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A model predictive control (MPC) is proposed for the piecewise affine (PWA) systems with constrained input and time delay.
The corresponding operating region of the considered systems in state space is described as ellipsoid which can be characterized
by a set of vector inequalities. And the constrained control input of the considered systems is solved in terms of linear matrix
inequalities (LMIs). An MPC controller is designed that will move the PWA system with time delay from the current operating
point to the desired one. Multiple objective functions are used to relax the monotonically decreasing condition of the Lyapunov
function when the control algorithm switches from a quasi-infinite horizon to an infinite horizon strategy. The simulation results
verify the effectiveness of the proposed method. It is shown that, based on LMI constraints, it is easy to get the MPC for the PWA
systems with time delay. Moreover, it is suitable for practical application.

1. Introduction

In engineering practice, there are many hybrid systems
described by piecewise affine systems (PWA) which are
composed of linear subsystems and convex polytopic regions.
Hybrid systems are composed of discrete event dynamic
systems and continuous time dynamic systems or discrete
time dynamic systems, which interact with each other [1].The
hybrid system theory, which is proposed for the demand of
the economic development, is the result of the development of
computer science and control theory. Piecewise affine system
is one of the most important branches of hybrid system
[2]. It consists of some subsystems that integrate the logical
and continuous dynamics by switching. Theoretically, any
nonlinear system can be approximated as piecewise affine
system [3, 4]. In [5], the PWA system is described as ellipsoid
which can be characterized by a set of vector inequalities.
In [6], the constraint of linear matrix inequalities (LMIs) is
released. In terms of LMIs, the PWA system can be stabilized
in Lyapunov theory.

Model predictive control (MPC), also known as receding
horizon control, is a popular technique for the control of

dynamical systems, such as those encountered in chemical
process control in the petrochemical, pulp and paper indus-
tries, and in industrial hot strip mill [7]. MPC is also a
popular technique for the control of dynamical system subject
to input and state constraints. At any time instant, MPC
requires the online solution of an optimization problem to
compute-optimal control inputs over a fixednumber of future
time instants, known as the finite horizon or quasi-infinite
horizon. Using MPC, it is possible to handle inequality
constraints on the manipulated and controlled variables in a
systematic manner during the design and implementation of
the controller [8, 9]. MPC has become the control strategy of
choice in industrial applications that typically involve linear
systems subject to linear inequality constraints. However,
industrial processes are in general inherently nonlinear and
operated over a wide range of operating conditions [10, 11].
The use of multiple model/controllers is a common strategy
in dealing with the complex of nonlinear systems and has
led to the development of various multiple model/controller
approaches. Considerable research has been focused on the
development and utilization of multiple model/controller
banks within the MPC framework [12–14] in order to cope



2 Abstract and Applied Analysis

with nonlinear systems. The basis of these approaches is the
decomposition of the systems full range of operation into
a number of operating regimes in which a simpler local
model and/or controller is applied. The local models and
controllers are then incorporated to give a global model
and/or controller.

Closed-loop stability in multiple model/control
approaches has also been studied [15] since designing
local controllers that stabilize each individual model may not
result in a stable global closed-loop system. In general, the
use of piecewise models in a control structure necessitates
a means of switching among the available models to the
one that best describes the current process dynamics. The
switching from one model/controller to another based
on a logical argument (supervisory scheme) results in a
hybrid system. A closely related work is the stability analysis
of piecewise linear systems by [16] in which piecewise
quadratic Lyapunov functions were constructed using
convex optimization in terms of linear matrix inequalities
(LMIs) as an alternative to a globally quadratic Lyapunov
function.

Time delay systems are very common in industry. How-
ever, few works on control algorithms development for time
delay PWA system have been reported [17, 18]. Based on
this concept, we propose a MPC control algorithms for
the discrete polytopic time-delay PWA systems. The MPC
controller of the considered systems is solved in terms of
LMIs. The sufficient conditions of stability are derived for
time-delay systems. The feedback control law is obtained by
convex optimization involving LMIs. The simulation results
verify the effectiveness of the proposed method.

Notation. The symbol ∗ will be used in some matrix expres-
sions to induce a symmetric structure. 𝐼 denotes identity
matrix. For example, when𝐻 and 𝑅 are symmetric matrices,
then

[

𝐻 ∗

𝑇 𝑅

] = [

𝐻 𝑇
T

𝑇 𝑅

] . (1)

2. Problem Formulation

Consider a discrete time-delay PWA systems with input
constraints:

x (𝑘 + 1) = A
𝑖
x (𝑘) + A

𝑑𝑖
x (𝑘 − 𝑑) + B

𝑖
u (𝑘) + b

𝑖
,

x (𝑘) = 𝜑 (𝑘) ,

‖u‖2 ≤ 𝑢max,

x (𝑘) ∈ X
𝑖
, −𝑑 ≤ 𝑘 ≤ 0, 𝑘 = 0, 1, . . .∞,

(2)

where x(𝑘) ∈ 𝑅
𝑛 is the state of the plant, u(𝑘) ∈ 𝑅

𝑚 is
the control input, and 𝑑 is fixed time-delay constant. And
b
𝑖
is constant affine vector of the 𝑖th subsystem. 𝑖 represents

the switching rule, which makes value from finite set𝑁, and
𝑖 ∈ 𝑁 = {1, 2, . . . , 𝑁}. A

