
𝑔)/𝑟.

By simple computation, disease-free equilibrium 𝑀
∗

(𝑆
∗
, 0, 𝑃
∗
, 𝑌
∗
) can be obtained as follows.

𝑃
∗
= (1−𝑢

1
−𝑆
∗
)(1+𝑏

3
𝑆
∗
),𝑌∗ = ((𝑑

3
−𝑏
3
𝑓
1
)𝑆
∗
−𝑓
1
)/(1+

𝑏
3
𝑆
∗
), and 𝑆∗ satisfies the following equation:

[𝑔
1
(𝑑
3
− 𝑏
3
𝑓
1
) − 𝑏
3
(ℎ
1
− 𝜎
1
)] 𝑆
∗2
+ [(1 − 𝑢

1
) 𝑏
3
− 1]

× (ℎ
1
− 𝜎
1
+ 𝑓
1
𝑔
1
) 𝑆
∗
− (1 − 𝑢

1
) 𝑑
3
𝑔
1
𝑆
∗

+ (ℎ
1
− 𝜎
1
+ 𝑔
1
𝑓
1
) (1 − 𝑢

1
) − 𝑔
1
𝛽
1
= 0.

(21)

Conditions for existence of unique positive real root of
(21) are as follows:

𝑔
1
(𝛽
1
− 𝑓
1
) ≤ 𝜎
1
≤ ℎ
1
+ 𝑔
1
𝑓
1
−

𝑔
1
𝑑
3

𝑏
3

,

1 − 𝑏
3
(𝛽
1
+ 𝑓
1
) + 𝑑
3
≤ 𝑢
1
< 𝑟.

(22)

Remark 6. The above inequalities associated with taxation
and vaccination control in (22) also guarantee existence and
uniqueness of disease-free equilibrium𝑀

∗.
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Theorem 7. If the following inequalities hold

(𝑎
3
+ 𝑒
1
) > (𝑎

3
+ 𝑐
1
) 𝑆
∗
,

(𝑆
∗
− 1) [𝑏

3
(ℎ
1
− 𝜎
1
) + 2𝑔

1
(𝑏
3
𝑓
1
− 𝑑
3
)] > 0,

𝑢
1
>

𝑏
3
− 1 − 2𝑑

3

𝑏
3

,

(23)

then model system (20) is locally stable around disease-free
equilibrium𝑀

∗.

Proof. For disease-free equilibrium 𝑀
∗
(𝑆
∗
, 0, 𝑃
∗
, 𝑌
∗
), the

variational matrix of model system (20) around𝑀∗ takes the
following form:

𝑉 (𝑆
∗
, 0, 𝑃
∗
, 𝑌
∗
) = (

𝑉
11

𝑉
12

𝑉
13

𝑉
14

𝑉
21

𝑉
22

𝑉
23

𝑉
24

𝑉
31

𝑉
32

𝑉
33

𝑉
34

𝑉
41

𝑉
42

𝑉
43

𝑉
44

), (24)

where

𝑉
11
=

𝑆
∗
[(1 − 𝑢

1
) 𝑏
3
− 1 − 2𝑏

3
𝑆
∗
]

1 + 𝑏
3
𝑆
∗

,

𝑉
12
=

𝑆
∗
[𝑏
4
− 𝑐
1
− 1 − (𝑏

4
+ 𝑏
3
+ 𝑏
3
𝑐
1
) 𝑆
∗
]

1 + 𝑏
3
𝑆
∗

,

𝑉
13
= −

𝑆
∗

1 + 𝑏
3
𝑆
∗
,

𝑉
22
= (𝑐
1
+ 𝑎
3
) 𝑆
∗
− 𝑎
3
− 𝑒
1
,

𝑉
31
=

𝑑
3
(1 − 𝑆

∗
)

1 + 𝑏
3
𝑆
∗

,

𝑉
32
=

(1 − 𝑆
∗
) [𝑑
4
+ (𝑏
3
𝑑
4
− 𝑏
4
𝑑
3
) 𝑆
∗
]

1 + 𝑏
3
𝑆
∗

,

𝑉
33
= −

𝑑
3
𝑆
∗

1 + 𝑏
3
𝑆
∗
,

𝑉
34
= (𝑆
∗
− 1) (1 + 𝑏

3
𝑆
∗
) ,

𝑉
43
=

Δ
∗
[(𝑑
3
− 𝑏
3
𝑓
1
) 𝑆
∗
− 𝑓
1
]

1 + 𝑏
3
𝑆
∗

,

𝑉
44
= Δ
∗
(1 − 𝑆

∗
) (1 + 𝑏

3
𝑆
∗
) − 𝛼
1
𝑔
1
,

𝑉
14
= 𝑉
21
= 𝑉
23
= 𝑉
24
= 𝑉
41
= 𝑉
42
= 0.

(25)

It follows from 𝑉(𝑆
∗
, 0, 𝑃
∗
, 𝑌
∗
) that the characteristic

equation around𝑀∗ is as follows:

(𝜆 + (𝑎
3
+ 𝑒
1
) − (𝑎

3
+ 𝑐
1
) 𝑆
∗
)

× (𝜆
3
+ 𝐴
∗

1
𝜆
2
+ 𝐴
∗

2
𝜆 + 𝐴

∗

3
) = 0,

(26)

where

𝐴
∗

1
= 𝛼
1
[(𝑆
∗
− 1) (1 + 𝑏

3
𝑆
∗
) Δ
∗
+ 𝑔
1
] ,

Δ
∗
=

𝛽
1
(ℎ
1
− 𝜎
1
)

[𝛽
1
+ (1 − 𝑆

∗
) (𝑆
∗
(𝑑
3
− 𝑏
3
𝑓
1
) − 𝑓
1
)]
2
,

𝐴
∗

2
= (2𝑏

3
(𝑏
3
+ 𝑑
3
) 𝑆
∗3
+ (3𝑏
3
− 𝑏
2

3
− 2𝑑
3
) 𝑆
∗2

+ (2𝑑
3
− 𝑏
3
+ 𝑢
1
𝑏
3
+ 1) 𝑆

∗
)

× ((1 + 𝑏
3
𝑆
∗
)
2

)

−1

+

𝛼
1
Δ
∗
(𝑆
∗
− 1) (1 + 𝑏

3
𝑆
∗
)
2

[(𝑑
3
− 𝑏
3
𝑓
1
) 𝑆
∗
− 𝑓
1
]

(1 + 𝑏
3
𝑆
∗
)
2

,

𝐴
∗

3
= (𝑆
∗
𝐴
∗

1
[2𝑏
3
(𝑏
3
+ 𝑑
3
) 𝑆
∗2
+ (3𝑏
3
− 𝑏
2

3
− 2𝑑
3
) 𝑆
∗

+ 2𝑑
3
− 𝑏
3
+ 𝑢
1
𝑏
3
+ 1])

× ((1 + 𝑏
3
𝑆
∗
)
2

)

−1

+ (𝛼
1
𝑆
∗
𝐴
∗

1
(𝐴
∗

1
− 𝑔
1
) (2𝑏
3
𝑆
∗
− 𝑏
3
+ 1)

× [(𝑑
3
− 𝑏
3
𝑓
1
) 𝑆
∗
− 𝑓
1
])

× ((1 + 𝑏
3
𝑆
∗
)
2

)

−1

.

(27)

It follows from Routh-Hurwitz criteria [13] that there are
four eigenvalues with negative real part provided that 𝐴∗

1
>

0, 𝐴
∗

3
> 0, and 𝐴∗

1
𝐴
∗

2
> 𝐴
∗

3
, which derives that

(𝑎
3
+ 𝑒
1
) > (𝑎

3
+ 𝑐
1
) 𝑆
∗
,

(𝑆
∗
− 1) [𝑏

3
(ℎ
1
− 𝜎
1
) + 2𝑔

1
(𝑏
3
𝑓
1
− 𝑑
3
)] > 0,

𝑢
1
>

𝑏
3
− 1 − 2𝑑

3

𝑏
3

.

