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We investigate the extinction and decay estimates of the 𝑝-Laplacian equations with nonlinear absorptions and nonlocal sources.
By Gagliardo-Nirenberg inequality, we obtain the sufficient conditions of extinction solutions, and we also give the precise decay
estimates of the extinction solutions.

1. Introduction

In this paper, we consider the following fast diffusive 𝑝-
Laplacian equation:

𝑢
𝑡
= div (|∇𝑢|𝑝−2∇𝑢) + 𝜆∫

Ω

𝑢
𝑞
(𝑥, 𝑡) 𝑑𝑥 − 𝑘𝑢

𝑟
,

𝑥 ∈ Ω, 𝑡 > 0,

(1)

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω,

(2)

where 1 < 𝑝 < 2, 𝑘, 𝑞, 𝜆 > 0, 0 < 𝑟 < 1, Ω ⊂ 𝑅
𝑁 (𝑁 ≥ 2)

is a bounded domain with smooth boundary and 𝑢
0
(𝑥) ∈

𝐿
∞
(Ω) ∩𝑊

1,𝑝

0
(Ω) is a nonnegative function. Equation (1) is a

class of nonlinear singular parabolic equations and appears to
be relevant in the theory of non-Newtonian fluids perturbed
by both nonlocal sources and nonlinear absorptions; see [1–
4], for instance. Extinction is the phenomenon whereby the
evolution of some nontrivial initial data 𝑢

0
(𝑥) produces a

nontrivial solution 𝑢(𝑥, 𝑡) in a time interval 0 < 𝑡 < 𝑇

and 𝑢(𝑥, 𝑡) → 0 as 𝑡 → 𝑇. As an important property
of solutions of developing equations, the extinction recently
has been studied intensively by several authors in [5–9]. In
paper [10], the authors discussed the extinction behavior of
solutions for Problem (1)-(2) when 𝑟 = 1. In this paper, we
investigated the extinction of solutions when 0 < 𝑟 < 1.

Due to the nature of our problem, we would like to use the
following lemmas by [11].

Lemma 1 (Gagliardo-Nirenberg inequality). Suppose that
𝛽 ≥ 0, 𝑁 > 𝑝 ≥ 1, 𝛽 + 1 ≤ 𝑞 ≤ (𝛽 + 1)𝑁𝑝/(𝑁 − 𝑝); then
for 𝑢 such that |𝑢|𝛽𝑢 ∈ 𝑊

1,𝑝
(Ω), one has

‖𝑢‖
𝑞
≤ 𝐶
1/(𝛽+1)

‖𝑢‖
1−𝜃

𝑟

󵄩󵄩󵄩󵄩󵄩
∇ (|𝑢|

𝛽
𝑢)
󵄩󵄩󵄩󵄩󵄩

𝜃/(𝛽+1)

𝑝
(3)

with 𝜃 = ((𝛽 + 1)𝑟
−1
− 𝑞
−1
)/(𝑁
−1
−𝑝
−1
+ (𝛽 + 1)𝑟

−1
), where 𝐶

is a constant depending only on𝑁, 𝑝, and 𝑟.

2. Main Results and Proofs

Theorem 2. Assume that 𝑝 − 1 = 𝑞 with 𝑟 < 1; then the non-
negative nontrivial weak solution of Problem (1)-(2) vanishes in
finite time for any non-negative initial data provided that |Ω|

or 𝜆 is sufficiently small.

(1) For the case 2𝑁/(𝑁 + 2) ≤ 𝑝 < 2, one has

‖𝑢 (⋅, 𝑡)‖
2
≤ (

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩
2−𝑘
1

2
−𝑀
1
(2 − 𝑘

1
) 𝑡)
1/(2−𝑘

1
)

,

𝑡 ∈ [0, 𝑇
1
) ,

‖𝑢 (⋅, 𝑡)‖
2
≡ 0, 𝑡 ∈ [𝑇

1
, +∞) ,

(4)

where 𝑘
1
, 𝑀
1
, and 𝑇

1
are given by (11), (16), and (17),

respectively.
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(2) For the case 1 < 𝑝 < 2𝑁/(𝑁 + 2), one has

