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In the ranking problem, one has to compare two different observations and decide the ordering between them. It has received
increasing attention both in the statistical and machine learning literature. This paper considers ℓ1-regularized ranking rules with
convex loss. Under some mild conditions, a learning rate is established.

1. Introduction

In the ranking problem, one has to compare two different
observations and decide the ordering between them. The
problem of ranking has become an interesting field for
researchers in machine learning community. It has received
increasing attention both in the statistical and machine
learning literature.

The problem of ranking may be modeled in the
framework of statistical learning (see [1, 2]). Let (𝑋, 𝑌) be
a pair of random variables taking values in X × R. The
random observation 𝑋 models some object and 𝑌 denotes
its real-valued label. Let (𝑋󸀠

, 𝑌
󸀠
) denote a pair of random

variables identically distributed with (𝑋, 𝑌) (with respect to
the probability P) and independent of it. In the ranking
problem one observes 𝑋 and 𝑋󸀠 but not their labels 𝑌 and
𝑌
󸀠. 𝑋 is “better” than 𝑋

󸀠 if 𝑌 > 𝑌
󸀠. We are to construct a

measurable function 𝑓 : X ×X → R, called a ranking rule,
which predicts the ordering between objects in the following
way: if 𝑓(𝑋,𝑋󸀠

) ≥ 0, we predict that 𝑋 is better than 𝑋
󸀠.

A ranking rule 𝑓 has the property 𝑓(𝑥, 𝑥󸀠)𝑓(𝑥󸀠, 𝑥) ≤ 0. The
performance of a ranking rule 𝑓 is measured by the ranking
error:

𝐿 (𝑓) = P (sign (𝑌 − 𝑌󸀠
) 𝑓 (𝑋,𝑋

󸀠
) < 0) , (1)

that is, the probability that 𝑓 ranks two randomly drawn
instances incorrectly. It is easily seen that 𝐿(𝑓) attains its

minimum 𝐿
∗, over the class of all measurable functions, at

the ranking rule

𝑓
∗
(𝑥, 𝑥

󸀠
) := sgn (2𝜂 (𝑥, 𝑥󸀠) − 1)

with 𝜂 (𝑥, 𝑥󸀠) = P (𝑌 > 𝑌
󸀠
| 𝑋 = 𝑥,𝑋

󸀠
= 𝑥

󸀠
) .

(2)

In practice, the best rule 𝑓∗ is unknown since the proba-
bility P is unknown. A widely used approach for estimating
𝐿
∗ is the empirical risk minimization with convex loss.

Definition 1. one says that 𝜙 : R → [0,∞) is a ranking loss
(function) if it is convex, differentiable at 0 with 𝜙󸀠(0) < 0,
and the smallest zero of 𝜙 is 1.

Examples of ranking loss include the least square loss
𝜙(𝑡) = (1 − 𝑡)

2 and 𝑞-norm SVM loss 𝜙
𝑞
(𝑡) = (1 − 𝑡)

𝑞

+
, where

𝑞 ≥ 1 and 𝑡
+
= max{0, 𝑡} for 𝑡 ∈ R.

The risk of a measurable function 𝑓 is defined as 𝑄(𝑓) =
E[𝜙(sign(𝑌 − 𝑌

󸀠
)𝑓(𝑋,𝑋

󸀠
))]. Denote by 𝑓

𝜙
a minimizer of

𝑄(𝑓) over the set of all measurable and antisymmetric
functions. For example, as in the classification case (see [3,
4]), 𝑓

𝜙
1

= 𝑓
∗, and for 𝑞 > 1,

𝑓
𝜙
𝑞

(𝑥, 𝑥
󸀠
)

=

(1 + 𝑓
∗
(𝑥, 𝑥

󸀠
))

1/(𝑞−1)

− (1 − 𝑓
∗
(𝑥, 𝑥

󸀠
))

1/(𝑞−1)

(1 + 𝑓
∗
(𝑥, 𝑥

󸀠
))
1/(𝑞−1)

+ (1 − 𝑓
∗
(𝑥, 𝑥

󸀠
))
1/(𝑞−1)

,

𝑥, 𝑥
󸀠
∈ X.

(3)
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The following inequality holds for any 𝑓:

𝐿 (𝑓) − 𝐿
∗
≤

{{

{{

{

𝑄(𝑓) − 𝑄
∗
, if 𝜙 (𝑡) = (1 − 𝑡)

+
,

𝑐√𝑄 (𝑓) − 𝑄
∗
, if 𝜙󸀠󸀠 (0) ≥ 0,

(4)

where 𝑄∗
= 𝑄(𝑓

𝜙
) and 𝑐 is some constant.