(28)

In the following part, global stability analysis of model
system (20) around disease-free equilibrium 𝑀

∗ is investi-
gated. Firstly, some preliminaries are discussed as follows.

Lemma 8 (see [31]). The unique interior equilibrium is glob-
ally stable in the domain 𝐺 if it is locally stable and all trajecto-
ries in 𝐺 converge to the unique interior equilibrium, where
domain 𝐺 satisfies the following conditions:

(i) the domain 𝐺 is simply connected;

(ii) there is a compact absorbing set 𝐽 ⊂ 𝐺.

Let𝑉|2| be the second additive compoundmatrix [31, 32].
In the case of 𝑛 = 4, 𝑉|2| can be written based on variational
matrix of model system (20) around𝑀∗, which is as follows:
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𝑉
|2|
=
(

(

𝑉
11
+ 𝑉
22

𝑉
23

𝑉
24

−𝑉
13

−𝑉
14

0

𝑉
32

𝑉
11
+ 𝑉
33

𝑉
34

𝑉
12

0 −𝑉
14

𝑉
42

𝑉
43

𝑉
11
+ 𝑉
44

0 𝑉
12

𝑉
13

−𝑉
31

𝑉
21

0 𝑉
22
+ 𝑉
33

𝑉
34

−𝑉
24

−𝑉
41

0 𝑉
21

𝑉
43

𝑉
22
+ 𝑉
44

𝑉
23

0 −𝑉
41

𝑉
31

−𝑉
42

𝑉
32

𝑉
33
+ 𝑉
44

)

)

, (29)

where 𝑉
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, 3, 4, can be found in Theorem 7. Since

𝑉
14
= 0, 𝑉

21
= 0, 𝑉

23
= 0, 𝑉

24
= 0, 𝑉

41
= 0, and 𝑉

42
= 0, 𝑉|2|

can be deduced as follows:

𝑉
|2|
=
(

(

𝑉
11
+ 𝑉
22

0 0 −𝑉
13

0 0

𝑉
32

𝑉
11
+ 𝑉
33

𝑉
34

𝑉
12

0 0

0 𝑉
43

𝑉
11
+ 𝑉
44

0 𝑉
12

𝑉
13

−𝑉
31

0 0 𝑉
22
+ 𝑉
33

𝑉
34

0

0 0 0 𝑉
43

𝑉
22
+ 𝑉
44

0

0 0 𝑉
31

0 𝑉
32

𝑉
33
+ 𝑉
44

)

)

. (30)

Furthermore, we have

𝑁
−1

= diag {𝑌
𝑆

,

𝑌

𝑆

,

𝑌

𝑆

,

𝑌

𝑆

} ,

𝑁
𝐹(𝑍)

=

d𝑁
d𝑍

= diag{
̇𝑆

𝑌

−

𝑆�̇�

𝑌
2
,

̇𝑆

𝑌

−

𝑆�̇�

𝑌
2
,

̇𝑆

𝑌

−

𝑆�̇�

𝑌
2
} ,

(31)

where 𝐹(𝑍(𝑇)) and 𝑍(𝑇) are defined based on model system
(20), and the model system (20) can be interpreted as the
matrix form

d𝑍 (𝑇)

d𝑇
= 𝐹 (𝑍 (𝑇)) , (32)

where𝑍(𝑇) = (𝑆(𝑇), 𝐼(𝑇), 𝑃(𝑇), 𝑌(𝑇))
𝑇 and 𝐹(𝑍(𝑇)) is given

as follows:

𝐹 (𝑍 (𝑇)) =

(

(

(

(

(

(

(

(

(

(

𝑆(𝑇) (1 − 𝑆 (𝑇) − 𝐼 (𝑇)) −

𝑆 (𝑇) 𝑃 (𝑇)

1 + 𝑏
3
𝑆 (𝑇) + 𝑏

4
𝐼 (𝑇)

− 𝑐
1
𝑆 (𝑇) 𝐼 (𝑇) − 𝑢

1
𝑆 (𝑇)

𝑐
1
𝑆 (𝑇) 𝐼 (𝑇) −

𝑎
3
𝐼 (𝑇) 𝑃 (𝑇)

1 + 𝑏
3
𝑆 (𝑇) + 𝑏

4
𝐼 (𝑇)

− 𝑒
1
𝐼 (𝑇)

(𝑑
3
𝑆 (𝑇) + 𝑑

4
𝐼 (𝑇)) 𝑃 (𝑇)

1 + 𝑏
3
𝑆 (𝑇) + 𝑏

4
𝐼 (𝑇)

− 𝑓
1
𝑃 (𝑇) − 𝑃 (𝑇) 𝑌 (𝑇)

𝛼
1
𝑃 (𝑇) 𝑌 (𝑇) (

ℎ
1
− 𝜎
1

𝛽
1
+ 𝑃 (𝑇) 𝑌 (𝑇)

−

𝑔
1

𝑃 (𝑇)

)

)

)

)

)

)

)

)

)

)

)

. (33)

By simple computation, it can be obtained that

𝑁
𝐹
𝑁
−1

= diag{
̇𝑆

𝑆

−

�̇�

𝑌

,

̇𝑆

𝑆

−

�̇�

𝑌

,

̇𝑆

𝑆

−

�̇�

𝑌

} ,

𝑁𝑉
|2|
𝑁
−1

= 𝑉
|2|
.

(34)

Let

𝐷 = 𝑁
𝐹
𝑁
−1
+ 𝑁𝑉

|2|
𝑁
−1

= (

𝐷
11

𝐷
12

𝐷
13

𝐷
21

𝐷
22

𝐷
23

𝐷
31

𝐷
32

𝐷
33

) , (35)

where
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𝐷
11
=

̇𝑆

𝑆

−

�̇�

𝑌

+ 𝑉
11
+ 𝑉
22
, 𝐷

12
= (0, 0) ,

𝐷
13
= (−𝑉

13
, 0, 0) , 𝐷

21
= (𝑉
32
, 0)
𝑇

,

𝐷
22
= (

̇𝑆

𝑆

−

�̇�

𝑌

+ 𝑉
11
+ 𝑉
33

𝑉
34

𝑉
43

̇𝑆

𝑆

−

�̇�

𝑌

+ 𝑉
11
+ 𝑉
44

),

𝐷
23
= (

𝑉
12

0 0

0 𝑉
12

𝑉
13

) ,

𝐷
31
= (−𝑉

31
, 0, 0)
𝑇

, 𝐷
32
= (

0 0

0 0

0 𝑉
31

) ,

𝐷
33
= (

̇𝑆

𝑆

−

�̇�

𝑌

+ 𝑉
22
+ 𝑉
33

𝑉
34

0

𝑉
43

̇𝑆

𝑆

−

�̇�

𝑌

+ 𝑉
22
+ 𝑉
44

0

0 𝑉
32

̇𝑆

𝑆

−

�̇�

𝑌

+ 𝑉
33
+ 𝑉
44

).

