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The basic motivation of this paper is to extend, generalize, and improve several fundamental results on the existence (and
uniqueness) of coincidence points and fixed points for well-known maps in the literature such as Kannan type, Chatterjea type,
Mizoguchi-Takahashi type, Berinde-Berinde type, Du type, and other types from the class of self-maps to the class of non-self-maps
in the framework of the metric fixed point theory. We establish some fixed/coincidence point theorems for multivalued non-self-

maps in the context of complete metric spaces.

1. Introduction

During the last few decades, the celebrated Banach contrac-
tion principle, also known as the Banach fixed point theorem
[1], has become one of the core topics of applied mathematical
analysis. As a consequence, a number of generalizations,
extensions, and improvement of the praiseworthy Banach
contraction principle in various direction have been explored
and reported by various authors; see, for example, [2-30] and
the references therein. In parallel with the Banach contraction
principle, Kannan [5] and Chatterjea [6] created, respectively,
different type, fixed point theorems as follows.

Theorem 1 (Kannan). Let (X, d) be a complete metric space,
T:X — Xisasingle-valued map, and y € [0,1/2). Assume

that
d(Tx,Ty) <y[d(x,Tx)+d (y,Ty)] Vx,yeX. (1)

Then T has a unique fixed point in X.

Theorem 2 (Chatterjea). Let (X,d) be a complete metric
space, T : X — X is a single-valued map, and y € [0,1/2).
Assume that

d(Tx,Ty) < y[d(x,Ty) +d(y,Tx)]
Then T has a unique fixed point in X.

Vx,y e X. (2)

The characterization of the renowned Banach fixed point
theorem in the setting of multivalued maps is one of the
most outstanding ideas of research in fixed point theory. The
remarkable examples in this trend were given by Nadler [2],
Mizoguchi and Takahashi [3], and M. Berinde and V. Berinde
[4]. On the other hand, investigation of the existence of a
fixed point of non-self-maps under certain condition is an
interesting research subject of metric fixed point theory, see,
for example, [19-27], and references therein.

The following attractive result was reported by M. Berinde
and V. Berinde [4] in 2007.

Theorem 3 (M. Berinde and V. Berinde). Let (X,d) be a
complete metric space, T : X — G€RB(X) a multivalued map,
¢ :[0,00) — [0,1)an AT -function (i.e, limsup,_, ,+¢(s) <
1 forallt € [0,00)), and L > 0. Assume that

H (Tx,Ty) < ¢ (d(x,y))d (x, y) + Ld (y, Tx)
Vx,y € X.
Then T has a fixed point in X.

If we take L = 0 in Theorem 3, then we conclude the
remarkable result of Mizoguchi and Takahashi [3] which is
a partial answer of problem 9 in [8].



Theorem 4 (Mizoguchi and Takahashi). Let (X,d) be a
complete metric space, T : X — GRB(X) a multivalued map,
and ¢ : [0,00) — [0,1) an MT -function. Assume that

(ITx,Ty) <o(d(x,y))d(x,y) Vx,yeX. (4)
Then T has a fixed point in X.

Recently, Du [12] established the following theorem
which is an extension of Theorem 3 and hence Theorem 4.

Theorem 5 (Du). Let (X, d) be a complete metric space, T :
X — GRB(X) a multivalued map, ¢ : [0,00) — [0,1) an
MT -function and h : X — [0, 00) a function. Assume that

# (Tx,Ty) < ¢ (d(x,y))d (x, y) + h(y)d (y, Tx)
Vx,y € X.

Then T has a fixed point in X.

The basic objective of this paper is to investigate the
existence of coincidence and fixed points of multivalued non-
self-maps under the certain conditions in the setting of metric
spaces. The presented results generalize, improve, and extend
several crucial and notable results that examine the existence
of the coincidence/fixed point of well-known maps such as
Kannan type, Chatterjea type, Mizoguchi-Takahashi type,
Berinde-Berinde type, Du type, and other types in the context
of complete metric spaces.

