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We study the asymptotic behaviour on a finite interval of a class of linear nonautonomous singular differential equations in Banach
space by the nonintegrability of the first derivative of its solutions. According to these results, the nonrectifiable attractivity on a
finite interval of the zero solution of the two-dimensional linear integrable differential systems with singular matrix-elements is
characterized.

1. Introduction

Let 𝑡
0
> 0 and X a given real or complex Banach space with

the zero 0 ∈ X, and let 𝐿(X) denote the space of all linear
bounded operators from X into X. We consider the linear
nonautonomous differential equation inX as

𝑑x
𝑑𝑡

= 𝐴 (𝑡) x, 𝑡 ∈ (0, 𝑡
0
] , x (𝑡

0
) = x
0
∈ X, (1)

where x = x(𝑡), x ∈ 𝐶
1
((0, 𝑡
0
];X), 𝐴 = 𝐴(𝑡) is an operator-

valued function defined on interval (0, 𝑡
0
] with the value in

𝐿(X) and 𝐴 ∈ 𝐶((0, 𝑡
0
]; 𝐿(X)). If X = R𝑁, then (1) becomes

a linear nonautonomous differential system.
As a basic result, inTheorem 1, we state the existence and

uniqueness of a solution of (1) which is proved by using a
fixed-point theorem in Fréchet spaces for an 𝛼-contraction
mapping. Next, in Theorems 2 and 3, we give a necessary
and sufficient condition for the nonintegrability of ‖x󸀠(𝑡)‖X
on (0, 𝑡

0
] provided ‖𝐴(𝑡)‖ blows up near 𝑡 = 0 and ‖𝐴(𝑡)𝑥‖

allows a precise asymptotic behaviour near 𝑡 = 0. Based
on these results, in the case when X = R2, we study
the so-called nonrectifiable attractivity of the zero solution

(see Definition 4) of the so-called linear integrable two-
dimensional system (see Definition 5) as follows:

𝑑x
𝑑𝑡

= [
ℎ (𝑡) + 𝜇𝑔 (𝑡) −]𝑔 (𝑡)

𝜌𝑔 (𝑡) ℎ (𝑡)
] x,

𝑡 ∈ (0, 𝑡
0
] , x (𝑡

0
) = x
0
∈ X,

(2)

with 𝜇, 𝜌, and ] some real constants.
Precisely, as a kind of singular behaviour near 𝑡 = 0 of all

solutions 𝑥(𝑡) of linear integrable system (2), in Theorem 6,
we involve on the matrix elements ℎ(𝑡) and 𝑔(𝑡) a necessary
and sufficient condition for the infiniteness of the length of
every solution curve of 𝑥(𝑡) (in our best knowledge, it is the
first paper dealing with this kind of problems). Theorem 6
is a consequence of the precise asymptotic formula for all
solutions 𝑥(𝑡) near 𝑡 = 0 of integrable differential system (2)
presented in Lemmas 11 and 12. Of course, instead of interval
(0, 𝑡
0
] and 𝑡 → 0, we can also state our main results on

[𝑡
0
,∞) and 𝑡 → ∞.
In applications, the last years have seen an increasing

interest in the analysis of differential equations and systems
on finite time intervals. This is because the Finite-Time Sta-
bility (FTS) and the Finite-Time Lyapunov Exponent (FTLE)
were introduced, respectively, in the control of systemswithin
a finite time as well as in the Lagrangian Coherent Structure
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(LCS) on finite-time intervals in fluid, ocean, and atmosphere
dynamics [1–3] and in the biological application [4]. It
includes the time-varying vector fields known only on a
finite-time interval, but not on the whole half line 𝑡 ≥ 𝑡

0
.

In the theory of differential equations, the importance
of studying the different kind of asymptotic behaviours of
the nonautonomous linear differential systems comes from
their application in the study of asymptotic and oscillatory
behaviour of the second and higher order ordinary dif-
ferential equations. For instance, in [5], authors study the
asymptotic behaviour near 𝑡 = ∞ of oscillatory solutions of
the nonlinear second-order differential equation (𝑝(𝑡)𝑢

󸀠
)
󸀠

=

𝑝(𝑡)𝑓(𝑢) via the asymptotic formula for solutions of an
auxiliary linear differential system having elements which are
absolutely continuous functions on [𝑡

0
,∞). In [6], authors

derive a precise asymptotic behaviour near 𝑡 = ∞ of solutions
𝑢(𝑡) of the third-order nonlinear differential equation 𝑢

󸀠󸀠󸀠
+

((𝑚 + 1)/2)𝑢𝑢
󸀠󸀠
+ 𝑚(1 − 𝑢

󸀠2
) + 𝑀(1 − 𝑢

󸀠
) = 0 such that

𝑢(0) = 𝑎, 𝑢󸀠(0) = 𝑏, 𝑢󸀠(∞) = 1, and 0 < 𝑢
󸀠

< 1

on [0,∞), by using the asymptotic solution formula for the
corresponding linear differential system based on Hartman
and Wintner’s asymptotic integration (see [7, 8] and for its
generalization [9, 10]). Similarly, in [11], authors prove an
asymptotic solution formula for the second-order nonlinear
differential equations (𝑝𝑢󸀠)󸀠 + 𝑞𝑢 = 𝑔(𝑡, 𝑢, 𝑢

󸀠
) depending

on the asymptotic behaviour of fundamental solutions of
the corresponding homogeneous equation (𝑝𝑧

󸀠
)
󸀠

+ 𝑞𝑧 =

0. On certain types of asymptotic behaviour of linear and
nonlinear differential and integro-differential systems, we
refer reader to some recently published papers [12–14] and
references therein.The attractivity of solutions of scalar delay
differential equations is widely studied and it is important in
mathematical biology; see, for instance, [15] and references
therein.

This paper is mainly based on a part of the P.h.D degree
thesis [16] of the first author.

2. Statement of the Main Results

Preliminarily, we state the following auxiliary result.

Theorem 1. For each x
0
∈ X, there exists a unique solution x

of (1).

Next, we derive a necessary condition for a kind of
singularities of (1) at 𝑡 = 0 in terms of singular behaviour
of the operator norm of 𝐴(𝑡) near 𝑡 = 0.

Theorem 2. Let there exist a solution x of (1) such that
‖x(𝑡)‖X → 0 as 𝑡 → 0. If ‖𝑑x/𝑑𝑡‖X ∉ 𝐿

1
(0, 𝑡
0
), then one

has:

lim sup
𝑡→0

‖𝐴 (𝑡)‖ = ∞. (3)

Thus, if (3) is not satisfied, then the integrability of
‖𝑑x/𝑑𝑡‖X occurs for all solutions x of (1), which is out of our
interest. All results from this sectionwill be proved in the next
sections.

At the second,we impose on the operator-valued function
𝐴(𝑡) the following structural hypotheses:

(𝐻
1
) there are positive constants 𝑐

0
, 𝑐
1
and a positive

real function 𝜔 = 𝜔(𝑡) such that

𝑐
0
𝜔 (𝑡) ‖𝑥‖X ≤ ‖𝐴 (𝑡) 𝑥‖X ≤ 𝑐

1
𝜔 (𝑡) ‖𝑥‖X,

∀𝑡 ∈ (0, 𝑡
0
] , ∀𝑥 ∈ X;

(4)

(𝐻
2
) the solution of (1) is given by

x (𝑡) = 𝑈 (𝑡) x
0
, 𝑡 ∈ (0, 𝑡

0
] , (5)

where 𝑈 = 𝑈(𝑡), 𝑈 : (0, 𝑡
0
] → 𝐿(X), is an operator-valued

function called the fundamental solution, such that

‖𝑈 (𝑡)‖ 󳨀→ 0 as 𝑡 󳨀→ 0, (6)

and there are positive constants 𝑐
2
, 𝑐
3
and a positive real

function 𝑎 = 𝑎(𝑡) such that

𝑐
2
𝑎 (𝑡) ‖𝑥‖X ≤ ‖𝑈 (𝑡) 𝑥‖X ≤ 𝑐

3
𝑎 (𝑡) ‖𝑥‖X,

∀𝑡 ∈ (0, 𝑡
0
] , ∀𝑥 ∈ X.