(36)

Consider the Lozinskii measure Γ of 𝐷 with respect to a
vector norm | ⋅ | inR4 (see, [32]) and 𝐼 (identity matrix), then
it can be obtained that

Γ (𝐷) = lim
𝜖→0+

|𝐼 + 𝜖𝐷| − 1

𝜖

. (37)

Hence, it follows from simple computation that

Γ (𝐷) ≤ sup {𝑓
1
, 𝑓
2
, 𝑓
3
} , (38)

where 𝑓
𝑖
= Γ
1
(𝐷
𝑖𝑖
) + |𝐷

𝑖𝑗
| for 𝑖, 𝑗 = 1, 2, 3, and 𝑖 ̸= 𝑗. |𝐷

12
|,

|𝐷
13
|, |𝐷
21
|, |𝐷
23
|, |𝐷
31
|, and |𝐷

32
| are matrix norms with

respect to the 𝐿1 vector norm, and Γ
1
is the Lozinskii measure

with respect to this vector norm.
Furthermore, let Δ = 𝛽

1
(ℎ
1
− 𝜎
1
)/[𝛽
1
+ (1 − 𝑆)(𝑆(𝑑

3
−

𝑏
3
𝑓
1
) − 𝑓
1
)]
2, then it can be computed that

Γ
1
(𝐷
11
) =

̇𝑆

𝑆

−

�̇�

𝑌

+











(1 − 𝑢
1
) 𝑏
3
𝑆 − 𝑆 − 2𝑏

3
𝑆
2

1 + 𝑏
3
𝑆

+ (𝑐
1
+ 𝑎
3
) 𝑆

− (𝑎
3
+ 𝑒
1
)











,





𝐷
12





= 0,





𝐷
13





=

𝑆

1 + 𝑏
3
𝑆

,

Γ
1
(𝐷
22
) =

̇𝑆

𝑆

−

�̇�

𝑌

+max{
𝑑
3
𝑆

1 + 𝑏
3
𝑆

, 𝛼
1
Δ




(1 − 𝑆) (1 + 𝑏

3
𝑆)





+ 𝛼
1
𝑔
1
}

+











𝑆 [(1 − 𝑢
1
) 𝑏
3
− 1 − 2𝑏

3
𝑆]

1 + 𝑏
3
𝑆











+max{ (1 − 𝑆) (1 + 𝑏
3
𝑆) ,

𝛼
1
Δ




(𝑑
3
− 𝑏
3
𝑓
1
) 𝑆 − 𝑓

1






1 + 𝑏
3
𝑆

} ,





𝐷
21





=

𝑑
3
𝑆

1 + 𝑏
3
𝑆

,





𝐷
23






= max{
𝑆




𝑏
4
− 1 − 𝑐

1
− (𝑏
4
+ 𝑏
3
+ 𝑏
3
𝑐
1
) 𝑆





1 + 𝑏
3
𝑆

,

𝑆

1 + 𝑏
3
𝑆

} ,
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𝐷
31





=




𝐷
32





=

𝑑
3
(1 − 𝑆)

1 + 𝑏
3
𝑆

,

Γ
1
(𝐷
33
) =

̇𝑆

𝑆

−

�̇�

𝑌

+




(𝛼
1
Δ + 1) (1 − 𝑆) (1 + 𝑏

3
𝑆)




+

𝑑
3
𝑆

1 + 𝑏
3
𝑆

+




(𝑐
1
+ 𝑎
3
) 𝑆 − (𝑎

3
+ 𝑒
1
)





+ 𝛼
1
max {Δ 




𝑆 (𝑑
3
− 𝑏
3
𝑓
1
) − 𝑓
1





, 𝑔
1
} .

(39)

According to Theorem 3 and definition of 𝑓
𝑖
, 𝑖 = 1, 2, 3,

it follows that

𝑓
1
≤

̇𝑆

𝑆

−

�̇�

𝑌

+ 2 + 𝑐
1
+ 𝑒
1
,

𝑓
2
≤

̇𝑆

𝑆

−

�̇�

𝑌

+ 2 +max{1,
(𝑏
4
− 1 − 𝑐

1
)
2

4 [𝑏
4
+ 𝑏
3
(1 + 𝑐
1
)]

}

+max{
(1 + 𝑏

3
)
2

4𝑏
3

, (16𝛼
1
𝛽
1
(ℎ
1
− 𝜎
1
) (𝑑
3
− 𝑏
3
𝑓
1
)
2

× [𝑑
3
+ 𝑓
1
(𝑏
3
+ 1)] )

× ([((1 + 𝑏
3
) 𝑓
1
− 𝑑
3
)
2

+ 4𝛽
1
(𝑑
3
− 𝑏
3
𝑓
1
)]
2

)

−1

}

+max{1, (16𝛼
1
𝛽
1
(ℎ
1
− 𝜎
1
) (1 + 𝑏

3
) (𝑑
3
− 𝑏
3
𝑓
1
)
2

)

× ( [((1 + 𝑏
3
) 𝑓
1
− 𝑑
3
)
2

+ 4𝛽
1
(𝑑
3
− 𝑏
3
𝑓
1
) ]

2

)

−1

+ 𝛼
1
𝑔
1
} ,

𝑓
3
≤

̇𝑆

𝑆

−

�̇�

𝑌

+ 1 + 𝑐
1
+ 𝑒
1

+ (1 +

16𝛼
1
𝛽
1
(ℎ
1
− 𝜎
1
) (𝑑
3
− 𝑏
3
𝑓
1
)
2

[((1 + 𝑏
3
) 𝑓
1
− 𝑑
3
)
2

+ 4𝛽
1
(𝑑
3
− 𝑏
3
𝑓
1
)]

2
)

× [1 +

(𝑏
3
+ 1)
2

4𝑏
3

]

+max{𝛼
1
𝑔
1
, (16𝛼

1
𝛽
1
(ℎ
1
− 𝜎
1
)

× 𝑓
1
(𝑑
3
+ 𝑏
3
+ 1) (𝑑

3
− 𝑏
3
𝑓
1
)
2

)

× ( [((1 + 𝑏
3
) 𝑓
1
− 𝑑
3
)
2

+ 4𝛽
1
(𝑑
3
− 𝑏
3
𝑓
1
) ]

2

)

−1

} .

(40)

Lemma 9. For element 𝑃(𝑇) of the disease-free equilibrium
𝑀
∗, some inequalities about lim inf

𝑇→∞
𝑃(𝑇) hold as follows:

(a) if 𝑎
3
𝑑
3
+ 𝑐
1
(𝑎
3
𝑑
3
− 𝑑
4
) ≤ 0, then

lim inf
𝑇→∞

P (𝑇) ≥
𝑑
3
(𝑚
2
+ 1 − 𝑢

1
)
2

4𝑚
2

−

𝑑
2

3
+ 𝑑
4
𝑚
3

𝑑
3

; (41)

(b) if 𝑎
3
𝑑
3
+ 𝑐
1
(𝑎
3
𝑑
3
− 𝑑
4
) > 0, then

(i) lim inf
𝑇→∞

𝑃(𝑇) ≥ [𝑎
3
𝑑
3
(1 − 𝑢

1
+ 𝑚
2
− 𝑚
3
) −

𝑐
1
𝑚
3
(𝑎
3
𝑑
3
− 𝑑
4
)]
2
/4𝑑
3
𝑚
2
𝑎
2

3
− (𝑑
2

3
+ 𝑑
4
𝑚
3
)/𝑑
3
,

provided that 𝑎
3
𝑑
3
(1 − 𝑢

1
+ 𝑚
2
− 𝑚
3
) ≥ 𝑐
1
𝑚
3

(𝑎
3
𝑑
3
− 𝑑
4
),

(ii) lim inf
𝑇→∞

𝑃(𝑇) ≥ (𝑎
3
𝑑
3
(𝑚
2
− 𝑚
3
) − 𝑐
1
𝑚
3
(𝑎
3

𝑑
3
− 𝑑
4
))/𝑎
3
𝑚
2
− (𝑑
2

3
+ 𝑑
4
𝑚
3
)/𝑑
3
, provided that

𝑎
3
𝑑
3
(1 − 𝑢

1
+ 𝑚
2
− 𝑚
3
) < 𝑐
1
𝑚
3
(𝑎
3
𝑑
3
− 𝑑
4
),

where 𝑚
2
= max{𝑒

1
, 𝑓
1
+ 𝑟(ℎ
1
− 𝜎
1
)/𝑔
1
} and 𝑚

3
= 𝑘(𝑒

1
+

1)
2
/4𝑒
1
.