2. Preliminaries

Let (X,d) be a metric space. For each x € X and A ¢
X, let d(x, A) = infyeAd(x, y). Denote by J/(X) the class
of all nonempty subsets of X and €% (X) the family of all
nonempty closed and bounded subsets of X. A function # :
CRB(X) x €AB(X) — [0,00) defined by

# (A, B) = max {supd (x,A),supd (x, B)} (6)

x€B x€A

is said to be the Hausdorft metric on % (X) induced by
the metric d on X. It is also known that (€% (X), #) is a
complete metric space whenever (X, d) is a complete metric
space.

Let K be a nonempty subset of X, g : K — X a single-
valued map, and T : K — J/(X) a multivalued map. A
point x in X is a coincidence point of g and T if gx € Tx.
If g = id is the identity map, then x = gx € Tx and call
x a fixed point of T. The set of fixed points of T and the set
of coincidence point of g and T are denoted by F (T) and
COP(g,T), respectively. In particular, if K = X, we use
F(T) and €0O0P(g, T) instead of F (T) and €OFP(g,T),
respectively. Throughout this paper, we denote by N, and R,
the set of positive integers and real numbers, respectively.

Let f be a real-valued function defined on R. For ¢ € R,
we recall that

lim sup f (x) = 1£r>lg sup f (x). (7)

x—ct c<x<cte
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Definition 6 (see [9-18]). A function ¢ [0,00) —
[0,1) is said to be an M T - function (or K- function) if
lim sup, _, +¢(s) < 1 forallt € [0, 00).

Itis evident thatif ¢ : [0,00) — [0, 1) is a nondecreasing
function or a nonincreasing function, then ¢ is an AT -
function. So the set of ./#J -functions is a rich class. An
example which is not an 4 J -function is given as follows.
Let ¢ : [0,00) — [0, 1) be defined by

sint . V14
¢ (t) = {T ‘ft€<0’5] ®)

0, otherwise.

We note that ¢ is not an /#J -function, since

limsup, _, o+ ¢(s) = 1.
In what follows that, we recall some characterizations of
M T -functions proved first by Du [12].

Theorem 7 (see [12]). Let ¢ : [0,00) — [0, 1) be a function.
Then the following statements are equivalent.

(a) ¢ is an M T -function.

(b) Foreacht € [0, 00), thereexistr” € [0,1) and e > 0
such that ¢(s) < rt(l)for alls e (t,t+ sfl)).

(c) Foreacht € [0,00), there existrt(z) € [0,1) and €§2) >0
such that ¢(s) < rt(z) foralls € [t,t+ sz)].

(d) Foreacht € [0,00), there existry”) € [0,1) and e > 0
such that ¢(s) < rt(3)for alls e (t,t+ 853)].

(e) Foreacht € [0, c0), there existr™® € [0,1) and e > 0
such that ¢(s) < rt(4) foralls € [t,t+ 854)).

(f) For any nonincreasing sequence {x,},cy in [0, 00), one
has 0 < sup,\@(x,) < L.

(g) @ is a function of contractive factor; that is, for any
strictly decreasing sequence {x,},,cy it [0, 00), we have
0 < sup,ne(x,) < 1.

3. Existence Theorems of Coincidence Points
and Fixed Points for Multivalued Non-Self-
Maps of Kannan Type and Chatterjea Type

In this section, we prove the existence of coincidence
points and fixed points of multivalued non-self-maps of
Kannan type and Chatterjea type. For this purpose, we first
established a new intersection theorem of €02 (g, T) and
F (T) for multivalued non-self-maps in complete metric
spaces.

Theorem 8. Let (X,d) be a complete metric space, K a
nonempty closed subset of X, T : K — €%(X) a multivalued
map and g : K — X a continuous self-map. Suppose that

(D) TxNK+0 forall x € K,

(D2) Tx N K is g-invariant (i.e., g(Tx N K) € Tx N K) for
each x € K,
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(D3) there exist a functionh : K — [0, 00) andy € [0,1/2)
such that

Z (Tx, Ty NK)
<y[dxTxnK)+d(y,TxNK)+d(y, TynK)] ©)
+h(y)d(gy,TxNK)
Vx,y € K.