𝑖
, A
𝑑𝑖
, B
𝑖
, and b

𝑖
are sets of known

real constant matrices with appropriate dimensions of the 𝑖th
subsystem separately. The feedback control law is

u (𝑘) = K
𝑖
x (𝑘) . (3)

Substituting (3) into inequality (2), we can get

x (𝑘 + 1) = A
𝑖
x (𝑘) + A

𝑑𝑖
x (𝑘 − 𝑑) + b

𝑖
, (4)

where A
𝑖
= A
𝑖
+ B
𝑖
K
𝑖
. Denote 𝑋

𝑖
as the state region where

subsystem 𝑖 is active at moment 𝑘, and there is no switch that
occurred at moment 𝑘 + 1 (see [5]), which is

X
𝑖
= {x (𝑘) ∈ 𝑅

𝑛
| ∃𝑘 ≥ 0, x (𝑘) ∈ X

𝑖
, x (𝑘 + 1) ∈ X

𝑖
}

𝑖, 𝑗 ∈ 𝑁.

(5)

Commonly,X
𝑖
is ellipsoid set.Thedimension ofX

𝑖
is less than

the dimension of state. To stabilize the PWA system (2), a
state feedback control law is solved by defining a quadratic
Lyapunov-Krasovskii function:

𝑉 (x (𝑘)) = xT (𝑘)P𝑖x (𝑘) +
𝑑

∑

𝑗=1

xT (𝑘 − 𝑗) Sx (𝑘 − 𝑗) , (6)

By solving the following two problems, the feedback control
law is obtained.

Problem 1. Find a piecewise affine state feedback controller
that exponentially stabilizes the PWA systemwhen x(𝑘) ∈ X

𝑖
,

x(𝑘 + 1) ∈ X
𝑖
.

Problem 2. It is the same as Problem 1 at the switching
moment when x(𝑘) ∈ X

𝑖
, x(𝑘 + 1) ∈ X

𝑖+1
.

Lemma 3. The state region X
𝑖
can be described as same

ellipsoids X
𝑖
⊆ 𝜀
𝑖
, where 𝜀

𝑖
= {x | ‖E

𝑖
x + e
𝑖
‖ ≤ 1}. Denote

the ellipsoid X
𝑖
as the quadratic inequalities (see [5]):

[

x (𝑘)
1

]

T
[

ET
𝑖
E
𝑖

∗

eT
𝑖
E
𝑖
−1 + eT

𝑖
e
𝑖

] [

x (𝑘)
1

] ≤ 0. (7)

More precisely, if 𝑑
1
< CT
𝑖
𝑥 < 𝑑

2
, then the degenerate ellipsoid

is described by

E
𝑖
=

2CT
𝑖

(𝑑
2
− 𝑑
1
)

, e
𝑖
= −

(𝑑
2
+ 𝑑
1
)

(𝑑
2
− 𝑑
1
)

. (8)

Finally, it is assumed that the control objective is to stabilize
the system to a given point 𝑥

𝑐𝑙
. With the change of coordinates

𝑧 = 𝑥 − 𝑥
𝑐𝑙
, the problem is transformed to the stabilization of

the origin. Accordingly, the ellipsoid changes into

𝜀
𝑖
= {𝑧 |

󵄩
󵄩
󵄩
󵄩
󵄩
E
𝑖
x + e𝑐𝑙
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 1} , (9)

where e𝑐𝑙
𝑖
= e
𝑖
+ E
𝑖
𝑥
𝑐𝑙
.

Assumption 4. In application of this formulation to multiple
regions, we assume that we know the order of regions that the
states will go through starting from the current region of the
system to the terminal region.

Assumption 5. We also assume that we know the number of
moves that the system has to take to go from one region to
another adjacent operating region.
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3. Main Result

Model predictive control, also known asmoving horizon con-
trol or receding horizon control, has become very successful
in process industries, especially in the control of processes
that are constrained, multivariable and uncertain. In general,
MPC solves online an open-loop optimal control problem
subject to system dynamics and constraints at each time
instant and implements only the first element of the control
profile. At each sampling time 𝑘, plant measurements are
obtained and a model of the process is used to predict future
outputs of the system. Using these predictions, 𝑚 control
moves u(𝑘 + 𝑚 | 𝑘), are computed by minimizing a nominal
𝐽
∞
(𝑘) over a prediction horizon as follows:

𝐽
∞
(𝑘) =

∞

∑

𝑚=0

[xT(𝑘 + 𝑚 | 𝑘)Q𝐼x (𝑘 + 𝑚 | 𝑘)

+ uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)]

(10)

s.t. x (𝑘 + 𝑚 + 1 | 𝑘)

= A
𝑖
x (𝑘 + 𝑚 | 𝑘) + A

𝑑𝑖
x (𝑘 − 𝑑 + 𝑚 | 𝑘)