‖𝑢 (⋅, 𝑡)‖
1+𝑠

≤ (
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
1+𝑠−𝑘

2

1+𝑠
−𝑀
2
(1 + 𝑠 − 𝑘

2
) 𝑡)
1/(1+𝑠−𝑘

2
)

,

𝑡 ∈ [0, 𝑇
2
) ,

‖𝑢 (⋅, 𝑡)‖
2
≡ 0, 𝑡 ∈ [𝑇

2
, +∞) ,

(5)

where 𝑠, 𝑘
2
, 𝑀
2
, and 𝑇

2
are given by (18), (22), (26),

and (28), respectively.

Proof. (1) For the case 2𝑁/(𝑁 + 2) ≤ 𝑝 < 2, multiplying
(1) by 𝑢 and integrating over Ω, we deduce from the Hölder
inequality that

1

2

𝑑

𝑑𝑡
‖𝑢‖
2

2
+ ‖∇𝑢‖

𝑝

𝑝
+ 𝑘‖𝑢‖

𝑟+1

𝑟+1
≤ 𝜆 |Ω| ‖𝑢‖

𝑝

𝑝
. (6)

inequality

‖𝑢‖
𝑝
≤ 𝐵‖∇𝑢‖

𝑝
, (7)

where𝐵 denotes the optimal embedding constant, combining
(6) and (7) we have

1

2

𝑑

𝑑𝑡
‖𝑢‖
2

2
+ (1 − 𝜆𝐵

𝑝
|Ω|) ‖∇𝑢‖

𝑝

𝑝
+ 𝑘‖𝑢‖

𝑟+1

𝑟+1
≤ 0. (8)

By Lemma 1, we have

‖𝑢‖
2
≤ 𝐶
1
(𝑁, 𝑝, 𝑟) ‖∇𝑢‖

𝜃

𝑝
‖𝑢‖
1−𝜃

1+𝑟
, (9)

where 𝜃
1
= (1/(1 + 𝑟) − 1/2)(1/𝑁 − 1/𝑝 + 1/(1 + 𝑟))

−1.
It is easy to check that 𝜃

1
∈ (0, 1]; using Young’s inequality

with 𝜀, it follows from (9) that

‖𝑢‖
𝑘
1

2
≤𝐶
𝑘
1

1
(𝑁, 𝑝, 𝑟) (𝜀

1
‖∇𝑢‖
𝑝

𝑝
+ 𝐶 (𝜀

1
) ‖𝑢‖
𝑝𝑘
1
(1−𝜃
1
)/(𝑝−𝑘

1
𝜃
1
)

1+𝑟
) ,

(10)

where 𝜀
1
> 0 and 𝑘

1
> 0 will be determined later. We choose

𝑘
1
=
2 [(1 + 𝑟) 𝑝 + 𝑁 (𝑝 − 1 − 𝑟)]

2𝑝 + 𝑁 (𝑝 − 1 − 𝑟)
. (11)

Then we can conclude that 𝑘
1
∈ (1, 2) and 𝑝𝑘

1
(1 − 𝜃

1
)/(𝑝 −

𝑘
1
𝜃
1
) = 1 + 𝑟. Therefore, it follows from (10) that

‖𝑢‖
1+𝑟

1+𝑟
≥ (𝐶
−𝑘
1

1
(𝑁, 𝑝, 𝑟) ‖𝑢‖

𝑘
1

2
− 𝜀
1
‖∇𝑢‖
𝑝

𝑝
)

1

𝐶 (𝜀
1
)
. (12)

By combining (8) and (12), we have

1

2

𝑑

𝑑𝑡
‖𝑢‖
2

2
+ (1 − 𝜆𝐵

𝑝
|Ω| −

𝑘𝜀
1

𝐶 (𝜀
1
)
) ‖∇𝑢‖

𝑝

𝑝

+
𝑘𝐶
−𝑘
1

1
(𝑁, 𝑝, 𝑟)

𝐶 (𝜀
1
)

‖𝑢‖
𝑘
1

2
≤ 0.