Then €OP (g, T) N F (T) #0.

Proof. Since K a nonempty closed subset of X and X is
complete, (K, d) is also a complete metric space. Let x € K.
Putk = y/(1-yp)and A = (1 +k)/2.So00 <k < A < 1. Let
y € Tx N K be arbitrary. Then d(y, Tx N K)) = 0. By (D2), we
have d(gy, Tx N K) = 0. Hence (9) implies
Z (Tx, Ty NK)
Sy[d(x,TxﬂK)+7/(Tx,TyﬂK)] (10)
Vy eTxNnK.

Inequality (10) shows that

d(y,TynK) < # (Tx,TynK)
<kd(x,Tx N K) < Ad (x, y) (11)
Vy e TxNK.

Let x € K be given. Take x; = x. By (D1), Tx; NK # 0. Choose
x, € Tx; N K. If x, = x;, then x; € F(T) and hence gx, €
Tx, from (D2). Hence x; € €0P(g,T) N F ¢ (T) and the
proof is finished. Otherwise, if x, # x;, then d(x,, x,) > 0. By
(11), we have

d (x,, Tx, N K) < A (x1,x,), (12)
which implies that there exists x5 € Tx, N K such that
d (x5, x3) < M (x1,x,) . (13)
Next, by (11) again, there exists x, € Tx; N K such that
d (x5, x,) < M (x5, x3) . (14)
By induction, we can obtain a sequence {x,,} in K satisfying
X, € Tx, NK, 15)
d (X1 Xpy2) < Ad (X Xpp1) - (16)
By (16), we have

d (xn+1’ xn+2) <Ad (Xn, xn+1)

< Nd(x,,x,)

17)
< vee

<AN'd(x;,x,), forneN.

Let p, = At - A)d(x,,x,),n € N. Form, n € N with
m > n, we have

m—1
d(xn’xm) < zd(xj’xjﬂ) < Pn- (18)
j=n

Since 0 < A < 1, lim, ,.p, = 0 and hence
lim,_, ., sup{d(x,,x,,) : m > n} = 0. This proves that {x,}
is a Cauchy sequence in K. By the completeness of K, there
exists v € K such that x, — vasn — co. By (15) and (D2),
we have

gXp € Tx, NK for each n e N. (19)

Since g is continuous and lim x, = v, we have

n— 00

lim gx, = gv. (20)

n— 00

Since the function x + d(x,Tv) is continuous, by (9), (15),
(19), and (20), we get

d(v,TvNK)
= lim d (x,,,, TvNK)
< lim % (Tx,, Tv N K)
< lim {y[d(x,,Tx,NK)+d (v,Tx,NK)
+d (v, Tv N K)] o
+h(v)d(gv,Tx, N K)}
< lim {y[d (x, x,.1)
+d (v, x,,1) +d (v, TvN K)]
+h (v) d (gv> 9Xpi1)}
=yd (v,TvnK),

which implies d(v,Tv N K) = 0. By the closedness of Tv, we
have v € Tv n K. From (D2), gv € Tv N K < Tv. Hence we
verify v € €#0P (g, T) N F ¢ (T). The proof is complete. []

Theorem 9. In Theorem 8, if condition (D3) is replaced with
one of the following conditions:

(K1) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

% (ITx,Ty NK)

<yld(x,TxNK)
(22)
+d (y,TxNK) +d(y, TynK)]

+h(y)d(gy,Tx) Vx,y €K,



(K2) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

?/(Tx,Ty ﬂK)
<yldxTxnK)+d(y,Tx)+d(y, TynK)] (23)

+h(y)d(gy,TxNK) Vx,y €Kk,

(K3) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

%(Tx,TyﬂK)
<y[ld(,TxnK)+d(y,Tx)+d(y,TynK)] (24)