(7)

Such hypotheses on (1) imply the following properties of
every solution x and its 𝑑x/𝑑𝑡.

Theorem 3. Let the hypotheses (𝐻
1
)-(𝐻
2
) be fulfilled. Then,

for every x
0
∈ X, the corresponding solution x of (1) satisfies

(i) ‖x(𝑡)‖X → 0 as 𝑡 → 0;
(ii) x is an injective function on (0, 𝑡

0
] if and only if x

0
is

not an eigenvector of 𝑈−1(𝑠)𝑈(𝑡) with an eigenvalue 1
for all 𝑠, 𝑡 ∈ (0, 𝑡

0
], 𝑠 ̸= 𝑡;

(iii) ‖𝑑x/𝑑𝑡‖X ∉ 𝐿
1
(0, 𝑡
0
) if and only if 𝜔𝑎 ∉ 𝐿

1
(0, 𝑡
0
).

Themeaning and importance of hypotheses (𝐻
1
)-(𝐻
2
) as

well as the conclusions (i)–(iii) of Theorem 3 will be verified
by Theorem 6, where X = R2 and (1) is a large class of two-
dimensional linear differential systems.

The second aim of the paper is to use previous theorem
in the study of the rectifiable and nonrectifiable attractivity
of zero solution of two-dimensional linear differential system
as

x󸀠 = 𝐴 (𝑡) x, 𝑡 ∈ (0, 𝑡
0
] ,

x (𝑡
0
) = x
0
∈ R2,

x ∈ 𝐶
1
((0, 𝑡
0
] ;R2) ,

(8)

where 𝑡
0

> 0 and the prime denotes 𝑑/𝑑𝑡, x = x(𝑡) =

(𝑥(𝑡), 𝑦(𝑡)) and the matrix-valued function 𝐴 = 𝐴(𝑡), 𝐴 :

(0, 𝑡
0
] → M

2
(R) (where M

2
(R) denotes the space of real

2 × 2 matrices), is continuous on (0, 𝑡
0
]. Therefore, we may

apply previous theorems to system (8). As in the general case
of X, the zero solution x(𝑡) ≡ 0 ∈ R2 of system (8) is said
to be (global) attractive if for every solution x(𝑡) of (8), we
have ‖x(𝑡)‖R2 → 0 as 𝑡 → 0. On the asymptotic stability
and attractivity for several kinds of linear systems in the case
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when 𝑡 → ∞, we refer reader to [7–10, 12–14] and references
therein.

We know that a plain curve Γx is a Jordan curve in R2 if
there exists a continuous injection x = x(𝑡), x : [0, 𝑡

0
] →

R2, 𝑡
0
> 0, such that x([0, 𝑡

0
]) = Γx. It is often said that Γx is

parametrized by x(𝑡) or that Γx is associated to x(𝑡).The length
of Γx, denoted by length (Γx), is defined by

length (Γx) = sup
𝑚

∑

𝑘=1

󵄩󵄩󵄩󵄩
x (𝑡
𝑘
) − x (𝑡

𝑘−1
)
󵄩󵄩󵄩󵄩R2

, (9)

where the supremum is taken over all finite partitions 0 =

𝑡
𝑚+1

< ⋅ ⋅ ⋅ < 𝑡
1
< 𝑡
0
of the interval [0, 𝑡

0
] (see [17, 18]).

Definition 4. The zero solution of system (8) is rectifiable
attractive (resp., nonrectifiable attractive) if it is attractive and
the curve Γx of every solution x of (8) is a rectifiable (resp.,
nonrectifiable) Jordan curve in R2.

Following [17], we are interested in Jordan curves so that
the parametrization of our solutions faithfully represents the
length and rectifiability properties (omitting injectivity, we
might find solutions that self-intersect on large sets or are just
self-winding and, hence, artificially nonrectifiable).

The following well-known fact (see [19]) gives us a main
support to relate the singularity in (1) with the nonrectifiabil-
ity in system (8):
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑x
𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩R2
∈ 𝐿
1
(0, 𝑡
0
) if and only if length (Γx) < ∞. (10)

On the rectifiability of graph of solutions of scalar second-
order linear differential equations, we refer reader to [20].

Here the particular attention is paid to the case of the so-
called linear integrable systems defined as follows.

Definition 5. LetM
2
denote the linear space of all 2×2matrix

with the elements in C. We say that (8) is a linear integrable
system if there exists an invertible matrix 𝑇 ∈ M

2
such that

for every 𝑡 ∈ (0, 𝑡
0
] the matrix Λ(𝑡) = 𝑇

−1
𝐴(𝑡)𝑇 ∈ M

2
is a

diagonal matrix for every 𝑡 ∈ (0, 𝑡
0
].

Note that the matrices 𝐴(𝑡) are themselves always real.
As commented in Section 6, we proceed with presentation of
our results and arguments in terms of the coefficients of such
matrices.

Denoting the matrix elements of 𝐴(𝑡) by

𝐴 (𝑡) = [
𝑒 (𝑡) 𝑓 (𝑡)

𝑔 (𝑡) ℎ (𝑡)
] , 𝑡 ∈ (0, 𝑡

0
] , (11)

when we have 𝑒(𝑡) ≡ ℎ(𝑡) and 𝑓(𝑡) ≡ −𝑔(𝑡), we speak of
integrable systems (see for instance [21]). In such a case, both
eigenvalues 𝜆(𝑡) = ℎ(𝑡) ± 𝑔(𝑡)𝑖 of the matrix 𝐴(𝑡) admit
eigenvectors (±𝑖, 1) that do not depend on variable 𝑡. This
motivates us to introduce Definition 5 which gives a more
general notion of the integrable system than previous one. It
is because (see Lemma 11 in Section 4) the integrable system
(8) has the following form:

𝐴 (𝑡) = [
ℎ (𝑡) + 𝜇𝑔 (𝑡) −]𝑔 (𝑡)

𝜌𝑔 (𝑡) ℎ (𝑡)
] , 𝑡 ∈ (0, 𝑡

0
] , (12)

where 𝜇, ], 𝜌 ∈ R. For 𝜇 = 0 and ] = 𝜌 = 1 in (8), we have
𝑒(𝑡) ≡ ℎ(𝑡) and 𝑓(𝑡) ≡ −𝑔(𝑡); so, the classic integrable system
is a special case.

In Section 5, we show that the set of all matrix-valued
functions 𝐴 = 𝐴(𝑡) that satisfy Definition 5 make an algebra.

Furthermore, we show in Section 4 that if (8) is a
linear integrable system, then the matrix-valued function
𝐴(𝑡) satisfies the required hypotheses (𝐻

1
)-(𝐻
2
) in particular

for
𝜔 (𝑡) =

󵄨󵄨󵄨󵄨
𝑔 (𝑡)

󵄨󵄨󵄨󵄨
+ |ℎ (𝑡)| ,

𝑎 (𝑡) = 𝑒
−∫
𝑡0

𝑡
(ℎ(𝜏)+(𝜇/2)𝑔(𝜏))𝑑𝜏

, 𝑡 ∈ (0, 𝑡
0
] ,

(13)

𝑈 (𝑡) = 𝑇 diag [𝑒−∫
𝑡0

𝑡
𝜆
1
(𝜏)𝑑𝜏

, 𝑒
−∫
𝑡0

𝑡
𝜆
2
(𝜏)𝑑𝜏

]𝑇
−1
, 𝑡 ∈ (0, 𝑡

0
] ,

(14)

where 𝜆
1
(𝑡) and 𝜆

2
(𝑡) are two eigenvalues of𝐴(𝑡) for each 𝑡 ∈

(0, 𝑡
0
]. We also show that the solution curve of every solution

of the integrable system (8) is a Jordan curve if for every pair
𝑠, 𝑡 ∈ (0, 𝑡

0
], 𝑠 < 𝑡, at least one of the statements

∫

𝑡

𝑠

(ℎ (𝜏) +
𝜇

2
𝑔 (𝜏)) 𝑑𝜏 ̸= 0

or
√4]𝜌 − 𝜇

2

4𝜋
∫

𝑡

𝑠

𝑔 (𝜏) 𝑑𝜏 ∉ Z

(15)

holds true, where 4]𝜌 − 𝜇
2
> 0.

This implies the third main result of the paper.