+ B
𝑖
u (𝑘 + 𝑚 | 𝑘) + b

𝑖
,

x (𝑘 + 𝑚 | 𝑘) ∈ X
𝑖
, 𝑚 = 0, 1 . . . 𝑛,

x (𝑘 + 𝑛 + 1 | 𝑘) ∈ X
𝑖+1

,

‖u (𝑘 + 𝑚 | 𝑘)‖2
≤ 𝑢max, 𝑚 = 0, 1, . . .∞,

(11)

where Q
𝐼
> 0, R > 0 are symmetric weighting matrices,

𝑛 is control horizon, x(𝑘 + 𝑚 | 𝑘) is state at time 𝑘 + 𝑚

predicted based on the measurements of system (2) at time
𝑘. u(𝑘 + 𝑚 | 𝑘) is control move at time 𝑘 + 𝑚 computed by
solving the optimization problem (10) at time 𝑘, u(𝑘 + 𝑚 | 𝑘)

is implemented to the system at time 𝑘, and then in time
𝑘 + 1, the maximization problem is solved by deriving an
upper bound on the objective function 𝐽

∞
(𝑘) based on the

measurements of new states of system. The control law is
obtained by convex optimization based on MPC involving
LMIs and ellipsoids constraints (7), which is suitable to
practical application.

In this section, the problem formulation for MPC using
piecewise linear models of the form (2) is discussed. The aim
is to find a sequence of control input signals u(𝑘 + 𝑛 | 𝑘)

that will move the system from the current operating point to
the desired one.The authors of [19] presented anMPC design
technique (min-maxMPC) in which the minimization of the
nominal objective function was modified to a minimization
of the worst case objective function. In this work, we extend
this formulation using piecewise affinemodelwith time delay.

Theorem 6. Consider a time-delay PWA system (2) with
several operating points, where 𝑖 denotes the active PWAmodel
and X

𝑖+1
shows the corresponding operating region which if

described by |E
𝑖+1

x + e
𝑖+1

| ≤ 1 with x ∈ X
𝑖+1

. u(𝑘 | 𝑘) ⋅ ⋅ ⋅ u(𝑘 +
𝑛 | 𝑘) are sequences of control inputs to the PWA system.
The states of PWA system (2) are steered from X

𝑖
to X
(𝑖+1)

in 𝑛 steps, where 𝑛 is control horizon constant. If there exist

Y
𝑖+1

= K
𝑖+1

Q, Q ≥ 0,W > 0, 𝛾 > 0, 𝜉 > 0, and a sequence of
u(𝑘 | 𝑘) ⋅ ⋅ ⋅ u(𝑘 + 𝑛 | 𝑘) satisfy the following LMI (12)–(16), the
sequence of control input signals will move the system from the
current operating region to the desired one, until to the origin
of the system.

Themodified MPC law is given by

min
𝛾,u,Q,W,Y𝑖

𝛾, (12)

s.t. [

𝑢
2

maxI Y
𝑖+1

YT
𝑖+1

Q ] ≥ 0, (13)

|u (𝑘 + 𝑚 | 𝑘)| ≤ 𝑢max, 𝑚 = 0 ⋅ ⋅ ⋅ 𝑛, (14)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Q1/2
𝐼

x (𝑘 | 𝑘) 𝛾I 0 0 0 0 0 0 0 0 0
...

... d 0 0 0 0 0 0 0 0

Q1/2
𝐼

x (𝑘 + 𝑛 | 𝑘) 0 0 𝛾I 0 0 0 0 0 0 0

R1/2u (𝑘 | 𝑘) 0 0 0 𝛾I 0 0 0 0 0 0

...
...

...
...

... d 0 0 0 0 0
R1/2u (𝑘 + 𝑛 | 𝑘) 0 0 0 0 0 𝛾I 0 0 0 0
x (𝑘 + 𝑛 | 𝑘) 0 0 0 0 0 0 W 0 0 0

...
...

...
...

...
...

...
... d 0 0

x (𝑘 + 𝑛 + 1 − 𝑑 | 𝑘) 0 0 0 0 0 0 0 0 W 0
x (𝑘 + 𝑛 + 1 | 𝑘) 0 0 0 0 0 0 0 0 0 Q

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

> 0,

(15)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Q ∗ ∗ ∗ ∗ ∗ ∗

0 W−1 AT
𝑑𝑖+1

0 0 0 0

Σ A
𝑑𝑖+1

Ξ b
𝑖+1

eT
𝑖+1

𝜉 0 0 0

E
𝑖+1

Q 0 𝜉e
𝑖+1

bT
𝑖+1

𝑡 0 0 0

Q1/2I Q 0 0 0 𝛾I 0 0

R1/2Y
𝑖+1

0 0 0 0 𝛾I 0

Q 0 0 0 0 0 W

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

> 0,

(16)

where x(𝑘 + 1 | 𝑘) ⋅ ⋅ ⋅ x(𝑘 + 𝑛 + 1 | 𝑘) are computed iteratively
by (2) as follows:

x (𝑘 + 𝑛 + 1 | 𝑘)

= A𝑛+1
𝑖

x (𝑘 | 𝑘) +

𝑛

∑

𝑗=0

A𝑛−𝑗
𝑖

A
𝑑𝑖
x (𝑘 − 𝑑 + 𝑗 | 𝑘)