+h(y)d(gy,Tx) Vx,y €K,

(K4) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

%(Tx,Tyr‘lK)
<yld(xTx)+d(y, TxnK)+d(y, TynK)] (25)

+h(y)d(gy,TxNK) Vx,y€K,

(K5) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

Z (Tx, Ty N K)
<yld(xTx)+d(y,TxNK)+d(y,TynK)] (26)

+h(y)d(gy,Tx) Vx,y €K,

(K6) there exist a functionh : K — [0,00) andy € [0,1/2)
such that
# (Tx, Ty N K)
<yld(xTx)+d(y,Tx)+d(y,TynK)]  (27)

+h(y)d(gy,TxNK) Vx,y€K,

(K7) there exist a functionh : K — [0,00) andy € [0,1/2)
such that
# (Tx, Ty N K)
<yld(xTx)+d(y,Tx)+d(y,TynK)]  (28)

+h(y)d(gy,Tx) Vx,y€K.

Then 0P (g, T) N F (T) +0.

Proof. It is obvious that any of these conditions (K1)-(K7)
implies condition (D3) as in Theorem 8. So the desired
conclusion follows from Theorem 8 immediately. O

The following fixed point theorem for multivalued non-
self-maps of generalized Kannan type can be established
immediately from Theorem 9 for g = id (the identity
mapping).
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Theorem 10. Let (X,d) be a complete metric space, K a
nonempty closed subset of X, and T : K — GRB(X) a
multivalued map. Suppose that Tx N K # 0 for all x € K and
one of the following conditions holds:

(P1) there exist a functionh : K — [0, 00) andy € [0,1/2)
such that

%(Tx,TyﬂK)
<y[dxTxnK)+d(y,TxnK)+d(y,TynK)]
+h(y)d(y,TxNK) Vx,ye€K,
(29)
(P2) there exist a functionh : K — [0,00) andy € [0,1/2)
such that
F (Tx, Ty N K)
<y[dxTxnK)+d(y,TxNK)+d(y, Ty nK)]
+h(y)d(y,Tx) Vx,ye€Kk,
(30)

(P3) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

Z (Tx, Ty nK)
<yldxTxnK)+d(y,Tx)+d(y,TynK)] (31)
+h(y)d(y,TxnK) Vx,ye€Kk,

(P4) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

# (Tx, Ty N K)
<yldxTxnK)+d(y,Tx)+d(y,TynK)]

+h(y)d(y,Tx) Vx,ye€Kk,

(32)
(P5) there exist a functionh : K — [0,00) andy € [0,1/2)
such that
Z (Tx,Ty NK)
<yldxTx)+d(y,TxNK)+d(y,TynK)] (33)

+h(y)d(y,TxNK) Vx,y€Kk,

(P6) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

# (Tx, Ty N K)
<y[d(xTx)+d(y, TxnK)+d(y,TynK)] (34)
+h(y)d(y,Tx) Vx,y €K,
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(P7) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

# (Tx, Ty NK)
<yldxTx)+d(y,Tx)+d(y,TynK)]  (35)
+h(y)d(y,TxNK) Vx,y €K,
(P8) there exist a functionh : K — [0,00) andy € [0,1/2)
such that
F (Tx, Ty NK)
<y[dxTx)+d(y,Tx)+d (., TynK)]  (36)
+h(y)d(y,Tx) Vx,yeK.
Then F (T) # 0.
As a consequence of Theorem 10, we obtain the following

generalized Kannan type fixed point theorems for multival-
ued maps.

Corollary 11. Let (X,d) be a complete metric space, K a
nonempty closed subset of X, and T : K — GRB(X) a
multivalued map. Suppose that Tx N K #0 for all x € K and
there exists y € [0,1/2) such that

 (Tx,TynK) <y[d(x,TxNK)+d(y,TynK)]
Vx,y € K.
Then F (T) 0.

Remark 12. (a) If K = X in Corollary 11, then we can obtain
a multivalued version of Kannan’s fixed point theorem [5].

(b) Theorems 8-10 and Corollary 11 all extend and
generalize Kannan’s fixed point theorem.