Theorem 6. Let 𝜇2 − 4]𝜌 < 0. One supposes (15) and

lim
𝑡→0

∫

𝑡
0

𝑡

(ℎ (𝜏) +
1

2
𝜇𝑔 (𝜏)) 𝑑𝜏 = ∞. (16)

The zero solution of an integrable system (8) with 𝐴(𝑡) of form
(12) is nonrectifiable (resp., rectifiable) attractive if and only if

(|ℎ (𝑡)| +
󵄨󵄨󵄨󵄨
𝑔 (𝑡)

󵄨󵄨󵄨󵄨
) 𝑒
−∫
𝑡0

𝑡
(ℎ(𝜏)+(1/2)𝜇𝑔(𝜏))𝑑𝜏

∉ 𝐿
1
(0, 𝑡
0
)

(resp., ∈ 𝐿
1
(0, 𝑡
0
)) .

(17)

Remark 7. Under the assumptions ofTheorem6, we conclude
that if 𝑔(𝑡) ≡ 0, then the zero solution of integrable system (8)
is rectifiable attractive.

The proof of the previous theorem is given in Section 4
based on Theorem 3. As an important consequence of
precedingTheorem 6, we are able to study the following two-
parametric model-system, which is singular at 𝑡 = 0:

𝑥
󸀠
(𝑡) =

ℎ
0

𝑡
𝑎
𝑥 (𝑡) −

1

𝑡
𝑏
𝑦 (𝑡) , 𝑦

󸀠
(𝑡) =

1

𝑡
𝑏
𝑥 (𝑡) +

ℎ
0

𝑡
𝑎
𝑦 (𝑡) , (18)

where 𝑡 ∈ (0, 𝑡
0
].

Corollary 8. Let ℎ
0
> 0 and 𝑏 ∈ R. One has that:

(i) if 𝑎 = 1, the zero solution of (18) is rectifiable attractive
provided 𝑏 < ℎ

0
+ 1 and nonrectifiable attractive

provided 𝑏 ≥ ℎ
0
+ 1;
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(ii) if 𝑎 > 1, then the zero solution of (18) is rectifiable
attractive for all ℎ

0
> 0 and 𝑏 ∈ R.

As we see, in the case of 𝑎 = 1, the rectifiable attractivity
of (18) depends on the order of growth of the singular term
𝑡
−𝑏 appearing in the antidiagonal coefficients of 𝐴(𝑡). The
existence of solutions for the integrable systems (8) and (18)
is guaranteed by their explicit forms given in Lemma 11.

3. Proofs of Theorems 1, 2, and 3

In this section, we study the existence and uniqueness of
solutions to (1) as well as its attractivity of the zero solution.

In the case when the operator-valued function 𝐴 = 𝐴(𝑡),
𝐴 : [0, 𝑡

0
] → 𝐿(X) is defined and continuous on the

whole interval [0, 𝑡
0
], then the existence of a classic solution

x = x(𝑡) is well known; see, for instance, [22, Chapter 3], [23,
Chapter 2], and [24, Chapter 5.1]; when 𝐴(𝑡) are unbounded
linear operators, we refer reader to [24, Chapter 5.4] and some
selected papers from [25].

However, our operator-valued function 𝐴 = 𝐴(𝑡), 𝐴 :

(0, 𝑡
0
] → 𝐿(X), is mainly singular and not defined at

𝑡 = 0. By this reason, we cannot use the existence results
and methods obtained and used on [0, 𝑡

0
]. One way to

understand the main difficulties because of the pressumed
singular behaviour of 𝐴(𝑡) near 𝑡 = 0, we can make the
reflexion from 𝑡 = 0 into 𝜏 = ∞ by the transformation
𝜏 = 1/𝑡. Then, the existence of a solution of equation x󸀠 =
𝐴(𝑡)x, 𝑡 ∈ (0, 𝑡

0
], x(𝑡
0
) = x
0
, can be related with the existence

of a global solution of equation x̃󸀠 = 𝐴(𝜏)x̃, 𝜏 ∈ [𝜏
0
,∞),

where 𝐴(𝜏) = −𝜏
−2
𝐴(𝜏
−1
), x̃(𝜏) = x(1/𝑡), 𝜏

0
= 1/𝑡

0
, and

x̃(𝑡
0
) = x̃
0
. Since [𝜏

0
,∞) is an infinite interval, our approach

to the existence and uniqueness of solution of (1) is motivated
by the works [26–29].

At first, it is clear that (1) can be rewritten in the form of
corresponding integral operators equation:

𝑇x = x ∈ 𝐶 ((0, 𝑡
0
] ;X) , (19)

where 𝑇 : 𝐶((0, 𝑡
0
];X) → 𝐶((0, 𝑡

0
];X) is defined by

(𝑇x) (𝑡) = x (𝑡
0
) − ∫

𝑡
0

𝑡

𝐴 (𝑠) x (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑡
0
] . (20)

The existence anduniqueness of solution of problem (19)-(20)
will be explored by the following 𝛼-contraction fixed point
result in Fréchet spaces.

Definition 9. Let (𝐹, | ⋅ |
𝑛
) be a Fréchet space. A mapping 𝑇 :

𝐹 → 𝐹 is said to be an 𝛼-contraction on 𝐹 if for each 𝑛 ∈ N

there exists 𝛼
𝑛
∈ [0, 1) such that

󵄨󵄨󵄨󵄨
𝑇x − 𝑇y󵄨󵄨󵄨󵄨𝑛 ≤ 𝛼

𝑛

󵄨󵄨󵄨󵄨
x − y󵄨󵄨󵄨󵄨𝑛, ∀x, y ∈ 𝐹. (21)

In applications, the inequality (21) need not be satisfied
for the family of seminorms | ⋅ |

𝑛
, rather only for another

family of seminorms ‖ ⋅ ‖
𝑛
which is equivalent to | ⋅ |

𝑛
. Hence,

the key point of the following 𝛼-contraction principle is that
an operator 𝑇 has a fixed point provided (21) is satisfied in
‖ ⋅ ‖
𝑛
.

Lemma 10. Let (𝐹, | ⋅ |
𝑛
) be a Fréchet space and 𝑇 : 𝐹 → 𝐹

be an 𝛼-contraction on 𝐹 with respect to a family of seminorms
‖ ⋅ ‖
𝑛
equivalent to | ⋅ |

𝑛
. Then, 𝑇 has a fixed point on 𝐹.

The previous lemma is a particular case of [29, Theorem
1.2].

Proof of Theorem 1. Let 𝐹 = 𝐶((0, 𝑡
0
];X), x ∈ 𝐹, and

|x|𝑛 = sup {‖x (𝑡)‖X : 𝑡 ∈ [
1

𝑛
, 𝑡
0
]} . (22)

It is known that |⋅|
𝑛
is a family of seminorms on𝐹 and (𝐹, |⋅|

𝑛
)

is a Fréchet space.
Let 𝑇 : 𝐹 → 𝐹 be an operator defined in (20). Since 𝐴(𝑡)

may be singular at 𝑡 = 0, it is easy to check that in general 𝑇 is
not an 𝛼-contraction with respect to the family of seminorms
|𝑥|
𝑛
given in (22).
Next, let 𝜔

𝑛
and ℎ

𝑛
be two sequences of real numbers

determined by

𝜔
𝑛
= sup {‖𝐴 (𝑡)‖ : 𝑡 ∈ [

1

𝑛
, 𝑡
0
]} , 𝑛 ∈ N, (23)

ℎ
𝑛
> 0 such that ℎ

𝑛
≥ 𝜔
𝑛
, 𝑛 ∈ N. (24)

Let us remark that if ‖𝐴(𝑡)‖ satisfies (3), then obviously𝜔
𝑛
→

∞ as 𝑛 → ∞. In respect to these two sequences 𝜔
𝑛
and ℎ

𝑛
,

we define

‖x‖𝑛 = max {𝑒−ℎ𝑛(𝑡0−𝑡)‖x (𝑡)‖X : 𝑡 ∈ [
1

𝑛
, 𝑡
0
]} . (25)

Such sequence ‖ ⋅ ‖
𝑛
is a family of seminorms ‖ ⋅ ‖

𝑛
which are

equivalent with respect to | ⋅ |
𝑛
because

𝑒
−ℎ
𝑛
(𝑡
0
−1/𝑛)

|x|𝑛 ≤ ‖x‖𝑛 ≤ |x|𝑛, ∀𝑛 ∈ N, ∀x ∈ 𝐹. (26)

Next, according to (20) and (23), for 𝑡 ∈ [1/𝑛, 𝑡
0
], we

calculate

󵄩󵄩󵄩󵄩
𝑇x (𝑡) − 𝑇y (𝑡)󵄩󵄩󵄩󵄩X =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
0

𝑡

𝐴 (𝑠) (x (𝑠) − y (𝑠)) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩X

≤ ∫

𝑡
0

𝑡

‖𝐴 (𝑠)‖
󵄩󵄩󵄩󵄩
x (𝑠) − y (𝑠)󵄩󵄩󵄩󵄩X𝑑𝑠

≤ 𝜔
𝑛
∫

𝑡
0

𝑡

󵄩󵄩󵄩󵄩
x (𝑠) − y (𝑠)󵄩󵄩󵄩󵄩X𝑑𝑠.