(13)

Choosing 𝜀
1
small enough such that 1 − 𝑘𝜀

1
/𝐶(𝜀
1
) > 0 and

|Ω| ≤ (1 − 𝑘𝜀
1
/𝐶(𝜀
1
))/𝜆𝐵

𝑝, then we have 1 − 𝑘𝜀
1
/𝐶(𝜀
1
) −

𝐵
𝑝
𝜆|Ω| > 0. Therefore, we deduce from 𝑘

1
∈ (1, 2) that

𝑑

𝑑𝑡
‖𝑢‖
2
+𝑀
1
‖𝑢‖
𝑘
1
−1

2
≤ 0, (14)

which implies that

‖𝑢 (⋅, 𝑡)‖
2
≤ (

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩
2−𝑘
1

2
−𝑀
1
(2 − 𝑘

1
) 𝑡)
1/(2−𝑘

1
)

,

𝑡 ∈ [0, 𝑇
1
) ,

‖𝑢 (⋅, 𝑡)‖
2
≡ 0, 𝑡 ∈ [𝑇

1
, +∞) ,

(15)

where

𝑀
1
=
𝑘𝐶
−𝑘
1

1
(𝑁, 𝑝, 𝑟)

𝐶 (𝜀
1
)

, (16)

𝑇
1
=

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩
2−𝑘
1

2

𝑀
1
(2 − 𝑘

1
)
. (17)

(2) For the case 1 < 𝑝 < 2𝑁/(𝑁 + 2), multiplying (1) by
𝑢
𝑠, where

𝑠 > 𝑙 =
2𝑁 − 𝑝 (1 + 𝑁)

𝑝
> 1, (18)

integrating overΩ, we deduce from theHölder inequality that

1

1 + 𝑠

𝑑

𝑑𝑡
‖𝑢‖
1+𝑠

1+𝑠
+

𝑠𝑝
𝑝

(𝑝 + 𝑠 − 1)
𝑝

󵄩󵄩󵄩󵄩󵄩
∇𝑢
(𝑝+𝑠−1)/𝑝󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

+ 𝑘‖𝑢‖
𝑠+𝑟

𝑠+𝑟
≤ 𝜆 |Ω| ‖𝑢‖

𝑝+𝑠−1

𝑝+𝑠−1
.

(19)

By Lemma 1 and 𝑠 > 1, we have

‖𝑢‖
𝑠+1

≤ 𝐶
2
(𝑁, 𝑝, 𝑟)

󵄩󵄩󵄩󵄩󵄩
∇𝑢
(𝑝+𝑠−1)/𝑝󵄩󵄩󵄩󵄩󵄩

𝑝𝜃
2
/(𝑝+𝑠−1)

𝑝
‖𝑢‖
1−𝜃
2

𝑠+𝑟
, (20)

where 𝜃
2
= 𝑁(1−𝑟)(𝑝+𝑠−1)/(𝑠+1)[𝑝(𝑠+𝑟)+𝑁(𝑝−1−𝑟)]. By

(18) and 𝑟 < 1, it is easy to check that 𝜃
2
∈ (0, 1). By Young’s

inequality with 𝜀, it follows from (19) that

‖𝑢‖
𝑘
2

𝑠+1
≤ 𝐶
𝑘
2

2
(𝑁, 𝑝, 𝑟, 𝑠) (𝜀

2

󵄩󵄩󵄩󵄩󵄩
∇𝑢
(𝑝+𝑠−1)/𝑝󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
+ 𝐶 (𝜀

2
)

×‖𝑢‖
(1−𝜃
2
)𝑘
2
(𝑝+𝑠−1)/(𝑝+𝑠−1−𝑘

2
𝜃
2
)

𝑠+𝑟
) ,

(21)

where 𝜀
2
> 0 and 𝑘

2
> 0 will be determined later. We choose

𝑘
2
=
(𝑠 + 1) [(𝑠 + 𝑟) 𝑝 + 𝑁 (𝑝 − 1 − 𝑟)]