Theorem 13. Let (X,d) be a complete metric space, K a
nonempty closed subset of X, T : K — €%(X) a multivalued
map, and g : K — X a continuous self-map. Suppose that
conditions (DI) and (D2) as in Theorem 8 hold. If there exist
h:K — [0,00)andy € [0,1/2) such that

Z# (Tx, Ty N K)
<ald(x,TynK)+d(y,TxnK)] (38)
+h(y)d(gy,TxNK) Vx,ye€K.
Then GOP (g, T) N F ¢ (T) £0.

Proof. Let x € K. Since a € [0,1/2), by the denseness of R,
we can find 5 > Osuch thata < § < 1/2.Let y € Tx N K be
arbitrary. Then d(y, TxNK) = 0. By (D2), we have d(gy, Txn
K) = 0. Hence (38) has been reduced to

d(y,TynK) < (Tx,TynK)
<ad(x,TyNnK) (39)

<[3d(x,TyﬂK) Vy e TxNK.

Let x € K be given. Take x; = x. By (D1), Tx, NK # 0. Choose
x, € Tx, N K.If x, = x;, then x; € F(T) and hence gx, €
Tx, from (D2). Hence x; € €0P(g,T) N F¢(T) and the
proof is finished. Otherwise, if x, # x;, then d(x;, x,) > 0. By
(39), we have

d (x,, Tx, NK) < pd (x,,Tx, N K), (40)
which implies that there exists x5 € Tx, N K such that
d (x,,x5) < Bd (x;, Tx, NK)
< Bd (x;,x3) (41)
< Bld (x1,x,) +d (x5, x5)] .
Lety = B/(1 — B). Then y € (0,1) and the last inequality
implies

d (x5, x3) < yd (x,,%,). (42)

Continuing in this way, we can construct inductively a
sequence {x,},cy in K satisfying

X € Tx, NK,
(43)
d (xn+1’ xn+2) < Vd (xn’ xn+1)

for each n € N. Using a similar argument as in the proof of
Theorem 8, we have the following:

(i) x,4; € Tx, NK;
(ii) {x,} is a Cauchy sequence in K;
(iii) there exists v € K such that x, — vasn — 00;
(iv) gx,4q € Tx, N K for eachn € N;
(v) lim,, _, . gx,, = gv.
By (38), we get
d (v, TvnK)
= lim d (x,,,, Tv N K)
< lim % (Tx,, Tv N K)
< lim {a[d(x,,TvnK)+d(v,Tx, N K)]
+h(v)d (gv, Tx, N K)}

< lim {a[d(x,, TvNK)+d(v,x,,1)]

+h (V) d (gv) gxn+1)}
=ad(v,TvNnK),
(44)

which implies d(v, Tv N K) = 0. By the closedness of T'v, we
have v € Tv N K. By (D2), gv € Tvn K < Tv and hence
v € BOP(g,T) N F (T). The proof is complete. O



Theorem 14. In Theorem 13, if inequality (38) is replaced with
one of the following inequalities:

(Cy
# (Tx, Ty N K)
<a[d(x,TynK)+d(y,TxNK)] (45)
+h(y)d(gy,Tx) Vx,y€K,
(C2)
F# (Tx, Ty N K)
<ald(x,Ty)+d(y,TxNK)] (46)
+h(y)d(gy, TxNK) Vx,y €K,
(C3)
# (Tx, Ty N K)
<ald(x,Ty)+d(y, TxnK)] (47)
+h(y)d(gy,Tx) Vx,y €K,
(C4)
Z (Tx, Ty NK)
<ald(x,TynK)+d(y,Tx)] (48)
+h(y)d(gy,TxNK) Vx,ye€K,
(C5)
Z (Tx, Ty nK)
<ald(x,TynK)+d(y,Tx)] (49)
+h(y)d(gy,Tx) Vx,y €K,
(Co)
F (Tx, Ty N K)
<ald(x,Ty)+d(y,Tx)] (50)
+h(y)d(gy,TxnK) Vx,y€Kk,
(C7)
Z (Tx, Ty nK)
<ald(x,Ty) +d(y Tx)] (51)

+h(y)d(gy,Tx) Vx,y €K,

then €0 Py (g, T) N F (T) #0.