(27)

Multiplying previous inequality by 𝑒
−ℎ
𝑛
(𝑡
0
−𝑡), where ℎ

𝑛
is

defined in (24), we obtain

𝑒
−ℎ
𝑛
(𝑡
0
−𝑡)󵄩󵄩󵄩󵄩

𝑇x (𝑡) − 𝑇y (𝑡)󵄩󵄩󵄩󵄩X

≤ 𝜔
𝑛
𝑒
−ℎ
𝑛
(𝑡
0
−𝑡)

∫

𝑡
0

𝑡

󵄩󵄩󵄩󵄩
x (𝑠) − y (𝑠)󵄩󵄩󵄩󵄩X𝑑𝑠

= 𝜔
𝑛
∫

𝑡
0

𝑡

𝑒
−ℎ
𝑛
(𝑠−𝑡)

𝑒
−ℎ
𝑛
(𝑡
0
−𝑠)󵄩󵄩󵄩󵄩

x (𝑠) − y (𝑠)󵄩󵄩󵄩󵄩X𝑑𝑠

≤ 𝜔
𝑛

󵄩󵄩󵄩󵄩
x − y󵄩󵄩󵄩󵄩𝑛 ∫

𝑡
0

𝑡

𝑒
−ℎ
𝑛
(𝑠−𝑡)

𝑑𝑠 ≤
𝜔
𝑛

ℎ
𝑛

󵄩󵄩󵄩󵄩
x − y󵄩󵄩󵄩󵄩𝑛.

(28)
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Taking the maximum in the previous inequality over the
interval [1/𝑛, 𝑡

0
] and using (24) and (25), we conclude that

󵄩󵄩󵄩󵄩
𝑇x − 𝑇y󵄩󵄩󵄩󵄩𝑛 ≤ 𝛼

𝑛

󵄩󵄩󵄩󵄩
x − y󵄩󵄩󵄩󵄩𝑛, 𝛼

𝑛
=
𝜔
𝑛

ℎ
𝑛

∈ [0, 1) ,

∀𝑛 ∈ N, ∀x, y ∈ 𝐹.

(29)

Now, applying Lemma 10, we obtain the existence of x ∈ 𝐹

satisfying problem (19)-(20). Since x ∈ 𝐹 = 𝐶((0, 𝑡
0
];X) and

𝐴 ∈ 𝐶((0, 𝑡
0
]; 𝐿(X)), from (19)-(20) follows x ∈ 𝐶

1
((0, 𝑡
0
];X).

Hence, by differentiating (19), we conclude that x = x(𝑡) is
also a solution of equation (1).Thus, the existence of a solution
of (1) is proved.

Now, we will show the uniqueness of solution of equation
(1). Let u(𝑡) and k(𝑡) be two solutions of (1) such that u(𝑡

0
) =

k(𝑡
0
) = x

0
. Integrating (1) with respect to u(𝑡) and k(𝑡), we

obtain u = 𝑇u and k = 𝑇k, which yields ‖𝑇u − 𝑇k‖
𝑛
=

‖u − k‖
𝑛
. Puting this equality into (29), we conclude that

‖u − k‖𝑛 ≤ 𝛼
𝑛‖u − u‖𝑛, 𝛼

𝑛
=
𝜔
𝑛

ℎ
𝑛

∈ [0, 1) , ∀𝑛 ∈ N.

(30)

On the other hand, if the solutions u(𝑡) and k(𝑡) are different,
then there is 𝑡∗ ∈ (0, 𝑡

0
] such that u(𝑡∗) ̸= k(𝑡∗), which implies

that ‖u(𝑡∗) − k(𝑡∗)‖X > 0. In particular, there is a big enough
𝑚 ∈ N such that 𝑡∗ ∈ [1/𝑚, 𝑡

0
], and, hence,

‖u − k‖𝑚 = max {𝑒−ℎ𝑚(𝑡0−𝑡)‖u − k‖X : 𝑡 ∈ [
1

𝑚
, 𝑡
0
]}

≥ 𝑒
−ℎ
𝑚
(𝑡
0
−𝑡
∗
)󵄩󵄩󵄩󵄩
u (𝑡∗) − k (𝑡

∗
)
󵄩󵄩󵄩󵄩X

> 0;

(31)

that is,

‖u − k‖𝑚 > 0. (32)

Putting (32) into (30), we obtain that 𝛼
𝑚

≥ 1. But it is not
possible since 𝛼

𝑚
∈ [0, 1). Hence, the assumption about the

existence of 𝑡∗ ∈ (0, 𝑡
0
] such that u(𝑡∗) ̸= k(𝑡∗) is not possible.

Therefore, we conclude that u(𝑡) = k(𝑡) for all 𝑡 ∈ (0, 𝑡
0
], and,

thus, the uniqueness of solution of (1) is shown.

Proof of Theorem 2. It is enough to show that if the statement
(3) does not hold, then ‖𝑑x/𝑑𝑡‖X ∈ 𝐿

1
(0, 𝑡
0
) for every x

0
∈ X

and the corresponding solution x of (1) such that x(𝑡
0
) = x
0
.

In fact, if we suppose contrary to (3), then there exists 𝑐
0
> 0

such that ‖𝐴(𝑡)‖ ≤ 𝑐
0
, 𝑡 ∈ (0, 𝑡

0
]. Also, because of ‖x(𝑡)‖X →

0 as 𝑡 → 0, there exists 𝑐
1
> 0 such that ‖x(𝑡)‖X ≤ 𝑐

1
, 𝑡 ∈

(0, 𝑡
0
]. Hence, from (1), we obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑x
𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩X

= ‖𝐴 (𝑡) x (𝑡)‖X ≤ ‖𝐴 (𝑡)‖ ‖x (𝑡)‖X ≤ 𝑐
0
𝑐
1
,

𝑡 ∈ (0, 𝑡
0
] ,

(33)

which shows that ‖𝑑x/𝑑𝑡‖X ∈ 𝐿
1
(0, 𝑡
0
).

Proof of Theorem 3. The conclusion (i) immediately follows
from the hypothesis (𝐻

2
) because ‖x(𝑡)‖X = ‖𝑈(𝑡)x

0
‖X ≤

‖𝑈(𝑡)‖‖x
0
‖X → 0 as 𝑡 → 0.

Next, we give the proof of the conclusion (ii). Let 𝑠, 𝑡 ∈

(0, 𝑡
0
], 𝑠 < 𝑡, be such that x

0
is an eigenvector of 𝑈−1(𝑠)𝑈(𝑡)

with an eigenvalue 1. Then,

𝑈
−1
(𝑠) 𝑈 (𝑡) x

0
= x
0
. (34)

Applying𝑈(𝑠) to the pervious formula, we obtain the expres-
sion 𝑈(𝑡)x

0
= 𝑈(𝑠)x

0
, which by definition of x(𝑡) equals to

x(𝑡) = x(𝑠). Hence, x = x(𝑡) is not an injective function.
Note that, since𝑈(𝑡) is postulated invertible for all 𝑡 ∈ (0, 𝑡

0
],

all the steps of this proof are reversible. Thus, the required
equivalence holds.