+

𝑛

∑

𝑗=0

A𝑛−𝑗
𝑖

B
𝑖
u (𝑘 + 𝑗 | 𝑘) +

𝑛

∑

𝑗=1

A𝑛−𝑗
𝑖

b
𝑖

(17)

and Σ = A
𝑖+1

Q + B
𝑖+1

Y
𝑖+1

, Ξ = Q + 𝜉b
𝑖+1

bT
𝑖+1

.
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Proof
(1) Upper Bound on the Objective Function. The objective
function can be split into two parts:

𝐽
∞ (𝑘) = 𝐽

𝑛

0
(𝑘) + 𝐽

∞

𝑛+1
(𝑘) , (18)

where

𝐽
𝑛

0
(𝑘) =

𝑛

∑

𝑚=0

[xT (𝑘 + 𝑚 | 𝑘)Q𝐼x (𝑘 + 𝑚 | 𝑘)

+ uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)] ,

𝐽
∞

𝑛+1
(𝑘) =

∞

∑

𝑙=𝑛+1

[xT (𝑘 + 𝑚 | 𝑘)Q𝐼x (𝑘 + 𝑚 | 𝑘)

+ uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)] .

(19)

It is also assumed that the number ofmoves 𝑛 required for the
system to transition from one partX

𝑖
to the next desired part

X
(𝑖+1)

is prespecified. Using quadratic Lyapunov-Krasovskii
function, the upper bound on the objective function 𝐽

∞

𝑛+1
(𝑘)

is given as

𝑉 (x (𝑘)) = xT (𝑘)Px (𝑘) +
𝑑

∑

𝑗=1

xT (𝑘 − 𝑗) Sx (𝑘 − 𝑗) . (20)

Suppose 𝑉(x(𝑘)) satisfies the following inequality:
𝑉 (x (𝑘 + 𝑚 + 1 | 𝑘)) − 𝑉 (x (𝑘 + 𝑚 | 𝑘))

≤ − [xT (𝑘 + 𝑚 | 𝑘)Q𝐼x (𝑘 + 𝑚 | 𝑘)

+uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)]

(21)

with the conditions 𝑉(x(∞ | 𝑘)) = 0 and x(∞ | 𝑘) = 0.
Summing (21) from𝑚 = 𝑛 + 1 to𝑚 = ∞ gives
𝐽
∞

𝑛+1
(𝑘) ≤ 𝑉 (x (𝑘 + 𝑛 + 1 | 𝑘))

= xT (𝑘 + 𝑛 + 1 | 𝑘)Px (𝑘 + 𝑛 + 1 | 𝑘)

+

𝑑

∑

𝑗=1

xT (𝑘 + 𝑛 + 1 − 𝑗 | 𝑘) Sx (𝑘 + 𝑛 + 1 − 𝑗 | 𝑘) .

(22)
Then, the minimization of the upper bound on the objective
function 𝐽

∞
(𝑘)u,Q,W,Y𝑖,𝑖∈𝑁 is derived as

min 𝐽
∞ (𝑘)

u,Q,W,Y𝑖,𝑖∈𝑁

= min
u,Q,W,Y𝑖,𝑖∈I

𝑛

∑

𝑚=0

[xT (𝑘 + 𝑚 | 𝑘) Lx (𝑘 + 𝑚 | 𝑘)

+ uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)]

+xT (𝑘 + 𝑛 + 1 | 𝑘)Px (𝑘 + 𝑛 + 1 | 𝑘)

+

𝑑

∑

𝑗=1

xT (𝑘 + 𝑛 + 1 − 𝑗 | 𝑘) Sx (𝑘 + 𝑛 + 1 − 𝑗 | 𝑘)

≤ 𝛾,

(23)

where P = 𝛾Q−1 > 0 and W = 𝛾S−1 > 0. Using the S-
procedure [6], we get (15).

(2) The Stability of Inequality with Ellipsoids Constraints. In
this section, the aim is to design an MPC controller in
which the minimization of the nominal objective function
was modified to a minimization of the worst case objective
function.A thoroughdiscussion of the previous problems can
be found in [19]. The objective function of MPC in [19] is

min 𝐽
∞ (𝑘) , (24)

where

𝐽
∞ (𝑘) =

∞

∑

𝑚=0

[xT (𝑘 + 𝑚 | 𝑘)Q𝐼x (𝑘 + 𝑚 | 𝑘)

+uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)] .

(25)

In this section, the objective function min 𝐽
∞
(𝑘) is replaced

by

min (𝐽
𝑛

0
(𝑘) + 𝐽

∞

𝑛+1
(𝑘))

s.t. x (𝑘 + 𝑚 + 1 | 𝑘)

= A
𝑖
x (𝑘 + 𝑚 | 𝑘) + A

𝑑
x (𝑘 + 𝑚 − 𝑑 | 𝑘)

+ B
𝑖
u (𝑘 + 𝑚 | 𝑘) + b

𝑖
0 ≤ 𝑚 ≤ 𝑛,

(26)

𝑉 (x (𝑘 + 𝑚 + 1 | 𝑘)) − 𝑉 (x (𝑘 + 𝑚 | 𝑘))

≤ − [xT (𝑘 + 𝑚 | 𝑘)Q𝐼x (𝑘 + 𝑚 | 𝑘)

+ uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)]

󵄩
󵄩
󵄩
󵄩
E
𝑖+1

x (𝑘 + 𝑚 | 𝑘) + e
𝑖+1

󵄩
󵄩
󵄩
󵄩
≤ 1

}
}
}

}
}
}

}

𝑚 ≥ 𝑛 + 1.