Proof. Based onTheorem 4 and nondimensionalized scaling
of model system (20) mentioned in Section 4, it derives that

𝑌 (𝑇) ≤

𝑟 (ℎ
1
− 𝜎
1
)

𝑔
1

, 𝐼 (𝑇) ≤

𝑘(1 + 𝑒
1
)
2

4𝑒
1

,

𝑆 (𝑇) ≤ 1.

(42)

According to model system (20), let 𝑊(𝑇) = 𝑑
3
𝑆(𝑇) +

(𝑑
4
/𝑎
3
)𝐼(𝑇)+𝑃(𝑇). By calculating the time derivative of𝑊(𝑇)

along the solutions of model system (20), it can be obtained
that

d𝑊
d𝑇

= 𝑑
3
𝑆 (1 − 𝑆 − 𝐼) − 𝑐

1
𝑆𝐼 (𝑑
3
−

𝑑
4

𝑎
3

)

−

𝑑
4
𝑒
1
𝐼

𝑎
3

− 𝑓
1
𝑃 − 𝑃𝑌 − 𝑑

3
𝑢
1
𝑆

= 𝑑
3
𝑆 (1 − 𝑢

1
− 𝑆) − [𝑑

3
+ 𝑐
1
(𝑑
3
−

𝑑
4

𝑎
3

)] 𝑆𝐼

−

𝑑
4
𝑒
1
𝐼

𝑎
3

− 𝑓
1
𝑃 − 𝑃𝑌

≥ 𝑑
3
(1 − 𝑢

1
+ 𝑚
2
) 𝑆 − 𝑑

3
𝑆
2

− [𝑑
3
+ 𝑐
1
(𝑑
3
−

𝑑
4

𝑎
3

)] 𝑆𝐼 − 𝑚
2
𝑊,

(43)

where𝑚
2
= max{𝑒

1
, 𝑓
1
+ 𝑟(ℎ
1
− 𝜎
1
)/𝑔
1
}.

If 𝑎
3
𝑑
3
+ 𝑐
1
(𝑎
3
𝑑
3
− 𝑑
4
) ≤ 0, then

d𝑊
d𝑇

≥ 𝑑
3
(1 − 𝑢

1
+ 𝑚
2
) 𝑆 − 𝑑

3
𝑆
2
− 𝑚
2
𝑊. (44)
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According to𝑊 = 𝑑
3
𝑆 + (𝑑

4
/𝑎
3
)𝐼 + 𝑃, it follows from the

standard comparison principle that

lim inf
𝑇→∞

𝑃 (𝑇) ≥

𝑑
3
(𝑚
2
+ 1 − 𝑢

1
)
2

4𝑚
2

−

𝑑
2

3
+ 𝑑
4
𝑚
3

𝑑
3

:= 𝑛
1
.

(45)

On the other hand, if 𝑎
3
𝑑
3
+ 𝑐
1
(𝑎
3
𝑑
3
− 𝑑
4
) > 0, then

d𝑊
d𝑇

≥ [𝑑
3
(1 − 𝑢

1
+ 𝑚
2
− 𝑚
3
) − 𝑐
1
𝑚
3
(𝑑
3
−

𝑑
4

𝑎
3

)] 𝑆

− 𝑑
3
𝑆
2
− 𝑚
2
𝑊,

(46)

where𝑚
3
= 𝑘(𝑒
1
+ 1)
2
/4𝑒
1
.

According to𝑊 = 𝑑
3
𝑆 + (𝑑

4
/𝑎
3
)𝐼 + 𝑃, it follows from the

standard comparison principle that

lim inf
𝑇→∞

𝑃 (𝑇)

≥

[𝑎
3
𝑑
3
(1 − 𝑢

1
+ 𝑚
2
− 𝑚
3
) − 𝑐
1
𝑚
3
(𝑎
3
𝑑
3
− 𝑑
4
)]
2

4𝑑
3
𝑚
2
𝑎
2

3

−

𝑑
2

3
+ 𝑑
4
𝑚
3

𝑑
3

:= 𝑛
2
,

(47)

provided that 𝑎
3
𝑑
3
(1 − 𝑢

1
+ 𝑚
2
− 𝑚
3
) ≥ 𝑐
1
𝑚
3
(𝑎
3
𝑑
3
− 𝑑
4
).

Furthermore,

lim inf
𝑇→∞

𝑃 (𝑇) ≥

𝑎
3
𝑑
3
(𝑚
2
− 𝑚
3
) − 𝑐
1
𝑚
3
(𝑎
3
𝑑
3
− 𝑑
4
)

𝑎
3
𝑚
2

−

𝑑
2

3
+ 𝑑
4
𝑚
3

𝑑
3

:= 𝑛
3
,

(48)

provided that 𝑎
3
𝑑
3
(1 − 𝑢

1
+𝑚
2
−𝑚
3
) < 𝑐
1
𝑚
3
(𝑎
3
𝑑
3
− 𝑑
4
).

Let

𝑙
1
= 𝛼
1
𝑔
1
+ 1 + 𝑐

1
+ 𝑒
1
,

𝑙
2
= 1 +max{1,

(𝑏
4
− 1 − 𝑐

1
)
2

4 [𝑏
4
+ 𝑏
3
(1 + 𝑐
1
)]

}

+max{
(1 + 𝑏

3
)
2

4𝑏
3

, (16𝛼
1
𝛽
1
(ℎ
1
− 𝜎
1
) (𝑑
3
− 𝑏
3
𝑓
1
)
2

× [𝑑
3
+ 𝑓
1
(𝑏
3
+ 1)] )

× ([((1 + 𝑏
3
) 𝑓
1
− 𝑑
3
)
2

+ 4𝛽
1
(𝑑
3
− 𝑏
3
𝑓
1
)]
2

)

−1

}

+max {1, (16𝛼
1
𝛽
1
(ℎ
1
− 𝜎
1
) (1 + 𝑏

3
) (𝑑
3
− 𝑏
3
𝑓
1
)
2

)

× ([((1 + 𝑏
3
) 𝑓
1
− 𝑑
3
)
2

+ 4𝛽
1
(𝑑
3
− 𝑏
3
𝑓
1
) ]

2

)

−1

+ 𝛼
1
𝑔
1
} ,

𝑙
3
= 𝑐
1
+ 𝑒
1

+ (1 +

16𝛼
1
𝛽
1
(ℎ
1
− 𝜎
1
) (𝑑
3
− 𝑏
3
𝑓
1
)
2

[((1 + 𝑏
3
) 𝑓
1
− 𝑑
3
)
2

+ 4𝛽
1
(𝑑
3
− 𝑏
3
𝑓
1
)]

2
)

× [1 +

(𝑏
3
+ 1)
2

4𝑏
3

]

+max{𝛼
1
𝑔
1
, (16𝛼

1
𝛽
1
(ℎ
1
− 𝜎
1
)

+ 𝑓
1
(𝑑
3
+ 𝑏
3
+ 1) (𝑑

3
− 𝑏
3
𝑓
1
)
2

)

× ( [((1 + 𝑏
3
) 𝑓
1
− 𝑑
3
)
2

+4𝛽
1
(𝑑
3
− 𝑏
3
𝑓
1
) ]

2

)

−1

} .