Finally, the conclusion (iii) follows from the hypotheses
(𝐻
1
)-(𝐻
2
) because

𝑐
0
𝑐
2
𝑎 (𝑡) 𝜔 (𝑡)

󵄩󵄩󵄩󵄩
x
0

󵄩󵄩󵄩󵄩X
≤ 𝑐
0
𝜔 (𝑡)

󵄩󵄩󵄩󵄩
𝑈 (𝑡) x

0

󵄩󵄩󵄩󵄩X
= 𝑐
0
𝜔 (𝑡) ‖x (𝑡)‖X

≤ ‖𝐴 (𝑡) x (𝑡)‖X,

‖𝐴 (𝑡) x (𝑡)‖X ≤ 𝑐
1
𝜔 (𝑡) ‖x (𝑡)‖X = 𝑐

1
𝜔 (𝑡)

󵄩󵄩󵄩󵄩
𝑈 (𝑡) x

0

󵄩󵄩󵄩󵄩X

≤ 𝑐
1
𝑐
3
𝑎 (𝑡) 𝜔 (𝑡)

󵄩󵄩󵄩󵄩
x
0

󵄩󵄩󵄩󵄩X
.

(35)

Hence, the required equivalence in (iii) holds.

Note that conclusion (ii) does not depend on any of the
hypotheses (𝐻

1
)-(𝐻
2
).

4. Proofs of Theorem 6 and Corollary 8

In this section, we study the rectifiable and nonrectifiable
attractivity of the linear integrable systems (8).

At the first, we state the following lemma in which a
specific form of the matrix 𝐴(𝑡) of linear integrable systems
is proposed.

Lemma 11. Suppose that system (8) is integrable. Then, there
exist functions 𝑔, ℎ : (0, 𝑡

0
] → R and constants 𝜇, ], 𝜌 ∈ R

such that

𝐴 (𝑡) = [
ℎ (𝑡) + 𝜇𝑔 (𝑡) −]𝑔 (𝑡)

𝜌𝑔 (𝑡) ℎ (𝑡)
] , 𝑡 ∈ (0, 𝑡

0
] . (36)

The eigenvalues 𝜆
1,2

: (0, 𝑡
0
] → C of 𝐴(𝑡) are given by the

formula

𝜆
1,2

(𝑡) = (ℎ (𝑡) +
𝜇

2
𝑔 (𝑡)) ±

󵄨󵄨󵄨󵄨
𝑔 (𝑡)

󵄨󵄨󵄨󵄨
√
𝜇
2

4
− 𝜌]. (37)

Proof. Let 𝜆
1,2

: (0, 𝑡
0
] → C be two eigenvalues of the

matrix-valued function 𝐴(𝑡). Since system (8) is supposed to
be an integrable system, from Definition 5, there is a regular
matrix 𝑇 ∈ M

2
such that

𝐴 (𝑡) = 𝑇 diag [𝜆
1
(𝑡) , 𝜆
2
(𝑡)] 𝑇

−1
, 𝑡 ∈ (0, 𝑡

0
] . (38)

If det(𝑇) ∈ R and det(𝑇) < 0, then we can change the
columns in 𝑇 which causes det(𝑇) > 0 and diag[𝜆

2
(𝑡), 𝜆
1
(𝑡)]
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instead of diag[𝜆
1
(𝑡), 𝜆
2
(𝑡)]. Also, if det(𝑇) ∈ R and det(𝑇) >

0 or det(𝑇) ∈ C \R, then

𝐴 (𝑡) = 𝑇
0
diag [𝜆

2 (𝑡) , 𝜆1 (𝑡)] 𝑇
−1

0
,

det (𝑇
0
) = 1, where 𝑇

0
=

1

√det (𝑇)
𝑇.

(39)

Hence, we may suppose that det(𝑇) = 1; that is, for some
complex numbers 𝛼, 𝛽, 𝛾, 𝛿 with 𝛼𝛿 − 𝛽𝛾 = 1, we may set

𝑇 = [
𝛼 𝛽

𝛾 𝛿
] , 𝑇

−1
= [

𝛿 −𝛽

−𝛾 𝛼
] . (40)

Now from (38) and (40), we obtain

𝐴 (𝑡) = [
𝛼𝛿𝜆
1
(𝑡) − 𝛽𝛾𝜆

2
(𝑡) 𝛼𝛽 (𝜆

2
(𝑡) − 𝜆

1
(𝑡))

𝛾𝛿 (𝜆
1
(𝑡) − 𝜆

2
(𝑡)) 𝛼𝛿𝜆

2
(𝑡) − 𝛽𝛾𝜆

1
(𝑡)
] , (41)

where the matrix elements of 𝐴(𝑡) are real numbers for all
𝑡 ∈ (0, 𝑡

0
].

We denote that

ℎ (𝑡) := 𝛼𝛿𝜆
2
(𝑡) − 𝛽𝛾𝜆

1
(𝑡) , 𝑡 ∈ (0, 𝑡

0
] , (42)

and if 𝜆
1,2
(𝑡) ∈ R for all 𝑡 ∈ (0, 𝑡

0
], then let

𝑔 (𝑡) := 𝜆
1
(𝑡) − 𝜆

2
(𝑡) , 𝜌 := 𝛾𝛿,

] := 𝛼𝛽, 𝜇 := − (𝛼𝛿 + 𝛾𝛽) ,

(43)

and if 𝜆
1,2
(𝑡) form a complex-conjugate pair for all 𝑡 ∈ (0, 𝑡

0
],

then let

𝑔 (𝑡) := −𝑖 (𝜆
1
(𝑡) − 𝜆

2
(𝑡)) , 𝜌 := 𝑖𝛾𝛿,

] := 𝑖𝛼𝛽, 𝜇 := −𝑖 (𝛼𝛿 + 𝛾𝛽) .

(44)

Putting previous notations in (41), we get the desired
conclusion (36). Note that all of these functions and constants
are real, since ℎ is defined as amatrix-element of a realmatrix,
𝑔 is defined real in both cases, and the rest of the constants
are necessarily real by virtue of satisfying (36). Now, the
conclusion (37) immediately follows from (36).

ByTheorem 1, we know that there exists a unique solution
x(𝑡) of system (8). Moreover, in the next lemma, we show that
if (8) is a linear integrable system, then the solution x(𝑡) is
explicitly expressed by the matrix elements of 𝐴(𝑡).

Lemma 12. Let x be a solution of linear integrable system (8)
and let 𝑇 ∈ M

2
be a matrix determined in Definition 5.

Then, there exists a matrix-valued function 𝑈 = 𝑈(𝑡), 𝑈 :

(0, 𝑡
0
] → M

2
, such that x(𝑡) = 𝑈(𝑡)x

0
and satisfies the

following properties:

(1) 𝑈(𝑡
0
) is the identity matrix;

(2) 𝑈(𝑡) is invertible for every 𝑡 ∈ (0, 𝑡
0
];

(3) 𝑇−1𝑈(𝑡)𝑇 is a diagonal matrix for every 𝑡 ∈ (0, 𝑡
0
];

(4) if 𝜆(𝑡) is an eigenvalue of 𝐴(𝑡), then 𝑒
−∫
𝑡0

𝑡
𝜆(𝜏)𝑑𝜏 is an

eigenvalue of 𝑈(𝑡);
(5) 𝑈󸀠(𝑡) = 𝐴(𝑡)𝑈(𝑡) for every 𝑡 ∈ (0, 𝑡

0
].

Proof. Let𝑇 be thematrix that diagonalizes𝐴(𝑡). LetΛ
𝐴
(𝑡) =

𝑇
−1
𝐴(𝑡)𝑇 be of form

Λ
𝐴
(𝑡) = [

𝜆
1
(𝑡) 0

0 𝜆
2
(𝑡)
] . (45)

We define

Λ
𝑈
(𝑡) = [

𝑒
−∫
𝑡0

𝑡
𝜆
1
(𝜏)𝑑𝜏

0

0 𝑒
−∫
𝑡0

𝑡
𝜆
2
(𝜏)𝑑𝜏

] ,

𝑈 (𝑡) = 𝑇Λ
𝑈
(𝑡) 𝑇
−1
.