Before proceeding further, we introduce the notion of
Reproducing Kernel Hilbert Space (RKHS). Recall that a
continuous function 𝐾(𝜎, 𝜎󸀠) is a Mercer kernel on a set Σ,
if 𝐾(𝜎, 𝜎󸀠) = 𝐾(𝜎

󸀠
, 𝜎), ∀𝜎, 𝜎

󸀠
∈ Σ, and given an arbitrary

finite set {𝜎
1
, . . . , 𝜎

𝑛
} ⊂ Σ, the matrix K = (𝐾(𝜎

𝑖
, 𝜎

𝑗
))
𝑛

𝑖,𝑗=1

is positive semidefinite. The RKHS H
𝐾
associated with the

Mercer kernel𝐾 is the completion of span{𝐾
𝜎
= 𝐾(𝜎, ⋅) | 𝜎 ∈

Σ}, with respect to the inner product given by ⟨𝐾
𝜎
, 𝐾

𝜎
󸀠⟩
𝐾
=

𝐾(𝜎, 𝜎
󸀠
). See [5] and ([6, Ch. 4]) for details.

For convenience, we assume hereafter that the Mercer
kernels𝐾 onX2

×X2 are symmetric in the sense that

𝐾((𝑢, 𝑢
󸀠
) , (𝑥, 𝑥

󸀠
)) = 𝐾 ((𝑢

󸀠
, 𝑢) , (𝑥

󸀠
, 𝑥)) ,

∀𝑢, 𝑢
󸀠
, 𝑥, 𝑥

󸀠
∈ X.

(5)

Such examples are Mercer kernels 𝐾 of either form 𝐾(𝑠, 𝑡) =

𝑘(|𝑠 − 𝑡|
2
) or𝐾(𝑠, 𝑡) = 𝑘(⟨𝑠, 𝑡⟩), 𝑠, 𝑡 ∈ X2, where | ⋅ |

2
and ⟨⋅, ⋅⟩

are the Euclidean norm and inner product, respectively.
Since the best ranking rule 𝑓∗ is antisymmetric, it is

reasonable that we restricted ourselves to the subspace Has

of anti-symmetric functions inH
𝐾
; that is,

H
as
𝐾
= {𝑓 | 𝑓 ∈ H

𝐾
, 𝑓 (𝑥, 𝑥

󸀠
) = −𝑓 (𝑥

󸀠
, 𝑥) , ∀𝑥, 𝑥

󸀠
∈ X} .

(6)

For any 𝑥
𝑖
∈ X, 𝑖 = 1, . . . , 𝑛, and 𝛼

𝑖𝑗
∈ Rwith 𝛼

𝑖𝑗
= −𝛼

𝑗𝑖
, 𝑖, 𝑗 =

1, . . . , 𝑛, it is easily seen that

𝑓 =

𝑛

∑

𝑖,𝑗=1

𝛼
𝑖𝑗
𝐾
(𝑥
𝑖
,𝑥
𝑗
)
∈ H

a𝑠
𝐾
. (7)

Conversely, any anti-symmetric function 𝑓 ∈

span{𝐾
(𝑥
𝑖
,𝑥
𝑗
)
}
𝑛

𝑖,𝑗=1
with above expression should satisfy

𝛼
𝑖𝑗
= −𝛼

𝑗𝑖
, 𝑖, 𝑗 = 1, . . . , 𝑛, provided detK > 0.

For a set of samples z = {𝑍
1
, . . . , 𝑍

𝑛
} ⊂ X2, let

Ω
𝑧
(𝑓) = inf

{

{

{

𝑛

∑

𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
| 𝑓 =

𝑛

∑

i,𝑗=1
𝛼
𝑖𝑗
𝐾
(𝑥
𝑖
,𝑥
𝑗
)

}

}

}

;

H
𝐾,𝑧

=

{

{

{

𝑛

∑

𝑖,𝑗=1

𝛼
𝑖𝑗
𝐾
(𝑥
𝑖
,𝑥
𝑗
)

}

}

}

,

H
as
𝐾,𝑧

=

{

{

{

𝑛

∑

𝑖,𝑗=1

𝛼
𝑖𝑗
𝐾
(𝑥
𝑖
,𝑥
𝑗
)
| 𝛼

𝑖𝑗
= −𝛼

𝑗𝑖

}

}

}

.