(49)

Theorem 10. If the model system is locally stable around 𝑀∗
and inequality (22) holds, then

(a) if 𝑎
3
𝑑
3
+𝑐
1
(𝑎
3
𝑑
3
−𝑑
4
) ≤ 0 and 𝛼

1
𝑔
1
𝑛
1
(ℎ
1
−𝜎
1
)/(𝛽
1
𝑔
1
+

𝑟𝑛
1
(ℎ
1
− 𝜎
1
)) > 𝑙
1
+ 𝑙
2
+ 𝑙
3
, then model system (20) is

globally stable around𝑀∗;

(b) if 𝑎
3
𝑑
3
+ 𝑐
1
(𝑎
3
𝑑
3
− 𝑑
4
) > 0, then

(i) model system (20) is globally stable around 𝑀
∗

provided that 𝑎
3
𝑑
3
(1 − 𝑢

1
+ 𝑚
2
− 𝑚
3
) ≥

𝑐
1
𝑚
3
(𝑎
3
𝑑
3
−𝑑
4
), 𝛼
1
𝑔
1
𝑛
2
(ℎ
1
−𝜎
1
)/(𝛽
1
𝑔
1
+𝑟𝑛
2
(ℎ
1
−

𝜎
1
)) > 𝑙
1
+ 𝑙
2
+ 𝑙
3
,

(ii) model system (20) is globally stable around 𝑀
∗

provided that 𝑎
3
𝑑
3
(1 − 𝑢

1
+ 𝑚
2
− 𝑚
3
) <

𝑐
1
𝑚
3
(𝑎
3
𝑑
3
−𝑑
4
), 𝛼
1
𝑔
1
𝑛
3
(ℎ
1
−𝜎
1
)/(𝛽
1
𝑔
1
+𝑟𝑛
3
(ℎ
1
−

𝜎
1
)) > 𝑙
1
+ 𝑙
2
+ 𝑙
3
,

where 𝑛
𝑖
, 𝑖 = 1, 2, 3, and 𝑚

𝑖
, 𝑖 = 2, 3, have been defined in

Lemma 9. 𝑙
𝑖
, 𝑖 = 1, 2, 3, have been defined in (49)–(9).

Proof. According to model system (20), if inequality (22)
holds, then there exists a unique disease-free equilibrium𝑀

∗.
If 𝑎
3
𝑑
3
+ 𝑐
1
(𝑎
3
𝑑
3
− 𝑑
4
) ≤ 0 and 𝛼

1
𝑔
1
𝑛
1
(ℎ
1
− 𝜎
1
)/(𝛽
1
𝑔
1
+

𝑟𝑛
1
(ℎ
1
− 𝜎
1
)) > 𝑙
1
+ 𝑙
2
+ 𝑙
3
, then

Γ (𝐷) ≤ sup {𝑓
1
, 𝑓
2
, 𝑓
3
}

≤

̇𝑆

𝑆

−

𝛼
1
𝑔
1
𝑛
1
(ℎ
1
− 𝜎
1
)

𝛽
1
𝑔
1
+ 𝑟𝑛
1
(ℎ
1
− 𝜎
1
)

+ 𝑙
1
+ 𝑙
2
+ 𝑙
3
,

(50)
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which derives that

1

𝑇

∫

𝑇

0

Γ (𝐷) d𝑆 ≤ 1

𝑇

log 𝑆 (𝑇)
𝑆 (0)

−

𝛼
1
𝑔
1
𝑛
1
(ℎ
1
− 𝜎
1
)

𝛽
1
𝑔
1
+ 𝑟𝑛
1
(ℎ
1
− 𝜎
1
)

+ 𝑙
1
+ 𝑙
2
+ 𝑙
3
,

lim sup
𝑇→+∞

1

𝑇

∫

𝑇

0

Γ (𝐷) d𝑆

< −[

𝛼
1
𝑔
1
𝑛
1
(ℎ
1
− 𝜎
1
)

𝛽
1
𝑔
1
+ 𝑟𝑛
1
(ℎ
1
− 𝜎
1
)

− 𝑙
1
− 𝑙
2
− 𝑙
3
]

< 0.

(51)

Based on robust Bendixson criterion [31, 32], inequality
(51) ensures that there are no orbits (i.e., homoclinic orbits,
heteroclinic cycles, and periodic orbits), which give rise to a
simple closed rectifiable curve in R4, invariant for the model
system (20). Based on the above analysis, ifmodel system (20)
is locally stable around 𝑀

∗, then it follows from Lemma 8
that model system (20) is globally stable around𝑀∗.

If 𝑎
3
𝑑
3
+ 𝑐
1
(𝑎
3
𝑑
3
− 𝑑
4
) > 0, 𝑎

3
𝑑
3
(1 − 𝑢

1
+ 𝑚
2
− 𝑚
3
) ≥

𝑐
1
𝑚
3
(𝑎
3
𝑑
3
−𝑑
4
), and 𝛼

1
𝑔
1
𝑛
2
(ℎ
1
−𝜎
1
)/(𝛽
1
𝑔
1
+ 𝑟𝑛
2
(ℎ
1
−𝜎
1
)) >

𝑙
1
+ 𝑙
2
+ 𝑙
3
, then

Γ (𝐷) ≤ sup {𝑓
1
, 𝑓
2
, 𝑓
3
}

≤

̇𝑆

𝑆

−

𝛼
1
𝑔
1
𝑛
2
(ℎ
1
− 𝜎
1
)

𝛽
1
𝑔
1
+ 𝑟𝑛
2
(ℎ
1
− 𝜎
1
)

+ 𝑙
1
+ 𝑙
2
+ 𝑙
3
,

(52)

which derives that

1

𝑇

∫

𝑇

0

Γ (𝐷) d𝑆 ≤ 1

𝑇

log 𝑆 (𝑇)
𝑆 (0)

−

𝛼
1
𝑔
1
𝑛
2
(ℎ
1
− 𝜎
1
)

𝛽
1
𝑔
1
+ 𝑟𝑛
2
(ℎ
1
− 𝜎
1
)

+ 𝑙
1
+ 𝑙
2
+ 𝑙
3
,

lim sup
𝑇→+∞

1

𝑇

∫

𝑇

0

Γ (𝐷) d𝑆

< −[

𝛼
1
𝑔
1
𝑛
2
(ℎ
1
− 𝜎
1
)

𝛽
1
𝑔
1
+ 𝑟𝑛
2
(ℎ
1
− 𝜎
1
)

− 𝑙
1
− 𝑙
2
− 𝑙
3
]

< 0.

(53)

Based on robust Bendixson criterion [31, 32], inequality
(53) ensures that there are no orbits (i.e., homoclinic orbits,
heteroclinic cycles, and periodic orbits), which give rise to a
simple closed rectifiable curve in R4, invariant for the model
system (20). Based on the above analysis, ifmodel system (20)
is locally stable around 𝑀

∗, then it follows from Lemma 8
that model system (20) is globally stable around𝑀∗.

If 𝑎
3
𝑑
3
+ 𝑐
1
(𝑎
3
𝑑
3
− 𝑑
4
) > 0, 𝑎

3
𝑑
3
(1 − 𝑢

1
+ 𝑚
2
− 𝑚
3
) <

𝑐
1
𝑚
3
(𝑎
3
𝑑
3
−𝑑
4
), and 𝛼

1
𝑔
1
𝑛
3
(ℎ
1
−𝜎
1
)/(𝛽
1
𝑔
1
+ 𝑟𝑛
3
(ℎ
1
−𝜎
1
)) >

𝑙
1
+ 𝑙
2
+ 𝑙
3
, then

Γ (𝐷) ≤ sup {𝑓
1
, 𝑓
2
, 𝑓
3
}

≤

̇𝑆

𝑆

−

𝛼
1
𝑔
1
𝑛
3
(ℎ
1
− 𝜎
1
)

𝛽
1
𝑔
1
+ 𝑟𝑛
3
(ℎ
1
− 𝜎
1
)

+ 𝑙
1
+ 𝑙
2
+ 𝑙
3
.