(27)

In this section, theMPC formulation given in [19] is extended
to PWA system with form (2) that has polytopic and ellipsoid
approximations for the operating region X

𝑖
. The previous

inequalities (27) are the stability constraints for subsystem
𝑖 + 1. Inequalities (27) can guarantee the PWA system to
be steered from X

𝑖
to X
𝑖+1

in 𝑛 steps. The control inputs
u(𝑘 + 𝑚𝑘), 𝑚 = 0, 1 . . . 𝑛 are a sequence of free variables,
based on the input constraints. If X

𝑖+1
is not the terminal

operating ellipsoid region, we apply u(𝑘 + 𝑚 | 𝑘),𝑚 = 0 . . . 𝑛

to PWA. OnceX
𝑖+1

is the terminal operating ellipsoid region,
the feedback control law u(𝑘) = K

𝑖+1
x(𝑘) is running to

reduce the calculation.The quadratic ellipsoid inequality (10)
is equivalent to

[

[

x (𝑘 + 𝑚 | 𝑘)

x (𝑘 − 𝑑 + 𝑚 | 𝑘)

1

]

]

T

Π
[

[

x (𝑘 + 𝑚 | 𝑘)

x (𝑘 − 𝑑 + 𝑚 | 𝑘)

1

]

]

≤ 0, (28)

where Π = [

ET
𝑖+1

E𝑖+1 0 ET
𝑖+1

e𝑖+1
0 0 0

eT
𝑖+1

E𝑖+1 0 −1+eT𝑖+1e𝑖+1
] .

Substituting (20) into (21) gives

[

[

x (𝑘 + 𝑚 | 𝑘)

x (𝑘 − 𝑑 + 𝑚 | 𝑘)

1

]

]

T

M[

[

x (𝑘 + 𝑚 | 𝑘)

x (𝑘 − 𝑑 + 𝑚 | 𝑘)

1

]

]

≤ 0, (29)
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where

M =

[

[

[

[

[

[

[

[

𝜓
1

AT
𝑖+1

PA
𝑑𝑖+1

AT
𝑖+1

Pb
𝑖+1

AT
𝑑𝑖+1

PA
𝑖+1

AT
𝑑𝑖+1

PA
𝑑𝑖+1

− S AT
𝑑𝑖+1

Pb
𝑖+1

bT
𝑖+1

PA
𝑖+1

bT
𝑖+1

PA
𝑑𝑖+1

bT
𝑖+1

Pb
𝑖+1

]

]

]

]

]

]

]

]

,

𝜓
1
= AT
𝑖+1

PA
𝑖+1

+ S +Q
𝐼
+ KT
𝑖+1

RK
𝑖+1

− P.

(30)

Using the S-procedure [6] into (28) and (29), we get 𝜆 > 0,

[

[

Φ
1

0 𝜆ET
𝑖+1

e
𝑖+1

0 S 0

𝜆eT
𝑖+1

E
𝑖+1

0 −𝜆 (1 − eT
𝑖+1

e
𝑖+1

)

]

]

−

[

[

[

[

[

[

[

AT
𝑖+1

AT
𝑑𝑖+1

bT
𝑖+1

]

]

]

]

]

]

]

P [A
𝑖+1

A
𝑑𝑖+1

b
𝑖+1

] > 0,

(31)

where

Φ
1
= P + 𝜆ET

𝑖+1
E
𝑖+1

− S − KT
𝑖+1

RK
𝑖+1

−Q
𝐼
. (32)

By Schur complements, this is equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

Φ
1

0 𝜆ET
𝑖+1

e
𝑖+1

AT
𝑖+1

0 S 0 AT
𝑑𝑖+1

𝜆eT
𝑖+1

E
𝑖+1

0 −𝜆 (1 − eT
𝑖+1

e
𝑖+1

) bT
𝑖+1

A
𝑖+1

A
𝑑𝑖+1

b
𝑖+1

P−1

]

]

]

]

]

]

]

]

]

]

]

]

]

> 0. (33)

Substituting P = 𝛾Q−1 and pre- and postmultiplying by
diag{I I [

0 I
I 0 ]} gives

[

[

[

[

[

[

[

[

[

[

[

[

Φ
2

0 AT
𝑖+1

𝜆ET
𝑖+1

e
𝑖+1

0 S AT
𝑑𝑖+1

0

A
𝑖+1

A
𝑑𝑖+1

𝛾
−1Q b

𝑖+1

𝜆eT
𝑖+1

E
𝑖+1

0 bT
𝑖+1

−𝜆 (1 − eT
𝑖+1

e
𝑖+1

)

]

]

]

]

]

]

]

]

]

]

]

]

> 0, (34)

whereΦ
2
= 𝛾Q−1 + 𝜆ET

𝑖+1
E
𝑖+1

− S −KT
𝑖+1

RK
𝑖+1

−Q
𝐼
. Pre- and

postmultiplying by diag[Q I I I] gives

[

[

[

[

[

Φ
3

0 QAT
𝑖+1

𝜆QET
𝑖+1

e
𝑖+1

0 S AT
𝑑𝑖+1

0

A
𝑖+1

Q A
𝑑𝑖+1

𝛾
−1Q b

𝑖+1

𝜆eT
𝑖+1

E
𝑖+1

Q 0 bT
𝑖+1

−𝜆 (1 − eT
𝑖+1

e
𝑖+1

)

]

]

]

]

]

> 0, (35)

where

Φ
3
= 𝛾Q + 𝜆QET

𝑖+1
E
𝑖+1

Q −QSQ

−QKT
𝑖+1

RK
𝑖+1

Q −QQ
𝐼
Q.