(46)

Now, Λ
𝑈
(𝑡
0
) is obviously the identity matrix, and thus

𝑈(𝑡
0
) = 𝑇𝐼𝑇

−1
= 𝐼. Since Λ

𝑈
(𝑡) is invertible for all 𝑡 ∈

(0, 𝑡
0
], so is 𝑈(𝑡). Next, 𝑇−1𝑈(𝑡)𝑇 = Λ

𝑈
(𝑡) is diagonal by

construction. For an eigenvalue 𝜆(𝑡) of𝐴(𝑡), by construction,
exp{− ∫𝑡0

𝑡
𝜆(𝜏)𝑑𝜏} is a diagonal element of Λ

𝑈
(𝑡); so, it is an

eigenvalue of 𝑈(𝑡). Also,

𝑈
󸀠
(𝑡) = 𝑇Λ

󸀠

𝑈
(𝑡) 𝑇
−1

= 𝑇Λ
𝐴 (𝑡) Λ𝑈 (𝑡) 𝑇

−1

= 𝑇Λ
𝐴
(𝑡) 𝑇
−1
𝑇Λ
𝑈
(𝑡) 𝑇
−1

= 𝐴 (𝑡) 𝑈 (𝑡) .

(47)

And finally, the function x(𝑡) = 𝑈(𝑡)x
0
solves the integrable

system (8) because

x󸀠 (𝑡) = 𝑈
󸀠
(𝑡) x
0
= 𝐴 (𝑡) 𝑈 (𝑡) x

0
= 𝐴 (𝑡) x (𝑡) (48)

and has the property x(𝑡
0
) = 𝑈(𝑡

0
)x
0
= x
0
.

According to [23, p. 188], thematrix-valued function𝑈(𝑡)
is called the evolution operator.

In the next lemma, we give some necessary and sufficient
conditions such that the solution’s curve Γx of every solution
x(𝑡) of integrable system (8) is a Jordan curve. Results of that
kind are important because Definition 4 requires the Jordan
property.

Lemma 13. Let (8) be a linear integrable system such that 𝜇2−
4]𝜌 < 0 and 𝑔(𝑡) ̸= 0, 𝑡 ∈ (0, 𝑡

0
], where the real numbers 𝜇, ],

𝜌, and 𝑔(𝑡) are determined by Lemma 11. Then, the solution’s
curve Γx of every solution x(𝑡) is a Jordan curve in R2 if and
only if for every pair 𝑠, 𝑡 ∈ (0, 𝑡

0
], 𝑠 < 𝑡, at least one of the

statements in (15) holds true.

Proof. In order to prove this lemma, we use the equivalence
stated in the conclusion (ii) of Theorem 3 (we may use
Theorem 3 because of Lemma 12; see also the remark at the
end of Theorem 3). According to that, we need to find pairs
𝑠 and 𝑡 such that 1 is an eigenvalue of 𝑈−1(𝑠)𝑈(𝑡). Since the
evolution operator 𝑈(𝑡) can be diagonalized into the form
Λ
𝑈
(𝑡), we compute

𝑈
−1
(𝑠) 𝑈 (𝑡) = (𝑇Λ

𝑈
(𝑠) 𝑇
−1
)
−1

𝑇Λ
𝑈
(𝑡) 𝑇
−1

= 𝑇Λ
−1

𝑈
(𝑠) Λ
𝑈
(𝑡) 𝑇
−1
.

(49)
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The diagonalized form of 𝑈−1(𝑠)𝑈(𝑡) is then given by the
formula

Λ
−1

𝑈
(𝑠) Λ
𝑈
(𝑡)

= [
𝑒
∫
𝑡0

𝑠
𝜆
1
(𝜏)𝑑𝜏

0

0 𝑒
∫
𝑡0

𝑠
𝜆
2
(𝜏)𝑑𝜏

][
𝑒
−∫
𝑡0

𝑡
𝜆
1
(𝜏)𝑑𝜏

0

0 𝑒
−∫
𝑡0

𝑡
𝜆
2
(𝜏)𝑑𝜏

]

= [
𝑒
−∫
𝑠

𝑡
𝜆
1
(𝜏)𝑑𝜏

0

0 𝑒
−∫
𝑠

𝑡
𝜆
2
(𝜏)𝑑𝜏

] .

(50)

Now, the eigenvalues of 𝑈
−1
(𝑠)𝑈(𝑡) are 𝑒

−∫
𝑠

𝑡
𝜆
1
(𝜏)𝑑𝜏 and

𝑒
−∫
𝑠

𝑡
𝜆
2
(𝜏)𝑑𝜏. Since 𝜆

2
= 𝜆
1
, we only need to solve the equation

𝑒
−∫
𝑠

𝑡
𝜆
1
(𝜏)𝑑𝜏

= 𝑒
−∫
𝑠

𝑡
(ℎ(𝜏)+(𝜇/2)𝑔(𝜏)𝑑𝜏)

(cos(1
2

√4]𝜌 − 𝜇
2
∫

𝑠

𝑡

𝑔 (𝜏) 𝑑𝜏)

+ 𝑖 sin(1
2

√4]𝜌 − 𝜇
2

× ∫

𝑠

𝑡

𝑔 (𝜏) 𝑑𝜏)) = 1.

(51)

This equation is solved whenever

∫

𝑡

𝑠

(ℎ (𝜏) +
𝜇

2
𝑔 (𝜏) 𝑑𝜏) = 0,

1

2

√4]𝜌 − 𝜇
2
∫

𝑡

𝑠

𝑔 (𝜏) 𝑑𝜏 = 2𝑘𝜋, for some 𝑘 ∈ Z,

(52)

where the order of integration has been reversed bymultiply-
ing by −1.

Since by this argument, 𝑈−1(𝑠)𝑈(𝑡) = 𝐼 if and only if 1 is
an eigenvalue of 𝑈−1(𝑠)𝑈(𝑡), we get the full equivalence.

Proof of Theorem 6. The key point of this proof is to show
that the integrable system (8) satisfies the required hypotheses
(𝐻
1
)-(𝐻
2
), because all conclusions of Theorem 6 follow

immediately from the conclusions (i), (ii), and (iii) of The-
orem 3. Before we show that, we state the following two
propositions which will be proved in Section 5.

Proposition 14. Let 𝑓 : R × R → R be defined by 𝑓(𝑥, 𝑦) =
√𝑥
2
+ 𝜇𝑥𝑦 + 𝜌]𝑦2, where 𝜇, ], 𝜌 are real numbers such that

𝜇
2
< 4]𝜌. Then, there exist constants 𝑐

1
, 𝑐
2
> 0 such that

𝑐
1
(|𝑥| +

󵄨󵄨󵄨󵄨
𝑦
󵄨󵄨󵄨󵄨
) ≤ 𝑓 (𝑥, 𝑦) ≤ 𝑐

2
(|𝑥| +

󵄨󵄨󵄨󵄨
𝑦
󵄨󵄨󵄨󵄨
) , ∀𝑥, 𝑦 ∈ R. (53)

Proposition 15. Let Λ : (0, 𝑡
0
] → M

2
be a diagonal matrix

of the form

Λ (𝑡) = [
𝜆 (𝑡) 0

0 𝜆 (𝑡)
] , (54)

for all 𝑡 ∈ (0, 𝑡
0
]. Then, detΛ(𝑡) ≥ 0, 𝑡 ∈ (0, 𝑡

0
] and

󵄩󵄩󵄩󵄩
Λ (𝑡) 𝑧⃗

󵄩󵄩󵄩󵄩
= |𝜆 (𝑡)|

󵄩󵄩󵄩󵄩
𝑧⃗
󵄩󵄩󵄩󵄩
= √detΛ (𝑡)

󵄩󵄩󵄩󵄩
𝑧⃗
󵄩󵄩󵄩󵄩

∀𝑡 ∈ (0, 𝑡
0
] , 𝑧⃗ ∈ C

2
.