(54)

It derives that

1

𝑇

∫

𝑇

0

Γ (𝐷) d𝑆 ≤ 1

𝑇

log 𝑆 (𝑇)
𝑆 (0)

−

𝛼
1
𝑔
1
𝑛
3
(ℎ
1
− 𝜎
1
)

𝛽
1
𝑔
1
+ 𝑟𝑛
3
(ℎ
1
− 𝜎
1
)

+ 𝑙
1
+ 𝑙
2
+ 𝑙
3
,

lim sup
𝑇→+∞

1

𝑇

∫

𝑇

0

Γ (𝐷) d𝑆

< −[

𝛼
1
𝑔
1
𝑛
3
(ℎ
1
− 𝜎
1
)

𝛽
1
𝑔
1
+ 𝑟𝑛
3
(ℎ
1
− 𝜎
1
)

− 𝑙
1
− 𝑙
2
− 𝑙
3
]

< 0.

(55)

Based on robust Bendixson criterion [31, 32], inequality
(55) ensures that there are no orbits (i.e., homoclinic orbits,
heteroclinic cycles, and periodic orbits), which give rise to a
simple closed rectifiable curve in R4, invariant for the model
system (20). Based on the above analysis, ifmodel system (20)
is locally stable around 𝑀

∗, then it follows from Lemma 8
that model system (20) is globally stable around𝑀∗.

5. Optimal Control of Model System

With the purpose of regulating harvesting and protecting
population from infectious disease within harvested eco-
epidemiological system, we design an optimal control to
maximize total discounted net revenue to society by using
taxation and vaccination as control instruments. The path
traced out by (𝑆, 𝐼, 𝑃, 𝑌)with optimal taxation 𝜎

1
and optimal

vaccination 𝑢
1
is also investigated.

Total discounted net economic revenue to society
𝜋(𝑆, 𝐼, 𝑃, 𝑌, 𝜎

1
, 𝑢
1
, 𝑇) = discounted economic revenue of har-

vesting + discounted economic revenue to regulatory agency
− vaccination cost.

It follows from model system (20), that the following can
be obtained:

𝜋 (𝑆, 𝐼, 𝑃, 𝑌, 𝜎
1
, 𝑢
1
, 𝑇)

= 𝑒
−𝛿𝑇

[

(ℎ
1
− 𝜎
1
) 𝑃𝑌

𝛽
1
+ 𝑃𝑌

− 𝑔
1
𝑌] + 𝑒

−𝛿𝑇 𝜎
1
𝑃𝑌

𝛽
1
+ 𝑃𝑌

−

1

2

𝐵𝑢
2

1

= 𝑒
−𝛿𝑇

(

ℎ
1
𝑃𝑌

𝛽
1
+ 𝑃𝑌

− 𝑔
1
𝑌) −

1

2

𝐵𝑢
2

1
,

(56)
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where 𝛿 is the instantaneous annual rate of discount and the
optimization problem is subject to the model system (20). 𝐵
is a positive weight parameter associated with the square of
control variable to balance size of the terms; see [20, 21, 24, 25]
and references therein. (1/2)𝐵𝑢2

1
represents vaccination cost

of susceptible prey population.

Remark 11. Vaccination cost discussed in this section is a
quadratic cost, which is the simplest and widest used non-
linear representation of vaccination cost; see [20, 21, 24, 25]
and references therein. Actually, when nonlinear description
is adopted, it may be not completely clear which nonlinear
formmust be appropriately chosen. In this case, choosing the
simplest form compatible with mathematical requirements
(existence, well-posedness of maximization problems, etc.) is
a possible guideline; see [20, 21, 24] and references therein.
Based on the above introduction, we consider a quadratic
cost on the optimal control problem in this section. It should
be noted that other nonlinear functions might provide a
better description of the actual vaccination cost due to the
increase of vaccination cost when most of population is
already removed (vaccinated or immune); see [21, 24] and
references therein.

5.1. Design of Optimal Control. Our objective is to maximize
the following optimization problem:

max∫
∞

0

[𝑒
−𝛿𝑇

(

ℎ
1
𝑃𝑌

𝛽
1
+ 𝑃𝑌

− 𝑔
1
𝑌) −

1

2

𝐵𝑢
2

1
] 𝑑𝑇. (57)

By using the Pontryagin’s maximum principle [12], the
associated Hamiltonian function is constructed by

𝑅 (𝑆, 𝐼, 𝑃, 𝑌, 𝜎
1
, 𝑢
1
, 𝑇)

= 𝑒
−𝛿𝑇

(

ℎ
1
𝑃𝑌

𝛽
1
+ 𝑃𝑌

− 𝑔
1
𝑌) −

1

2

𝐵𝑢
2

1
+ 𝜆
1
(𝑇)

× [𝑆 (1 − 𝑆 − 𝐼) −

𝑆𝑃

1 + 𝑏
3
𝑆 + 𝑏
4
𝐼

− 𝑐
1
𝑆𝐼 − 𝑢

1
𝑆]

+ 𝜆
2
(𝑇) (𝑐

1
𝑆𝐼 −

𝑎
3
𝐼𝑃

1 + 𝑏
3
𝑆 + 𝑏
4
𝐼

− 𝑒
1
𝐼)

+ 𝜆
3
(𝑇) [

(𝑑
3
𝑆 + 𝑑
4
𝐼) 𝑃

1 + 𝑏
3
𝑆 + 𝑏
4
𝐼

− 𝑓
1
𝑃 − 𝑃𝑌]

+ 𝜆
4
(𝑇) 𝛼
1
𝑃𝑌(

ℎ
1
− 𝜎
1

𝛽
1
+ 𝑃𝑌

−

𝑔
1

𝑃

) ,

(58)

where 𝜆
𝑖
(𝑇), 𝑖 = 1, 2, 3, 4, are adjoint variables. 𝜎

1
and 𝑢

1
are

the control variables. According to [33], the conditions for a
singular control to be optimal can be obtained by 𝜕𝑅/𝜕𝜎

1
= 0

and 𝜕𝑅/𝜕𝑢
1
= 0, from which we get

𝜆
4
(𝑇) 𝛼
1
𝑃𝑌

𝛽
1
+ 𝑃𝑌

= 0, 𝜆
1
(𝑇) 𝑆 + 𝐵𝑢

1
= 0. (59)

According toTheorem 3, it follows that

𝜆
4
(𝑇) = 0, 𝑢

1
= −

𝜆
1
(𝑇) 𝑆

𝐵

. (60)

For adjoint variables 𝜆
𝑖
(𝑇), 𝑖 = 1, 2, 3, 4, we have

d𝜆
1
(𝑇)

d𝑇
= −

𝜕𝑅

𝜕𝑆

,

d𝜆
2
(𝑇)

d𝑇
= −

𝜕𝑅

𝜕𝐼

,

d𝜆
3
(𝑇)

d𝑇
= −

𝜕𝑅

𝜕𝑃

,

d𝜆
4
(𝑇)

d𝑇
= −

𝜕𝑅

𝜕𝑌

.

(61)

By substituting 𝜆
4
(𝑇) = 0 into the Equation d𝜆

4
(𝑇)/d𝑇 =

−𝜕𝑅/𝜕𝑌, it follows that

𝜆
3
(𝑇) = 𝑒

−𝛿𝑇
(

ℎ
1
𝛽
1

(𝛽
1
+ 𝑃𝑌)

2
−

𝑔
1

𝑃

) . (62)

By virtue of (62), it gives that

d𝜆
1
(𝑇)

d𝑇
= [2𝑆 + (𝑐

1
+ 1) 𝐼 +

𝑃 (1 + 𝑏
4
𝐼)

(1 + 𝑏
3
𝑆 + 𝑏
4
𝐼)
2
− 1 + 𝑢

1
]𝜆
1

− 𝐼[𝑐
1
+

𝑎
3
𝑏
3
𝑃

(1 + 𝑏
3
𝑆 + 𝑏
4
𝐼)
2
]𝜆
2

+ 𝑒
−𝛿𝑇

[𝑔
1
−

ℎ
1
𝛽
1
𝑃

(𝛽
1
+ 𝑃𝑌)

2
]

(𝑏
4
𝑑
3
− 𝑏
3
𝑑
4
) 𝐼 + 𝑑

3

(1 + 𝑏
3
𝑆 + 𝑏
4
𝐼)
2

.