(8)

For 𝜆 > 0, the ℓ1-penalty regularized ranking rule 𝑓
𝑧,𝜆

is
the minimizer of the minimization problem

𝑓
𝑧,𝜆

= arg min
𝑓∈Has
𝐾,𝑧

{𝑄
𝑛
(𝑓) + 𝜆Ω

𝑧
(𝑓)} , (9)

where 𝑄
𝑛
(𝑓), known as empirical risk, is given by

𝑄
𝑛
(𝑓) =

1

𝑛 (𝑛 − 1)
∑

𝑖 ̸= 𝑗

𝜙 (sign (𝑦
𝑖
− 𝑦

𝑗
) 𝑓 (𝑥

𝑖
, 𝑥

𝑗
)) . (10)

Associated with any ranking rule𝑓, we construct another
ranking rule as follows:

𝜋 (𝑓) (𝑥, 𝑥
󸀠
) =

{

{

{

sign (𝑓 (𝑥, 𝑥󸀠)) , if 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑥
󸀠
)
󵄨󵄨󵄨󵄨󵄨
> 1,

𝑓 (𝑥, 𝑥
󸀠
) , if 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑥

󸀠
)
󵄨󵄨󵄨󵄨󵄨
≤ 1.

(11)

Clearly, 𝜋(𝑓) gives the same ranking rule as 𝑓 and it satisfies

𝑄 (𝜋 (𝑓)) ≤ 𝑄 (𝑓) , 𝑄
𝑛
(𝜋 (𝑓)) ≤ 𝑄

𝑛
(𝑓) . (12)

Hereafter, we denote𝑔
𝑛
= 𝜋(𝑓

𝑧,𝜆
).The goal of this paper is

to bound the excess error𝑄(𝑔
𝑛
) −𝑄

∗, which in turn together
with (4) up bounds the excess ranking error 𝐿(𝑔

𝑛
) − 𝐿

∗.
The main result of this paper is, under mild conditions, to
establish a learning rate for ℓ1-penalty regularized ranking
rules with convex loss.

Classification with convex loss, in particular for 𝑞-norm
SVMs, has been the subject of many theoretical consider-
ations in recent years. The 1-norm SVMs with regularizer
being RKHS norm for ranking was investigated in [2, 7].
The ℓ

1-penalty has been used in [8, 9] for classification
problems under the framework of SVMs. It is well known
that ℓ1-regularization usually leads to solution with sparse
representation (see, e.g., [10–13]). In this paper, we consider
ranking with convex loss and ℓ1-penalty.

In [2], the RKHS-norm SVMs for ranking was proposed.
But it was implemented over a ball 𝐵

𝑅
= {𝑓 ∈ H |

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐾

≤

𝑅} of H
𝐾
, not the whole RKHS H

𝐾
; that is, it solves the

minimization problem

𝑓
𝑛
= argmin

𝑓∈𝐵
𝑅

𝑄
𝑛
(𝑓) + 𝜆

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐾
. (13)

A convergence rate for 𝑄(𝑓
𝑛
) − inf

𝑓∈𝐵
𝑅

𝑄(𝑓) has been estab-
lished for Gaussian kernel. The approximation error
inf

𝑓∈𝐵
𝑅

𝑄(𝑓) − 𝑄
∗ was not considered there. The asymptotic

behavior of the same algorithm implemented over the whole
RKHS H

𝐾
was investigated in [7]. Moreover, a fast learning

rate 𝑂(1/𝑛) is obtained under some conditions.
We would like to mention a recent paper [14], where the

error E(𝑓) of function 𝑓 is defined by E(𝑓) = E((𝑌 − 𝑌
󸀠
−

𝑓(𝑋) + 𝑓(𝑋
󸀠
))
2
). A convergence rate for the minimizer of

the regularized empirical error was established. The author
made use of the technique of estimation via integral operator
developed in [15].

The rest of the paper is organized as follows. In Section 2,
after making some assumptions, we state the main result,
an upper bound for 𝑄(𝑔

𝑛
) − 𝑄

∗
+ 𝜆Ω

𝑧
(𝑓

𝑧,𝜆
). As usual, it is

decomposed as a sumof three terms, sample error, hypothesis
error, and approximation error. Sections 3 and 4 are devoted
to the estimations of hypothesis error and sample error,
respectively. A proof of the main result is given in Section 5.
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2. Assumptions and Main Results

For the statement of the main results, we need to introduce
some notions and make some assumptions.

Denote 𝑔
𝑓
= 𝜙(sign(𝑦 − 𝑦

󸀠
)𝑓(𝑥, 𝑥

󸀠
)) − 𝜙(sign(𝑦 − 𝑦

󸀠
)

𝑓
𝜙
(𝑥, 𝑥

󸀠
)). The following assumption is a bound for variance

of 𝑔
𝑓
, which is adopted by many authors.