(𝑠 + 1) 𝑝 + 𝑁 (𝑝 − 1 − 𝑟)
; (22)

then it follows that 𝑘
2
∈ (𝑠, 𝑠+1) and (𝑝+𝑠−1)𝑘

2
(1−𝜃
2
)/(𝑝+

𝑠 − 1 − 𝑘
2
𝜃
2
) = 𝑠 + 𝑟. Therefore, it follows from (21) that

‖𝑢‖
𝑠+𝑟

𝑠+𝑟
≥
𝐶
−𝑘
2

2
(𝑁, 𝑝, 𝑟, 𝑠)

𝐶 (𝜀
2
)

‖𝑢‖
𝑘
2

𝑠+1
−

𝜀
2

𝐶 (𝜀
2
)

󵄩󵄩󵄩󵄩󵄩
∇𝑢
(𝑝+𝑠−1)/𝑝󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
.

(23)

By combining (19) and (23), we have by poincare inequal-
ity

1

1 + 𝑠

𝑑

𝑑𝑡
‖𝑢‖
1+𝑠

1+𝑠
+ (

𝑠𝑝
𝑝

(𝑝 + 𝑠 − 1)
𝑝
−

𝑘𝜀
2

𝐶 (𝜀
2
)
− 𝜆 |Ω| 𝐵

𝑝
)

×
󵄩󵄩󵄩󵄩󵄩
∇𝑢
(𝑝+𝑠−1)/𝑝󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
+
𝑘𝐶
𝑘
2

2
(𝑁, 𝑝, 𝑟, 𝑠)

𝐶 (𝜀
2
)

‖𝑢‖
𝑘
2

𝑠+1
≤ 0.

(24)
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Choosing 𝜀
2
> 0 small enough such that 𝑠𝑝𝑝/(𝑝 + 𝑠 − 1)

𝑝
−

𝑘𝜀
2
/𝐶(𝜀
2
) > 0 and |Ω| ≤ (𝑠𝑝

𝑝
/(𝑝+𝑠−1)

𝑝
−𝑘𝜀
2
/𝐶(𝜀
2
))/𝜆|Ω|𝐵

𝑝,
then we have 𝑠𝑝

𝑝
/(𝑝 + 𝑠 − 1)

𝑝
− 𝑘𝜀
2
/𝐶(𝜀
2
) − 𝜆|Ω|𝐵

𝑝
> 0.

Therefore, we deduce from 𝑘
2
∈ (𝑠, 𝑠 + 1) that

𝑑

𝑑𝑡
‖𝑢‖
1+𝑠

+𝑀
2
‖𝑢‖
𝑘
2
−𝑠

1+𝑠
≤ 0, (25)

where

𝑀
2
=
𝑘𝐶
−𝑘
2

2
(𝑁, 𝑝, 𝑟, 𝑠)

𝐶 (𝜀
2
)

, (26)

which implies that

‖𝑢 (⋅, 𝑡)‖
1+𝑠

≤ [
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
1+𝑠−𝑘

2

1+𝑠
−𝑀
2
(1 + 𝑠 − 𝑘

2
) 𝑡]
1/(1+𝑠−𝑘

2
)

,

𝑡 ∈ [0, 𝑇
2
) ,

‖𝑢(⋅, 𝑡)‖
1+𝑠

≡ 0, 𝑡 ∈ [𝑇
2
, +∞) ,

(27)

where

𝑇
2
=

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩
1+𝑠−𝑘

2

1+𝑠

𝑀
2
(1 + 𝑠 − 𝑘

2
)
. (28)

The proof of Theorem 2 is complete.

Theorem 3. Assume that 𝑟 < 1.