(36)

This is equivalent to

[

[

[

Φ
3

0 QAT
𝑖+1

0 S AT
𝑑𝑖+1

A
𝑖+1

Q A
𝑑𝑖+1

𝛾
−1Q

]

]

]

+
[

[

𝜆QET
𝑖+1

e
𝑖+1

0

b
𝑖+1

]

]

× 𝜆
−1
(1 − eT

𝑖+1
e
𝑖+1

)

−1
[

[

𝜆QET
𝑖+1

e
𝑖+1

0

b
𝑖+1

]

]

T

> 0.

(37)

Substituting W = 𝛾S−1 > 0, 𝜉 = 𝛾𝜆
−1, pre- and post-

multiplying by

diag {𝛾−1/2 𝛾
−1/2

𝛾
1/2

𝛾
1/2

} , (38)

we get the inequality (16) by multiple Schur complements.

(3) Input Constraints. It is also possible to incorporate input
constraints. We consider bounds on input at time 𝑘 such as

|u (𝑘 + 𝑚)| ≤ 𝑢max, 𝑚 = 0 . . . 𝑛. (39)

Inputs can be split into sequences:

{u (𝑘 | 𝑘) , u (𝑘 + 1 | 𝑘) ⋅ ⋅ ⋅ u (𝑘 + 𝑛 | 𝑘) ,U𝑡} , (40)

where u(𝑘 | 𝑘),u(𝑘 + 1 | 𝑘) ⋅ ⋅ ⋅ u(𝑘 + 𝑛 | 𝑘) are free variables
and U

𝑡
are future control moves in the terminal region given

by the state feedback law.
(1) If PWA does not switches to the terminal operating

ellipsoid region, the sequences u(𝑘 + 𝑚 | 𝑘), 𝑚 = 0 . . . 𝑛 are
free variables satisfying |u(𝑘 + 𝑚)| ≤ 𝑢max,𝑚 = 0 . . . 𝑛.

(2) If PWA switch to the terminal operating ellipsoid
region,

U
𝑡
: u (𝑘 + 𝑚 | 𝑘) = K

𝑖+1
x (𝑘 + 𝑚 | 𝑘) , 𝑚 ≥ 𝑛 + 1,

K
𝑖+1

= Y
𝑖+1

Q−1,

|u (𝑘)| ≤ 𝑢max,

(41)

where K
𝑖+1

is state feedback matrix, which is equal to LMI
(13).

Using the previous techniques, the problem of minimiz-
ing an upper bound on the worst-case objective function,
subject to input and terminal operating ellipsoid constraints,
is reduced to a convex optimization of {u(𝑘 | 𝑘), u(𝑘 + 1 |

𝑘) ⋅ ⋅ ⋅ u(𝑘 + 𝑛 | 𝑘),U
𝑡
} in terms of LMIs (12)–(16).

Remark 7. Although derived for a time-delay PWA system
with ellipsoidal partitions, the optimization problem LMI
(16) gives a feasible solution only when −𝜆

𝑖
(I − e

𝑖
eT
𝑖
) >

0, which means the ellipsoidal region X
𝑖
does not contain

origin [5]. When the ellipsoidal region contains origin, it is
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Figure 1: Underactuated surface vessel.

assumed that 𝑏
𝑖
= 0. For convenient notion, we get LMI (16)

as follows:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Q ∗ ∗ ∗ ∗ ∗

0 W−1 AT
𝑑𝑖+1

0 0 0

A
𝑖+1

Q + B
𝑖+1

Y
𝑖+1

A
𝑑𝑖+1

Q 0 0 0

Q1/2I Q 0 0 𝛾I 0 0

R1/2Y
𝑖+1

0 0 0 𝛾I 0

Q 0 0 0 0 𝑊

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

> 0. (42)

Remark 8. If the ellipsoidal region 𝑋
𝑖
contains origin, it is

necessary to substitute (42) into (16) to get a feasible solution.