(63)

By associating with𝑀∗(𝑆∗, 0, 𝑃∗, 𝑌∗), the above equation
can be deduced as follows:

d𝜆
1
(𝑇)

d𝑇
= 𝑄
2
𝜆
1
−

𝑑
3
(1 − 𝑆

∗
) 𝑄
1

1 + 𝑏
3
𝑆
∗

𝑒
−𝛿𝑇

, (64)

where 𝑄
1
= ℎ
1
𝛽
1
/(𝛽
1
+ 𝑃
∗
𝑌
∗
)
2
− 𝑔
1
/𝑃
∗ and 𝑄

2
= [2𝑏
3
𝑆
∗
−

𝑏
3
+ 1 + 𝑏

3
𝑢
1
]𝑆
∗
/(1 + 𝑏

3
𝑆
∗
).

By solving (64), it can be obtained that

𝜆
1
(𝑇) =

𝑑
3
(1 − 𝑆

∗
) 𝑄
1

(𝛿 + 𝑄
2
) (1 + 𝑏

3
𝑆
∗
)

𝑒
−𝛿𝑇

. (65)

By virtue of (62), it gives that

d𝜆
2
(𝑇)

d𝑇
= 𝑆[(1 + 𝑐

1
) −

𝑏
4
𝑃

(1 + 𝑏
3
𝑆 + 𝑏
4
𝐼)
2
]𝜆
1

+ [

𝑎
3
𝑃 (1 + 𝑏

3
𝑆)

(1 + 𝑏
3
𝑆 + 𝑏
4
𝐼)
2
+ 𝑒
1
− 𝑐
1
𝑆] 𝜆
2

+ 𝑒
−𝛿𝑇

(𝑔
1
−

ℎ
1
𝛽
1
𝑃

(𝛽
1
+ 𝑃𝑌)

2
)

𝑑
4
+ (𝑏
3
𝑑
4
− 𝑏
4
𝑑
3
) 𝑆

(1 + 𝑏
3
𝑆 + 𝑏
4
𝐼)
2

.

(66)

By associating with𝑀∗(𝑆∗, 0, 𝑃∗, 𝑌∗), the above equation
can be deduced as follows:
d𝜆
2
(𝑇)

d𝑇
= 𝑄
3
𝜆
1
+ 𝑄
5
𝜆
2

+

(𝑆
∗
+ 𝑢
1
− 1) [𝑑

4
+ (𝑏
3
𝑑
4
− 𝑏
4
𝑑
3
) 𝑆
∗
] 𝑄
1

1 + 𝑏
3
𝑆
∗

𝑒
−𝛿𝑇

,

(67)
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where𝑄
3
= [(𝑏
4
+𝑏
3
+𝑏
3
𝑐
1
)𝑆
∗
−𝑏
4
+𝑐
1
+1+𝑏

4
𝑢
1
]𝑆
∗
/(1+𝑏

3
𝑆
∗
)

and 𝑄
5
= [𝑎
3
+ 𝑒
1
− (𝑐
1
+ 𝑎
3
)𝑆
∗
].

According to (65), (67) can be rewritten as follows:

d𝜆
2
(𝑇)

d𝑇
= 𝑄
5
𝜆
2
−

(𝑆
∗
− 1)𝑄

1
𝑄
4

1 + 𝑏
3
𝑆
∗

𝑒
−𝛿𝑇

, (68)

where𝑄
4
= 𝑑
3
𝑄
3
/(𝛿 +𝑄

2
)(1 + 𝑏

3
𝑆
∗
) − [𝑑
4
+ (𝑏
3
𝑑
4
− 𝑏
4
𝑑
3
)𝑆
∗
].

By solving (68), it can be obtained that

𝜆
2
(𝑇) =

(𝑆
∗
+ 𝑢
1
− 1)𝑄

1
𝑄
4

(1 + 𝑏
3
𝑆
∗
) (𝛿 + 𝑄

5
)

𝑒
−𝛿𝑇

. (69)

Based on (65) and (69), it can be obtained that

d𝜆
3
(𝑇)

d𝑇
=

ℎ
1
𝛽
1
𝑌𝑒
−𝛿𝑇

(𝛽
1
+ 𝑃𝑌)

2
+

𝑆𝜆
1

1 + 𝑏
3
𝑆 + 𝑏
4
𝐼

+

𝑎
3
𝐼𝜆
2

1 + 𝑏
3
𝑆 + 𝑏
4
𝐼

+ (𝑓
1
+ 𝑌) 𝜆

3
.

(70)

By associating with 𝑀
∗
(𝑆
∗
, 0, 𝑃
∗
, 𝑌
∗
), (70) can be

deduced as follows:

d𝜆
3
(𝑇)

d𝑇
=

ℎ
1
𝛽
1
𝑌
∗
𝑒
−𝛿𝑇

(𝛽
1
+ 𝑃
∗
𝑌
∗
)
2
+

𝑆
∗
𝜆
1

1 + 𝑏
3
𝑆
∗
+

𝑑
3
𝑆
∗

1 + 𝑏
3
𝑆
∗
𝜆
3

=

𝑑
3
𝑆
∗

1 + 𝑏
3
𝑆
∗
𝜆
3

+ [

ℎ
1
𝛽
1
𝑌
∗

(𝛽
1
+ 𝑃
∗
𝑌
∗
)
2
+

𝑑
3
𝑆
∗
(1 − 𝑆

∗
) 𝑄
1

(𝛿 + 𝑄
2
) (1 + 𝑏

3
𝑆
∗
)
2
] 𝑒
−𝛿𝑇

.

(71)

By solving the above equation, it can be obtained that

𝜆
3
(𝑇)

=

ℎ
1
𝛽
1
𝑑
3
𝑆
∗
(𝑆
∗
− 1) − ℎ

1
𝛽
1
𝑌
∗
(𝛿 + 𝑄

2
) (1 + 𝑏

3
𝑆
∗
)
2

(𝛿 + 𝑄
2
) (1 + 𝑏

3
𝑆
∗
) (𝛽
1
+ 𝑃
∗
𝑌
∗
)
2

[𝛿 + (𝑏
3
𝛿 + 𝑑
3
) 𝑆
∗
]

× 𝑒
−𝛿𝑇

.

(72)

In order to obtain an optimal equilibrium solution, it can
be obtained by considering the disease-free equilibrium 𝑀

∗

and substituting (72) into (62), and it derives that

1 −

𝑔
1
(𝛽 + 𝑃

∗
𝑌
∗
)
2

𝑃
∗
ℎ
1
𝛽
1

=

𝑑
3
𝑆
∗
(𝑆
∗
− 1) − 𝑌

∗
(𝛿 + 𝑄

2
) (1 + 𝑏

3
𝑆
∗
)
2

(𝛿 + 𝑄
2
) (1 + 𝑏

3
𝑆
∗
) [𝛿 + (𝑏

3
𝛿 + 𝑑
3
) 𝑆
∗
]

.