(1) If 2𝑁/(𝑁 + 2) ≤ 𝑝 < 2 with 𝑞 > 𝑘
1
− 1 = (2𝑟𝑝 +

𝑁(𝑝−1−𝑟))/(2𝑝+𝑁(𝑝−1−𝑟)), then the non-negative
nontrivial weak solution of Problem (1)-(2) vanishes in
finite time provided that 𝑢

0
(or |Ω| or 𝜆) is sufficiently

small and

‖𝑢 (⋅, 𝑡)‖
2
≤ (

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩
2−𝑘
1

2
− (2 − 𝑘

1
)𝑀
3
𝑡)
1/(2−𝑘

1
)

,

𝑡 ∈ [0, 𝑇
3
) ,

‖𝑢 (⋅, 𝑡)‖
2
≡ 0, 𝑡 ∈ [𝑇

3
, +∞) ,

(29)

where 𝑘
1
, 𝑀
3
, and 𝑇

3
are given by (11), (35), and (33),

respectively.
(2) If 1 < 𝑝 < 2𝑁/(𝑁 + 2) with 𝑞 > 𝑘

2
− 𝑠 = ((𝑠 + 1)𝑟𝑝 +

𝑁(𝑝 − 1 − 𝑟))/((𝑠 + 1)𝑝 +𝑁(𝑝 − 1 − 𝑟)), then the non-
negative nontrivial weak solution of Problem (1)-(2)
vanishes if finite time provided that 𝑢

0
(or |Ω| or 𝜆) is

sufficiently small and

‖𝑢 (⋅, 𝑡)‖
𝑠+1

≤ (
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
𝑠+1−𝑘

2

𝑠+1
− (𝑠 + 1 − 𝑘

2
𝑀
4
) 𝑡)
1/(𝑠+1−𝑘

2
)

,

𝑡 ∈ [0, 𝑇
4
) ,

‖𝑢(⋅, 𝑡)‖
𝑠+1

≡ 0, 𝑡 ∈ [𝑇
4
, +∞) ,

(30)

where 𝑠, 𝑘
2
, 𝑀
4
, and 𝑇

4
are given by (18), (22), (39),

and (41), respectively.

Proof. (1) If 2𝑁/(𝑁 + 2) ≤ 𝑝 < 2, multiplying (1) by 𝑢

and integrating over Ω, we deduce from (12) and the Hölder
inequality that

1

2

𝑑

𝑑𝑡
‖𝑢‖
2

2
+ (1 −

𝑘𝜀
1

𝐶 (𝜀
1
)
) ‖∇𝑢‖

𝑝

𝑝
+
𝑘𝐶
−𝑘
1

1
(𝑁, 𝑝, 𝑟)

𝐶 (𝜀
1
)

× ‖𝑢‖
𝑘
1

2
− 𝜆|Ω|

(3−𝑞)/2
‖𝑢‖
𝑞+1

2
≤ 0.

(31)

By choosing 𝜀
1
> 0 small enough such that 1− 𝑘𝜀

1
/𝐶(𝜀
1
) ≥ 0,

we obtain that
𝑑

𝑑𝑡
‖𝑢‖
2
+𝑀
3
‖𝑢‖
𝑘
1
−1

2
≤ 0, (32)

provided that ‖𝑢
0
‖
2
≤ (𝑘𝐶

−𝑘
1

1
(𝑁,𝑝,𝑟)/𝐶(𝜀

1
)𝜆|Ω|
(3−𝑞)/2

)
1/(𝑞−𝑘

1
+1)

and 𝑞 > 𝑘
1
− 1 = (2𝑟𝑝 + 𝑁(𝑝 − 1 − 𝑟))/(2𝑝 + 𝑁(𝑝 − 1 − 𝑟)),

where

𝑀
3
=
𝑘𝐶
−𝑘
1

1
(𝑁, 𝑝, 𝑟)

𝐶 (𝜀
1
)

− 𝜆|Ω|
(3−𝑞)/2󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
𝑞−𝑘
1
+1

2
> 0. (33)

From (32) and 𝑘
1
∈ (1, 2), we can derive that

‖𝑢 (⋅, 𝑡)‖
2
≤ (

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩
2−𝑘
1

2
− (2 − 𝑘

1
)𝑀
3
𝑡)
1/(2−𝑘

1
)