4. Simulation Result

4.1. Example for Autonomous Land Vehicle. We use the ALV
(autonomous land vehicle) model formulated by [20] in this
simulation. The objective is to design a controller that forces
a cart on the 𝑥−𝑦 plane to follow the straight line 𝑦 = 0 with
a constant velocity 𝑢

0
= 1m/s (see Figure 1). We assume that

a controller has already been designed to maintain a constant
forward velocity. The carts path is then controlled by the
torque 𝑇 about 𝑧-axis according to the following dynamics:

[

[

𝜓̇

𝜔̇

̇𝑦

]

]

=

[

[

[

0 1 0

0 −

𝑘

𝐼

0

0 0 0

]

]

]

[

[

𝜓

𝜔

𝑦

]

]

+
[

[

0

0

𝑢
0
sin (𝜓)

]

]

+

[

[

[

0

1

𝐼

0

]

]

]

𝑇,

|𝑇| ≤ 𝑇max,

(43)

where 𝜓 is the heading angle with time derivative 𝜔, 𝐼 =

1 kgm2 is the moment of inertia of the cart with respect to the
center of mass, 𝑘 = 0.01Nms is the damping coefficient, and

𝑇 is the control torque. Due to the limitation of power of the
drive motor, the maximum control torque𝑇 is roughly 8Nm.
Approximately the control constraint is |𝑇| ≤ 𝑇max = 8. The
states of the system are (𝑥

1
, 𝑥
2
, 𝑥
3
) = (𝜑, 𝜔, 𝑦). We assume

that the trajectories can start from any possible initial angle
in the range 𝜑

0
∈ [−3𝜋/5, 3𝜋/5] and any initial distance

from the line. The function sin(𝜓) is approximated by a
piecewise affine function yielding a piecewise affine system
with 5 regions as follows:

X
1
= {x | x

1
∈ (−

3𝜋

5

, −

𝜋

5

)} ,

X
2
= {x | x

1
∈ (−

𝜋

5

, −

𝜋

15

)} ,

X
3
= {x | x

1
∈ (−

𝜋

15

,

𝜋

15

)} ,

X
4
= {x | x

1
∈ (

𝜋

15

,

𝜋

5

)} ,

X
5
= {x | x

1
∈ (

𝜋

5

,

3𝜋

5

)} .

(44)

To illustrate the proposed results on the time-delay systems,
we assume that the system x

2
(𝑡) is perturbed by time delay

and the delay model is given as

ẋ
1 (
𝑡) = 𝛼x

2 (
𝑡) + (1 − 𝛼) x2 (𝑡 − 𝜏) ,

ẋ
2 (
𝑡) = −

𝑘

𝐼

𝛼x
2 (
𝑡) −

𝑘

𝐼

(1 − 𝛼) x2 (𝑡 − 𝜏) +

1

𝐼

u,

ẋ
3 (
𝑡) = u

0
sin (x
1 (
t)) .

(45)

The constant 𝛼 is the retarded coefficient [21], which
satisfies the conditions: 𝛼 ∈ [0, 1]. The limits 1 and 0
correspond to no delay term and to a completed delay term,
respectively. In this example, we assume 𝛼 = 0.7. We
construct the following time-delay PWA system:

ẋ = A
𝑖
x + A
𝑑𝑖
x (𝑡 − 𝜏) + B

𝑖
𝑢 + b
𝑖

x ∈ X
𝑖

|𝑢| ≤ 𝑢max 𝑖 = 1, 2, . . . , 5,

(46)

where A
1,5

= [

0 0.7 0

0 −0.007 0

0.309 0 0
] , A
3
= [

0 0.7 0

0 −0.007 0

1 0 0
] , A
2,4

=

[

0 0.7 0

0 −0.007 0

0.914 0 0
] , B
1,2,3,4,5

= [0 1 0]
T, A
𝑑1

= A
𝑑2

= A
𝑑3

=

A
𝑑4

= A
𝑑5

= [

0 0.3 0

0 −0.003 0

0 0 0
] , b
1
= [0 0 − 0.757]

T, b
2
=

[0 0 − 0.216]
T, b
3
= [0 0 0]

T, b
4
= [0 0 0.216]

T, b
5
=

[0 0 0.757]
T, 𝑢max = 8.

𝜏 = 2 is the time-delay constant.We construct the discrete
system by sampling 𝑇 = 0.02 s, and initial state x(0) =

x(−1) = x(−2) = [𝜋/2, 0, 3]
T. By applying Theorem 6, we get

the simulation results.
Figures 2 and 3 are the simulation results. Figure 2

shows the state response of the PWA system with time
delay. Obviously, all of the states are stable. Figure 3 shows
control input action. Physical limitations in ALV impose
hard constraints on the torque input. The simulation result
in Figure 3 shows that state feedback control strategy can
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Figure 2: States trajectories.
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Figure 3: Control action.

stabilize the PWA system with time-delay subject to input
constraints. In this section, the simulation shows the specified
constraints on the torque input variable are satisfied.

4.2. Example for Nonlinear Circuit. This example considers a
circuit with a nonlinear resistor taken from [5] and shown in
Figure 4 with time in 10

−10 seconds, the inductor current in
mA, and the capacitor voltage in Volts, and the dynamics are

[

𝑥̇
1

𝑥̇
2

] = [

−30 −20

0.05 0

] [

𝑥
1

𝑥
2

] + [

24

−50𝑔 (𝑥
2
)

] + [

20

0

] 𝑢. (47)

x2

1.5 kΩ

U+ 1.2V

2pF

5nH

+

−

iR = g(x2)

+

−

+

−

x1

Figure 4: A circuit with a nonlinear resistor.
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Figure 5: Characteristic of the nonlinear resistor.