(73)

Equation (73) provides an equation to the singular path
and gives the optimal equilibrium levels of population 𝑆

∗
=

𝑆
𝛿
, 𝑃∗ = (1−𝑢

1
−𝑆
𝛿
)(1+𝑏

3
𝑆
𝛿
),𝑌∗ = ((𝑑

3
−𝑏
3
𝑓
1
)𝑆
𝛿
−𝑓
1
)/(1+

𝑏
3
𝑆
𝛿
). Then, the optimal equilibrium levels of taxation and

vaccination control can be obtained as follows:

𝑢
1𝛿
= (𝑏
3
− 1 − (𝑏

3
𝛿 + 2𝑏

3
) 𝑆
𝛿

+ ([𝑏
3
− 1 − (𝑏

3
𝛿 + 2𝑏

3
) 𝑆
𝛿
]
2

+ (

4𝑏
3
𝑑
3
𝑆
𝛿
(𝑆
𝛿
− 1) 𝑒

−𝛿𝑇

𝐵

)

1/2

)

× (2𝑏
3
)
−1

,

𝜎
𝛿
= ([𝑔

1
(𝑑
3
− 𝑏
3
𝑓
1
) − ℎ
1
𝑏
3
] 𝑆
2

𝛿

+ ℎ
1
(1 − 𝑢

1
) + 𝑔
1
[𝑓
1
(1 − 𝑢

1
) − 𝛽
1
] )

× ((1 + 𝑏
3
𝑆
𝛿
) (1 − 𝑢

1
− 𝑆
𝛿
))
−1

+ ([(𝑏
3
− 𝑏
3
𝑢
1
− 1) ℎ

1
− 𝑔
1
[𝑓
1
+ (1 − 𝑢

1
)

× (𝑑
3
− 𝑏
3
𝑓
1
)]] 𝑆
𝛿
)

× ((1 + 𝑏
3
𝑆
𝛿
) (1 − 𝑢

1
− 𝑆
𝛿
))
−1

.

(74)

Remark 12 (according to [13]). 𝜆
𝑖
(𝑇)𝑒
𝛿𝑇

(𝑖 = 1, 2, 3, 4)

represent unusual shadow prices along the singular path.
From (65), (69), and (72), it may be concluded that these
shadow prices remain constant over time interval in an opti-
mum equilibrium when they strictly satisfy the transversality
condition at ∞ [34]. Furthermore, they remain bounded as
𝑇 → ∞.

Generally, there is a strong ecological relationship
between predator population and susceptible prey population
in the harvested eco-epidemiological system, and these two
species are usually influenced by each other in several aspects.
The imposition of taxation and vaccination defined in (74)
act as a deterrent to regulate harvest effort on predator
population and control the spread of infectious disease
within eco-epidemiological prey predator system, which can
not only guarantee the sustainable development of predator
population, but also benefit the ecological balance in the
ecosystem and sustainable development of other relevant
species in the harvested eco-epidemiological system.

5.2. Numerical Simulation. With the help ofMATLAB, simu-
lation work with hypothetical set of parameters is performed
to understand the theoretical results which have been estab-
lished in Section 5.1 of this paper. The values of parameters
are cited from [9, 12], which are given as follows: 𝑟 = 1, 𝑘 =

1, 𝑎
1
= 1, 𝑏

1
= 2.34, 𝑏

2
= 3, 𝑐 = 0.01, 𝑎

2
= 0.344, 𝑒 =

0.051, 𝑑
1
= 0.21, 𝑑

2
= 0.6774, 𝑓 = 0.001, 𝛼 = 0.4, ℎ =

1.67, 𝛽 = 1.1, 𝑔 = 0.41, 𝛿 = 0.05, and 𝐵 = 1.
According to the parameters given above, it follows from

(22) that the range of the taxation 𝜎
1
∈ [0.4496, 1.6336] and

vaccination 𝑢
1
∈ [−1.3663, 1), which guarantees that there
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Figure 1: Dynamical responses of model system (20) with the
optimal taxation and vaccination 𝜎
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Figure 2: Phase portrait (𝑆-𝐼-𝑃 space) of model system (20) with
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= 1.0653, and 𝑢
1𝛿

= 0.483 and differential initial values,
which indicates model system (20) is globally stable around 𝑀

∗

(0.5648, 0, 0.9406, 0.0501).

exists a unique disease-free equilibrium. Based on (74), it can
be computed that the optimal taxation and optimal vaccina-
tion control is 𝜎

𝛿
= 1.0653 and 𝑢

1𝛿
= 0.483, respectively.

Since 𝜎
𝛿
∈ [0.4496, 1.6336] and 𝑢

1𝛿
∈ [−1.3663, 1), it can be

obtained that there exists a unique disease-free equilibrium
𝑀
∗ corresponding to the optimal taxation and vaccination

control, that is, 𝑀∗(0.5648, 0, 0.9406, 0.0501). According to
Theorem 10, model system (20) is globally stable around𝑀∗,
whose dynamical responses can be shown in Figure 1, and the
corresponding phase portraits are shown in Figure 2 (𝑆-𝐼-𝑃
space), Figure 3 (𝑆-𝑌-𝑃 space), and Figure 4 (𝑌-𝑃-𝐼 space)
with different initial values.
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Figure 3: Phase portrait (𝑆-𝑌-𝑃 space) of model system (20) with
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= 1.0653 and 𝑢
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= 0.483 and differential initial values,
which indicates model system (20) is globally stable around 𝑀

∗
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0
0.05

0.15
0.25

0
0.5

1
1.5

2

0

0.05

0.1

0.1
0.2

0.15

I(
t)

P(t)

−0.05

(Y∗
, P

∗
, 0)

Y(t)
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6. Conclusion

It is well known that studies on ecology and epidemiology
share some common features. Nowadays, taxation is exten-
sively used as economic control instrument to protect the
population of the prey predator system from overexploita-
tion, and vaccination is widely adopted to control spread
of infectious disease within harvested eco-epidemiological
system. Based on superiority of taxation control in regulating
harvesting and effectiveness of vaccination in protecting pop-
ulation from infectious disease, it motives the introduction
of taxation and vaccination control into model proposed in
this paper. In this paper, a harvested eco-epidemiological
model is established to investigate the dynamics effects of
vaccination and taxation control on the population dynamics.
We extend the work in [9] by incorporating the harvest effort
into eco-epidemiological prey predator system. Vaccination
and taxation are chosen as controlling instruments to protect
population from infectious disease and regulate harvesting
on predator, respectively.
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Since it is of more biological significance to consider
the effect of interacting species when it comes to discussing
dynamics of epidemiological model, conditions that influ-
ence nonnegativeness and boundedness of solutions are
discussed, which can be found in Theorems 3 and 4. Local
stability analysis around disease-free equilibrium is studied
in Theorem 7. Based on robust Bendixson criterion, global
stability of model system around the unique disease-free
equilibrium is discussed in Theorem 10, which is theoreti-
cally beneficial to studying the coexistence and interaction
mechanism of harvested eco-epidemiological prey predator
system. By using Pontryagin’s maximum principle, optimal
vaccination and taxation control are derived to ensure the
sustainable development of biological resource and protect
population from infectious disease in the fifth section of this
paper. It reveals that the total user’s cost of harvest per unit
effortmust be equal to the discounted value of the future price
at the steady-state level, and infectious disease among prey
population can be removedwith optimal vaccination strategy
on susceptible prey population.

It should be noted that the optimal control is obtained
based on an interesting reflection, which discusses the impact
and efficiency of optimal control and deducts a tendency
for the management of biological resource. Since infectious
disease spreads within the eco-epidemiological prey predator
system and the commercial harvesting exists extensively in
the natural world, it is necessary to discuss optimal strategy
associated with net harvesting revenue and vaccination cost.
Hence, theoretical analysis obtained in the fifth section is
constructive for regulatory agency to formulate constructive
policies andmaintain the sustainable harvesting and effective
vaccination by means of optimal taxation and vaccination
control; it makes the work studied in this paper have some
new and positive features.
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