Applying Theorem 14, we can prove the following fixed
point theorems for multivalued maps of generalized Chatter-

jea type.

Theorem 15. Let (X,d) a complete metric space, K a
nonempty closed subset of X, and T : K — BRBX)
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a multivalued map. Suppose that Tx N K +0 for all x € K and
one of the following conditions holds:

(Q1) there exist a functionh : K — [0, 00) andy € [0,1/2)
such that

Z (Tx, Ty NK)
<ald(x,TynK)+d(y,TxNK)] (52)

+h(y)d(y,TxNK) Vx,y€Kk,

(Q2) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

Z (Tx, Ty nK)
<a[d(x,TynK)+d(y,TxNK)] (53)
+h(y)d(y,Tx) Vx,ye€Kk,

(Q3) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

Z (Tx,Ty NK)
<ald(x,Ty)+d(y,Tx N K)] (54)

+h(y)d(y»,TxNK) Vx,y€Kk,

(Q4) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

# (Tx, Ty N K)
<ald(x,Ty)+d(y, Tx N K)] (55)
+h(y)d(y,Tx)

(Q5) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

Z (Tx,Ty NK)

Vx,y € K,

<ald(x,TynK)+d(y,Tx)] (56)

+h(y)d(y,TxNK) Vx,y€K,

(Q6) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

Z (Tx, Ty NK)
<ald(x,TynK)+d(y,Tx)] (57)
+h(y)d(y,Tx)

(Q7) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

Vx,y € K,

Z (Tx, Ty NK)
<ald(x,Ty)+d(y,Tx)] (58)

+h(y)d(y,TxNK) Vx,y €K,
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(Q8) there exist a functionh : K — [0,00) andy € [0,1/2)
such that

# (Tx, Ty N K)
<ald(x,Ty)+d(y,Tx)] (59)
+h(y)d(y,Tx) Vx,ye€K.

Then F (T) #0.

The following result is a generalized Chatterjeas type
fixed point theorem for multivalued maps in complete metric
spaces.

Corollary 16. Let (X,d) be a complete metric space, K a
nonempty closed subset of X, and T : K — RBEX) a
multivalued map. Suppose that Tx N K# 0 for all x € K and
there exists y € [0,1/2) such that

Z (Tx,TynK) <ald(x,Ty)+d(y,Tx)] Vx,ye€X.

(60)
Then F (T) 0.

Remark 17. (a) If K = X in Corollary 16, then we can obtain
a multivalued version of Chatterjea’s fixed point theorem [6].

(b) Theorems 13-15 and Corollary 16 all improve and
generalize Chatterjea’s fixed point theorem.

4. New Coincidence and Fixed Point Results
for Various Multivalued Non-Self-Maps:
Mizoguchi-Takahashi Type,
Berinde-Berinde Type, and Du Type

In this section, we prove some coincidence and fixed
point theorems for multivalued non-self-maps of Mizoguchi-
Takahashi type, Berinde-Berinde type, and Du type.

Recall first the following auxiliary result.

Lemma 18 (see [9, Lemma 2.1]). Let ¢ : [0,00) — [0,1) be
an M T -function. Suppose that k : [0,00) — [0, 1) is defined
by x(t) = (1 + ¢(t))/2. Then, « is also an M T -function.