(55)

Now we proceed with the proof of Theorem 6. By
definition, 𝐴(𝑡) = 𝑇

−1
Λ
𝐴
(𝑡)𝑇, where 𝑇 ∈ M

2
is an invertible

matrix and Λ
𝐴
: (0, 𝑡
0
] → M

2
is a matrix-valued function

given in (45). Since 𝑇 is invertible, there exist constants
𝑐
1
, 𝑐
2
> 0 such that

𝑐
1

󵄩󵄩󵄩󵄩
𝑧⃗
󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩
𝑇𝑧⃗

󵄩󵄩󵄩󵄩
≤ 𝑐
2

󵄩󵄩󵄩󵄩
𝑧⃗
󵄩󵄩󵄩󵄩
, ∀𝑧⃗ ∈ C2,

1

𝑐
2

‖𝑤⃗‖ ≤
󵄩󵄩󵄩󵄩󵄩
𝑇
−1
𝑤⃗
󵄩󵄩󵄩󵄩󵄩
≤

1

𝑐
1

‖𝑤⃗‖ , ∀𝑤⃗ ∈ C2.
(56)

Next, from (36), we get

√detΛ
𝐴 (𝑡) =

√det𝐴 (𝑡)

= √ℎ
2
(𝑡) + 𝜇𝑔 (𝑡) ℎ (𝑡) + 𝜌]𝑔2 (𝑡)

= 𝑓 (ℎ (𝑡) , 𝑔 (𝑡)) , 𝑡 ∈ (0, 𝑡
0
] ,

(57)

where𝑓(𝑥, 𝑦) is defined in Proposition 14. Hence, by (57) and
Propositions 14 and 15 applied to Λ(𝑡) = Λ

𝐴
(𝑡), we get two

constants 𝑐
3
, 𝑐
4
> 0 such that

𝑐
3
𝜔 (𝑡)

󵄩󵄩󵄩󵄩
𝑧⃗
󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩
Λ
𝐴
(𝑡) 𝑧⃗

󵄩󵄩󵄩󵄩
≤ 𝑐
4
𝜔 (𝑡)

󵄩󵄩󵄩󵄩
𝑧⃗
󵄩󵄩󵄩󵄩
, 𝑡 ∈ (0, 𝑡

0
] , 𝑧⃗ ∈ C

2
,

(58)

where 𝜔(𝑡) = |ℎ(𝑡)| + |𝑔(𝑡)|. Now from (56) and (58), for all
𝑡 ∈ (0, 𝑡

0
] and 𝑥⃗ ∈ R2, we have

𝑐
1
𝑐
3

𝑐
2

𝜔 (𝑡) ‖𝑥⃗‖ ≤
𝑐
3

𝑐
2

𝜔 (𝑡) ‖𝑇𝑥⃗‖

≤
1

𝑐
2

󵄩󵄩󵄩󵄩
Λ
𝐴
(𝑡) 𝑇𝑥⃗

󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑇
−1
Λ
𝐴
(𝑡) 𝑇𝑥⃗

󵄩󵄩󵄩󵄩󵄩

= ‖𝐴 (𝑡) 𝑥⃗‖ ,

‖𝐴 (𝑡) 𝑥⃗‖ =
󵄩󵄩󵄩󵄩󵄩
𝑇
−1
Λ
𝐴
(𝑡) 𝑇𝑥⃗

󵄩󵄩󵄩󵄩󵄩
≤

1

𝑐
1

󵄩󵄩󵄩󵄩
Λ
𝐴
(𝑡) 𝑇𝑥⃗

󵄩󵄩󵄩󵄩

≤
𝑐
4

𝑐
1

𝜔 (𝑡) ‖𝑇𝑥⃗‖ ≤
𝑐
4
𝑐
2

𝑐
1

𝜔 (𝑡) ‖𝑥⃗‖ ,

(59)

which shows that the hypothesis (𝐻
1
) is fulfilled with respect

to 𝜔(𝑡) given in (13).
Next, let the evolution operator 𝑈(𝑡) and matrix-valued

function Λ
𝑈

: (0, 𝑡
0
] → M

2
be defined by (46). The

required condition (𝐻
2
) is satisfied because of the following

arguments. First, from Lemma 12 and (37), we have

√detΛ
𝑈
(𝑡) = √det𝑈 (𝑡) = 𝑒

−∫
𝑡0

𝑡
(ℎ(𝜏)+(𝜇/2)𝑔(𝜏))𝑑𝜏

=: 𝑎 (𝑡) ,

𝑡 ∈ (0, 𝑡
0
] .

(60)
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Hence, by Proposition 15 applied to Λ(𝑡) = Λ
𝑈
(𝑡), we obtain

󵄩󵄩󵄩󵄩
Λ
𝑈
(𝑡) 𝑧⃗

󵄩󵄩󵄩󵄩
= 𝑎 (𝑡)

󵄩󵄩󵄩󵄩
𝑧⃗
󵄩󵄩󵄩󵄩
, 𝑡 ∈ (0, 𝑡

0
] , 𝑧⃗ ∈ C

2
. (61)

Now from (56) and (61), for all 𝑡 ∈ (0, 𝑡
0
] and 𝑥 ∈ R2, we have

𝑐
1

𝑐
2

𝑎 (𝑡) ‖𝑥⃗‖ ≤
1

𝑐
2

𝑎 (𝑡) ‖𝑇𝑥⃗‖ =
1

𝑐
2

󵄩󵄩󵄩󵄩
Λ
𝑈 (𝑡) 𝑇𝑥⃗

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
−1
Λ
𝑈
(𝑡) 𝑇𝑥⃗

󵄩󵄩󵄩󵄩󵄩
= ‖𝑈 (𝑡) 𝑥⃗‖ ,

‖𝑈 (𝑡) 𝑥⃗‖ =
󵄩󵄩󵄩󵄩󵄩
𝑇
−1
Λ
𝑈
(𝑡) 𝑇𝑥⃗

󵄩󵄩󵄩󵄩󵄩
≤

1

𝑐
1

󵄩󵄩󵄩󵄩
Λ
𝑈
(𝑡) 𝑇𝑥⃗

󵄩󵄩󵄩󵄩

=
1

𝑐
1

𝑎 (𝑡) ‖𝑇𝑥⃗‖ ≤
𝑐
2

𝑐
1

𝑎 (𝑡) ‖𝑥⃗‖ ,

(62)

which shows that 𝑈(𝑡) satisfied the required inequalities in
(𝐻
2
) with respect to 𝑎(𝑡) given in (13).
Finally, by Lemma 13, we obtain that the solution’s curve

Γx of every solution x is a Jordan curve.Thus, all assumptions
of Theorem 3 are fulfilled, and, therefore, we may apply
Theorem 3 here. Consequently, the proof of this theorem is
complete.

Proof of Corollary 8. It is enough to show that all assump-
tions of Theorem 6: 𝜇2 − 4]𝜌 < 0, (15), (16), and (17) are
fulfilled in particular for

ℎ (𝑡) = ℎ
0
𝑡
−𝑎
, 𝑔 (𝑡) = 𝑡

−𝑏
,

𝜇 = 0, V = 𝜌 = 1,

(63)

where ℎ
0
> 0, 𝑎 ≥ 1, and 𝑏 ∈ R. In fact, the following

elementary calculation is shown:

𝜇
2
− 4]𝜌 = − 4 < 0,

∫

𝑡

𝑠

(ℎ (𝜏) +
𝜇

2
𝑔 (𝜏)) 𝑑𝜏 = ∫

𝑡

𝑠

ℎ (𝜏) 𝑑𝜏

= ℎ
0
∫

𝑡

𝑠

𝜏
−𝑎
𝑑𝜏 ̸= 0, 𝑠 ̸= 𝑡,

lim
𝑡→0

∫

𝑡
0

𝑡

(ℎ (𝜏) +
1

2
𝜇𝑔 (𝜏)) 𝑑𝜏 = ℎ

0
lim
𝑡→0

∫

𝑡
0

𝑡

𝜏
−𝑎
𝑑𝜏 = ∞.