Following [5], the characteristic of the nonlinear resistor
is described as 𝑔(𝑥

2
), which is defined to be the piecewise-

affine function shown in Figure 5. The corresponding poly-
topic regions are generated as follows:

X
1
= {x ∈ 𝑅

2
| −𝐿 < 𝑥

2
< 0.2} ,

X
2
= {x ∈ 𝑅

2
| 0.2 < 𝑥

2
< 0.6} ,

X
3
= {x ∈ 𝑅

2
| 0.6 < 𝑥

2
< 𝐿} ,

(48)

where 𝐿 = 100. X
1,2,3

are described as ellipsoids in (10) with
the following parameters: 𝐸

1
= 𝐸
3
= [0, 0.01], 𝐸

2
= [0, 5],

𝑒
1
= 1.0044, 𝑒

2
= 1.2145, and 𝑒

3
= 0.9996.

By using Lemma 3 and the characteristic of the nonlinear
resistor, the dynamics (47) is transformed to the PWA system
as follows:

ẋ = [

−30 −20

0.05 −0.25

] x + [

20

0

] 𝑢 + [

0

−0.1422

] x ∈ X
1
,

ẋ = [

−30 −20

0.05 0.1

] x + [

20

0

] 𝑢 + [

0

0.0129

] x ∈ X
2
,

ẋ = [

−30 −20

0.05 −0.2

] x + [

20

0

] 𝑢 x ∈ X
3
.

(49)

Respectively, the open-loop equilibrium points of X
1
, X
2
,

and X
3
are 𝑥
1

ol = [0.71, 0.14]
T, 𝑥2ol = [0.5, 0.45]

T, and
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Figure 6: Trajectory of the current.

𝑥
3

ol = [0.37, 0.64]
T. The objective is to design a piecewise-

affine state feedback controller to steer the original state 𝑥(0)
to close-loop equilibrium 𝑥cl = 𝑥

3

ol; at the same time the
control input constraints |𝑢| ≤ 1(𝑉)must be satisfied.

Using forward differential ẋ = (x(𝑘 + 1) − x(𝑘))/𝑇, we
get the following PWA with time delay, where 𝑇 = 0.002 s,
and initial state is selected as x(0) = x(−1) = x(−2) =

[0.5; 0.1] ∈ X
1
. To illustrate the proposed results on the time-

delay system, we assume that the system 𝑥
2
(𝑡) is perturbed by

time delay and the delay model is given as

ẋ = A
𝑖
x + A
𝑑𝑖
x (𝑡 − 𝜏) + B

𝑖
𝑢 + b
𝑖
,

𝑖 = 1, 2, 3, x ∈ X
𝑖
.

(50)

The constant𝛼 is the retarded coefficient [21]. In this example,
we assume 𝛼 = 0.7. 𝜏 = 2 is the time-delay constant, where
A
1
= [
−30 −20𝛼

0.05 −0.25𝛼
] , A
2
= [
−30 −20𝛼

0.05 0.1𝛼
] , A
3
= [
−30 −20𝛼

0.05 −0.2𝛼
] ,

A
𝑑1

= A
𝑑2

= A
𝑑3

= [
0 1−𝛼

0 1−𝛼
] , B
1,2,3

= [20 0]
T, b
1

=

[0 − 0.1422]
T, b
2

= [0 0.0129]
T, and b

3
= [0 0]

T. By
applyingTheorem 6, we get the following simulation results.

Figures 6 and 7 show the state response of the PWA
system with time delay. Trajectory of the current and voltage
shows that the original states are steered from X

1
to close-

loop equilibrium in X
3
. Obviously, all of the states are stable.

Figure 8 shows the control input action.The simulation result
shows that state feedback control strategy can stabilize the
PWA system with time delay subject to ellipsoid constraints.
Moreover, the constraint on the control input is satisfied.

5. Conclusion

This work presented a stabilizing multimodel predictive
control algorithm which has a contractive constraint to
guarantee closed-loop stability. Moreover, the stability of the
closed-loop is analyzed by employing the Lyapunov functions
approach. Depending on the system state (in the terminal
region or outside) the corresponding Lyapunov functions
are assigned. The use of multiple objective functions has
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Figure 7: Trajectory of the voltage.
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Figure 8: Control input.

enabled us to relax the monotonically decreasing condi-
tion of the Lyapunov function when the control algorithm
switches from a quasi-infinite horizon to an infinite hori-
zon strategy. We have developed a new controller design
technique for MPC of piecewise affine systems with time-
delay and input constraints. The two simulation examples
proposed in Section 4 show that the driving moment (in
example 1) and control voltage (in example 2) are limited
in amplitude, which makes MPC approach a natural choice
for the design of the controller with hard constraints. The
technique in this paper leads to convex LMIs based online
optimization problem when the local operating regions of
the piecewise linear model family are described by ellipsoids.
Perhaps the principal shortcoming of MPC proposed is their
inability to explicitly incorporate plant model uncertainty.
MPC involving data-driven technique is suitable to overcome
the previous problem [7, 10, 11, 22, 23]. And it should also be
noted that the controller proposed in this paper is developed
with known order of regions. In the future work, efforts
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will be made to design the data-driven MPC controller with
uncertain model parameters and switching order.
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