Theorem 19. Let (X,d) be a complete metric space, K a
nonempty closed subset of X, T : K — HBE€(X) a multivalued
map, and g : K — X be a continuous self-map. Suppose
that conditions (D1) and (D2) as in Theorem 8 hold. If there
exist an MT -function ¢ : [0,00) — [0,1) and a function
h:K — [0,00) such that

F (Tx,TynK) < ¢(d (x,y))d (x, y)
+h(y)d(gy,TxNK) Vx,y€K,
(61)
then €0P (g, T) N F (T) #0.
Proof. Since K is a nonempty closed subset of X and X is
complete, (K, d) is also a complete metric space. Note first

that for each x € K, by (D2), we have d(gy,Tx N K) = 0 for
all y € Tx N K. So, for each x € K, by (61), we obtain

d(y,TynK)<¢(d(x,y))d(x,y) VyeTxnK.
(62)

Define  : [0,00) — [0,1) by x(t) = (1 + ¢(t))/2. Then, by
Lemma 18, « is also an /4T -function. Let x € K be given.
Take x;, = x. Since Tx; N K# 0 from (DI), we can choose
x, € Tx; N K. If x, = x;, then x; € F(T) and hence
gx, € Tx; from (D2). Thus, x; € €OPk(g,T) N F(T)
and hence we achieved the result. Now, suppose that x, # x1;
that is, d(x;, x,) > 0. By (62), we have

d (x5, Tx, N K) < @ (d (x1,%,)) d (1, x,)

(63)
<k (d(x1,x,))d (x1,%,),
which implies that there exists x5 € Tx, N K such that
d (x5, %3) < x(d (x1, %)) d (x1,%,) - (64)

Next, by (62) again, there exists x, € Tx; N K such that
d (x5, x,) <k (d(xy,x3)) d (x5, %3) . (65)
Iteratively, we can obtain a sequences {x,} in K satisfying
X4 € Tx, NK, (66)
d (%115 %12) <% (d (X Xp01)) d (X0 X11) - (67)

for each n € N. Since x(t) < 1 forallt € [0, 00), by (ii), we
know that {d(x,,, x,,,1)} is strictly decreasing in [0, c0). Since
K is an ./ T -function, by (g) of Theorem 7, we obtain

0<d(x),x,) < sug;c(d (% Xps1)) < 1. (68)
ne
Let y := sup,, .k (d(X,, x,.1)). Soy € (0, 1). By (67), we have
d (xn+1’ xn+2) <K (d (xn’ ‘xn+1)) d ('xn’ xn+1)

< )/d (xn’ xn+1)
< yzd (xnfl’xn) (69)
< ce

forn e N.

<y'd (x1,%,)

Let o, = (y"fl/(l —y))d(x,,x,), n € N. For m, n € N with
m > n, we have

m—1
d(x, x,,) < Zd(xj,xj+1) <o, (70)
j=n
Since 0 < y < 1, lim, o, = 0 and hence

lim,_, ., sup{d(x,,x,,) : m > n} = 0. This proves that {x,}
is a Cauchy sequence in K. By the completeness of K, there
exists v € K such that x, — vasn — oo. Thanks to (66)
and (D2), we have

9%y, € Tx, NK for each n € N. (71)

Since g is continuous and lim,, _, . x,, = v, we have

lim gx, = gv. (72)

n—00



Since the function x +— d(x, Tv) is continuous, by (61), (66),
and (72), we get

d (v, TvNnK)
= lim d (x,,, Tv N K)

IN

lim % (Tx,, TvN K)

Jim {9 (d (5,01 d (5,0) + B (0)d (99,9%,.1)) =0
(73)

IA

which implies d(v,Tv N K) = 0. By the closedness of Tv, we
have v € Tv N K. By (D2), gv € TvnN K < Tv and hence
v e BCOP(g, T) N F(T). The proof is complete. O

Theorem 20. In Theorem 19, if inequality (61) is replaced with
the following inequality:

# (Tx, Ty N K)

<@(d(x,y)d(xy)+h(y)d(gy,Tx)  (74)
Vx,y € K.

Then €O0Px(g,T) N F (T) #0.