(64)

Moreover, for 𝑎 = 1,

(|ℎ (𝑡)| +
󵄨󵄨󵄨󵄨
𝑔 (𝑡)

󵄨󵄨󵄨󵄨
) 𝑒
−∫
𝑡0

𝑡
(ℎ(𝜏)+(1/2)𝜇𝑔(𝜏))𝑑𝜏

= 𝑡
−ℎ
0

0
(ℎ
0
𝑡
−1+ℎ
0
+ 𝑡
−𝑏+ℎ
0
) ∉ 𝐿
1
(0, 𝑡
0
) ;

(65)

so, condition (17) is fulfilled if and only if 𝑏 ≥ ℎ
0
+1. Also, for

𝑎 > 1,

(|ℎ (𝑡)| +
󵄨󵄨󵄨󵄨
𝑔 (𝑡)

󵄨󵄨󵄨󵄨
) 𝑒
−∫
𝑡0

𝑡
(ℎ(𝜏)+(1/2)𝜇𝑔(𝜏))𝑑𝜏

= (ℎ
0
𝑡
−𝑎

+ 𝑡
−𝑏
) 𝑒
−(ℎ
0
/(𝑎−1))(𝑡

1−𝑎
−𝑡
1−𝑎

0
)
∈ 𝐿
1
(0, 𝑡
0
) .

(66)

Therefore, we may apply Theorem 6 to system (18) which
proves this corollary.

5. Appendix

In this section, we first state a result saying that the set
of all matrix-valued functions 𝐴 : (0, 𝑡

0
] → M

2
which

satisfy Definition 5 forms an algebra. In this direction, let
A((0, 𝑡

0
];M
2
) be a set defined by

A ((0, 𝑡
0
] ;M
2
)

= {𝐴 : (0, 𝑡
0
] 󳨀→ M

2
| ∃ 𝑇 ∈ M

2
, det𝑇 ̸= 0,

such that 𝑇−1𝐴 (𝑡) 𝑇 is diagonal, ∀𝑡 ∈ (0, 𝑡
0
]} .

(67)

Theorem 16. The setA((0, 𝑡
0
];M
2
) is an algebra with respect

to the classic matrix operations + and ∘; that is to say, if 𝐴, 𝐵 ∈

A((0, 𝑡
0
];M
2
), then the following properties hold:

(1) 𝛼𝐴 + 𝛽𝐵 ∈ A((0, 𝑡
0
];M
2
) for all 𝛼, 𝛽 ∈ R;

(2) 𝐴 ∘ 𝐵 ∈ A((0, 𝑡
0
];M
2
);

(3) if det𝐴(𝑡) ̸= 0 for all 𝑡 ∈ (0, 𝑡
0
], then 𝐴

−1
∈

A((0, 𝑡
0
];M
2
);

(4) if 𝑓 : R → R is a real analytic function such that
𝑓(𝐴(𝑡)) converges absolutely for all 𝑡 ∈ 𝐽, then 𝑓(𝐴) ∈
A((0, 𝑡

0
];M
2
).

Proof. We denote the diagonal matrices Λ
𝐴

= 𝑇𝐴𝑇
1 and

Λ
𝐵
= 𝑇𝐵𝑇

1.

(1) 𝑇(𝛼𝐴 + 𝛽𝐵)𝑇
−1

= 𝛼𝑇𝐴𝑇
−1
+ 𝛽𝑇𝐵𝑇

−1
= 𝛼Λ

𝐴
+ 𝛽Λ
𝐵
,

which is diagonal.

(2) 𝑇𝐴𝐵𝑇−1 = 𝑇𝐴𝑇
−1
𝑇𝐵𝑇
−1

= Λ
𝐴
Λ
𝐵
, which is

diagonal.

(3) (𝑇𝐴−1𝑇−1) = (𝑇𝐴𝑇
−1
)
−1

= Λ
−1

𝐴
, which is also

diagonal.

(4) 𝑇𝑓(𝐴)𝑇−1 = 𝑇(∑
𝑛
𝑎
𝑛
𝐴
𝑛
)𝑇
−1

= ∑
𝑛
𝑎
𝑛
𝑇𝐴
𝑛
𝑇
−1

=

∑
𝑛
𝑎
𝑛
Λ
𝑛

𝐴
, which is also diagonal.

Next, we give the proofs of some technical results used in
previous sections for proving the main results.

Proof of Proposition 14. Denote by 𝑢 ∈ R2 the vector 𝑢 =

(𝑥, 𝑦). It is enough to show that 𝑓 = 𝑓(𝑢) is a norm as
a function 𝑓 : R2 → R, since all the norms in R2 are
equivalent [30, p. 38], which, by definition, is the claim of this
lemma. Let

𝑀 = [

[

1
𝜇

2
𝜇

2
𝜌]
]

]

. (68)

By direct computation,we see that𝑓(𝑢) = √(𝑀𝑢, 𝑢). Since𝑀
is symmetric and positive definite, it has a unique symmetric
positive definite square root 𝑁2 = 𝑀, so that 𝑓(𝑢) =

√(𝑁𝑢,𝑁𝑢) [31, p. 231]. Hence, 𝑓(𝑢) =‖ V‖R2 , where V = 𝑁𝑢;
so, the function 𝑓 = 𝑓(𝑢) is a norm.
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Proof of Proposition 15. Let 𝜙(𝑡) : (0, 𝑡
0
] → R be such that

𝜆(𝑡) = |𝜆(𝑡)|𝑒
𝑖𝜙(𝑡). Then, 𝜆(𝑡) = |𝜆(𝑡)|𝑒

−𝑖𝜙(𝑡); so, for any 𝑧 =

(𝑧
1
, 𝑧
2
) ∈ C2, we have

‖Λ (𝑡) 𝑧‖ = |𝜆 (𝑡)|
󵄩󵄩󵄩󵄩󵄩
(𝑒
𝑖𝜙(𝑡)

𝑧
1
, 𝑒
−𝑖𝜙(𝑡)

𝑧
2
)
󵄩󵄩󵄩󵄩󵄩

= |𝜆 (𝑡)| √
󵄨󵄨󵄨󵄨
𝑒
𝑖𝜙(𝑡)

𝑧
1

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨
𝑒
−𝑖𝜙(𝑡)

𝑧
2

󵄨󵄨󵄨󵄨

2

= |𝜆 (𝑡)| ‖𝑧‖ ,

(69)

since |𝑒±𝑖𝜙| = 1. The remaining equality is true because

|𝜆 (𝑡)| = √𝜆 (𝑡) 𝜆 (𝑡) = √detΛ (𝑡). (70)

6. Final Remarks

In our approach to the model over R2, we have chosen to
emphasize the a priori structure of the real matrices describ-
ing the integrable systems. Thus, we have stated and proved
this theory in terms of such real functions, complexifying
only when absolutely necessary.

We could have taken another approach, complexifying
from the start and then easily diagonalizing all the rele-
vant matrices, but this would not essentially simplify any
argument except in notation, while we would run the risk
of confusing the reader even further about which term or
function is real and which one is complex.
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[23] S. G. Krĕın, Linear Differential Equations in Banach Space,
vol. 29 of Translations of Mathematical Monographs, American
Mathematical Society, Providence, RI, USA, 1971.

[24] A. Pazy, Semigroups of Linear Operators and Applications to
Partial Differential Equations, vol. 44 of Applied Mathematical
Sciences, Springer, New York, NY, USA, 1983.

[25] A. Favini and E. Obrecht, Differential Equations in Banach
Spaces, vol. 1223 of Lectures notes inMahtematics, Springer, New
York, NY, USA, 1985.

[26] L. H. Hao and K. Schmitt, “Fixed point theorems of Krasnosel-
skii type in locally convex spaces and applications to integral
equations,” Results in Mathematics, vol. 25, no. 3-4, pp. 290–314,
1994.

[27] C. Avramescu, “Some remarks on a fixed point theoremofKras-
noselskii,” Electronic Journal of QualitativeTheory of Differential
Equations, vol. 2003, no. 5, pp. 1–15, 2003.

[28] L. T. P. Ngoc and N. T. Long, “On a fixed point theorem of
Krasnoselskii type and application to integral equations,” Fixed
Point Theory and Applications, vol. 2006, Article ID 30847, 24
pages, 2006.



10 Abstract and Applied Analysis

[29] L. T. P. Ngoc and N. T. Long, “Applying a fixed point theorem
of Krasnosel’skii type to the existence of asymptotically stable
solutions for a Volterra-Hammerstein integral equation,” Non-
linear Analysis: Theory, Methods & Applications, vol. 74, no. 11,
pp. 3769–3774, 2011.

[30] S. Lang, Real and Functional Analysis, Springer, New York, NY,
USA, 3rd edition, 1993.

[31] S. Roman, Advanced Linear Algebra, Springer, New York, NY,
USA, 2008.