,

𝑡 ∈ [0, 𝑇
3
) ,

‖𝑢 (⋅, 𝑡)‖
2
≡ 0, 𝑡 ∈ [𝑇

3
, +∞) ,

(34)

where

𝑇
3
=

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩
2−𝑘
1

2

(2 − 𝑘
1
)𝑀
3

. (35)

(2) If 1 < 𝑝 < 2𝑁/(𝑁 + 2), multiplying (1) by 𝑢𝑠, where
𝑠 is given by (18) and integrating overΩ, we deduce from the
Hölder inequality and (23) that

1

1 + 𝑠

𝑑

𝑑𝑡
‖𝑢‖
1+𝑠

1+𝑠
+ (

𝑠𝑝
𝑝

(𝑝 + 𝑠 − 1)
𝑝
−

𝑘𝜀
2

𝐶 (𝜀
2
)
)
󵄩󵄩󵄩󵄩󵄩
∇𝑢
(𝑝+𝑠−1)/𝑝󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

+
𝑘𝐶
−𝑘
2

2
(𝑁, 𝑝, 𝑟, 𝑠)

𝐶 (𝜀
2
)

‖𝑢‖
𝑘
2

𝑠+1
≤ 𝜆‖𝑢‖

𝑞+𝑠

1+𝑠
|Ω|
(2+𝑠−𝑞)/(1+𝑠)

.

(36)

Choosing 𝜀
2
> 0 small enough such that 𝑠𝑝𝑝/(𝑝 + 𝑠 − 1)

𝑝
−

𝑘𝜀
2
/𝐶(𝜀
2
) > 0, we have

𝑑

𝑑𝑡
‖𝑢‖
1+𝑠

+ ‖𝑢‖
𝑘
2
−𝑠

1+𝑠
(
𝑘𝐶
𝑘
2

2
(𝑁, 𝑝, 𝑟, 𝑠)

𝐶 (𝜀
2
)

−𝜆|Ω|
(2+𝑠−𝑞)/(1+𝑠)

‖𝑢‖
𝑞+𝑠−𝑘

2

1+𝑠
) ≤ 0.

(37)

Therefore, we have

𝑑

𝑑𝑡
‖𝑢‖
1+𝑠

+𝑀
4
‖𝑢‖
𝑘
2
−𝑠

1+𝑠
≤ 0, (38)
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provided that ‖𝑢
0
‖
1+𝑠

≤ (𝑘𝐶
−𝑘
2

2
(𝑁, 𝑝, 𝑟, 𝑠)/ 𝐶(𝜀

2
)𝜆

|Ω|
(2+𝑠−𝑞)/(1+𝑠)

)
1/(𝑞+𝑠−𝑘

2
) and 𝑞 > 𝑘

2
− 𝑠 = ((𝑠 + 1)𝑟𝑝

+𝑁(𝑝 − 1 − 𝑟))/((𝑠 + 1)𝑝 + 𝑁(𝑝 − 1 − 𝑟)), where

𝑀
4
=
𝑘𝐶
−𝑘
2

2
(𝑁, 𝑝, 𝑟, 𝑠)

𝐶 (𝜀
2
)

− 𝜆|Ω|
(2+𝑠−𝑞)/(1+𝑠)󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
𝑞+𝑠−𝑘

2

1+𝑠
> 0.

(39)

It follows from (38) and 𝑘
2
∈ (𝑠, 𝑠 + 1) that

‖𝑢 (⋅, 𝑡)‖
1+𝑠

≤ (
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩
𝑠+1−𝑘

2

𝑠+1
−𝑀
4
(𝑠 + 1 − 𝑘

2
) 𝑡)
1/(𝑠+1−𝑘

2
)

,

𝑡 ∈ [0, 𝑇
4
) ,

‖𝑢(⋅, 𝑡)‖
𝑠+1

≡ 0, 𝑡 ∈ [𝑇
4
, +∞) ,

(40)

where

𝑇
4
=

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩
1+𝑠−𝑘

2

1+𝑠

𝑀
4
(𝑠 + 1 − 𝑘

2
)
. (41)

The proof of Theorem 3 is complete.
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