Corollary 21. Let (X, d) be a complete convex metric space,
K a nonempty closed subset of X, T : K — RBE(X) a
multivalued map, and g : K — X a continuous self-map.
Suppose that

(i) TxNK#0 forall x € K,
(ii) Tx N K is g-invariant (i.e., g(Tx N K) € Tx N K) for
each x € K,
(iii) there exist an M T -function ¢ : [0,00) — [0, 1) and
L > 0 such that
F# (Tx, Ty N K)
<¢(d(xy))d(x,y)+Ld(gy,TxNK) Vx,ye€K.
(75)

Then 0P (g, T) N F (T) #0.

Corollary 22. Let (X, d) be a complete convex metric space,
K a nonempty closed subset of X, T : K — RBE€(X) a
multivalued map, and g : K — X a continuous self-map.
Suppose that

(i) TxNK#0 forall x € K,
(ii) Tx N K is g-invariant (i.e. g(Tx N K) € Tx N K) for
each x € K,
(ii) there exist an M T -function ¢ : [0,00) — [0,1) and
L > 0 such that
Z (Tx, Ty NK)

<@(d(xy))d(x,y)+Ld(gy,Tx) Vx,ye€K.
(76)

Then 0P (g, T) N F (T) #0.

As a direct consequence of Theorems 19 and 20, we obtain
the following fixed point result for multivalued non-self-
maps of Du type in complete metric spaces.
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Theorem 23. Let (X, d) be a complete convex metric space,
K a nonempty closed subset of X, and T : K — $E(X) a
multivalued map. Suppose that Tx N K # 0 for all x € K, and
one of the following conditions holds:

(W1) there exist an M T -function ¢ : [0,00) — [0,1) and
a functionh : K — [0, 00) such that
% (ITx, Ty nK)

<@(d(x,y))d(xy)+h(y)d(»TxNK) Vx,ye€K,

(77)

(W2) there exist an MT -function ¢ : [0,00) — [0,1) and
a functionh : K — [0, 00) such that

H (Tx, Tyn K)

<¢(d(x,y)d(xy)+h(y)d(y,Tx) Vx,yeK.

(78)

Then F ((T') 0.

Proof. Let g = id be the identity map. It is easy to verify
that all the conditions of Theorem 19 (or Theorem 20) are
satisfied. Hence the conclusion follows from Theorem 19 (or
Theorem 20). O

The following fixed point theorems for multivalued non-
self-maps of generalized Berinde-Berinde type and general-
ized Mizoguchi-Takahashi type are established immediately
from Theorem 23.

Corollary 24. Let (X,d) be a complete convex metric space,
K a nonempty closed subset of X, and T : K — $BE(X) a
multivalued map. Suppose that

(i) TxNK#0 forall x € K,

(ii) there exist an M T -function ¢ : [0,00) — [0,1) and
L > 0 such that

%(Tx, Tyn K)
<e(d(xy)d(x,y)+Ld(y,TxNK) Vx,ye€K.
(79)
Then F((T) #0.

Corollary 25. Let (X,d) be a complete convex metric space,
K a nonempty closed subset of X, and T : K — $BE(X) a
multivalued map. Suppose that

(i) TxNK#0 forall x € K,

(ii) there exist an M T -function ¢ : [0,00) — [0, 1) and
L > 0 such that

Z (Tx, Ty NnK)

<¢(d(x,y)d(x,y)+Ld(y,Tx) Vx,y€K.
(80)

Then F ((T') 0.
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Corollary 26. Let (X,d) be a complete convex metric space,
K a nonempty closed subset of X, and T : K — $E(X) a
multivalued map. Suppose that

(i) TxNK#0 forall x € K,

(ii) there exists an M T -function ¢ : [0,00) — [0,1) such
that

# (Tx, Ty N K)

<¢(d(xy)d(xy) VxyeK.

(81)

Then F ((T) #0.

Remark 27 (a) If K = X in Theorem 23, then we can obtain
Du’s fixed point theorem [12, Theorem 2.6].

(b) Theorems 19, 20 and 23, and Corollaries 21-26 all
generalize and improve Du’s fixed point theorem, Berinde-
Berinde’s fixed point theorem, Mizoguchi-Takahashi’s fixed
point theorem, Nadler’s fixed point theorem, and Banach’s
contraction principle.
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