Assumption 2. There is a constant 𝛼 ∈ [0, 1] such that for any
𝑀,

E (𝑔
2

𝑓
) ≤ 𝑐

1
(E (𝑔

𝑓
))

𝛼

, ∀𝑓 : X
2
󳨀→ [−𝑀,𝑀] , (14)

where 𝑐
1
= 𝑐

1
(𝑀) is a constant.

For 𝜙
𝑞
(𝑡) = (1 − 𝑡)

𝑞

+
, the assumption is satisfied [16] for

𝛼 =

{{{

{{{

{

1, if 1 < 𝑞 ≤ 2,

2

𝑞
, if 2 < 𝑞.

(15)

It is known in [17] that if there is some positive constant
𝐶 such that

P (
󵄨󵄨󵄨󵄨󵄨
2𝜂 (𝑋,𝑋

󸀠
) − 1

󵄨󵄨󵄨󵄨󵄨
≤ 𝜉) ≤ 𝐶𝜉

𝛼/(1−𝛼)
, ∀𝜉 > 0, (16)

then the assumption is satisfied for 𝜙
1
(𝑡) = (1 − 𝑡)

+
.

Suppose hereafter 𝜅 := sup
𝑠∈X2𝐾(𝑠, 𝑠) < ∞. We note that,

for any Mercer kernel𝐾,

sup
𝑠∈X2

𝐾 (𝑠, 𝑠) = sup
𝑠,𝑠
󸀠
∈X2

𝐾(𝑠, 𝑠
󸀠
) . (17)

We now construct a set of functions which containsH
𝐾,𝑧

and
is independent of the samples.

Definition 3. The Banach space H is defined as the function
set onX2 containing all functions of the form

𝑓 =

∞

∑

𝑖=1

𝑎
𝑖
𝐾
𝑠
𝑖

, {𝑎
𝑖
}
∞

𝑖=1
∈ ℓ

1
, 𝑠

𝑖
∈ X

2
, (18)

with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 := inf {

∞

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 𝑓 =

∞

∑

𝑖=1

𝑎
𝑖
𝐾
𝑠
𝑖

} . (19)

Obviously,H
𝐾,𝑧

⊂ H, ∀z ∈ Z𝑛. By the definition of 𝜅 and
(17), one has

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑁
2

∑

𝑖=𝑁
1

𝑎
𝑖
𝐾
𝑠
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐾

=

𝑁
2

∑

𝑖,𝑗=𝑁
1

𝑎
𝑖
𝑎
𝑗
𝐾(𝑠

𝑖
, 𝑠
𝑗
)

≤ 𝜅(

𝑁
2

∑

𝑖=𝑁
1

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨)

2

,

(20)

which implies that the series ∑∞

𝑖=1
𝑎
𝑖
𝐾
𝑠
𝑖

converges in H
𝐾
.

Consequently, 𝑓 ∈ H
𝐾
and ‖𝑓‖

𝐾
≤ √𝜅‖𝑓‖. The following

also holds: ‖𝑓‖
𝐶

≤ 𝜅‖𝑓‖, ∀𝑓 ∈ H, where ‖𝑓‖
𝐶

=

sup
𝑠∈X2 |𝑓(𝑠)| for 𝑓 ∈ 𝐶(X2

).
Denote Has

= {𝑓 ∈ H | 𝑓(𝑥, 𝑥
󸀠
) = −𝑓(𝑥

󸀠
, 𝑥)}. The

approximation error of 𝑄∗ by 𝑄(𝑓) with 𝑓 ∈ Has is defined
as

𝐷 (𝜆) := inf
𝑓∈Has

{𝑄 (𝑓) − 𝑄
∗
+ 𝜆

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩} . (21)

Denote the minimizer
𝑓
𝜆
:= arg min

𝑓∈Has
{𝑄 (𝑓) + 𝜆

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩} , 𝜆 > 0. (22)

The next assumption is concerned with the approxima-
tion power ofHas to 𝑓

𝜙
.

Assumption 4. There are positive constants 𝑐
2
and 𝛽 such that

D (𝜆) = 𝑄 (𝑓
𝜆
) − 𝑄

∗
+ 𝜆

󵄩󵄩󵄩󵄩𝑓𝜆
󵄩󵄩󵄩󵄩 ≤ 𝑐2𝜆

𝛽
, ∀𝜆 > 0. (23)

Recall 𝑓
𝜙
(𝑥, 𝑥

󸀠
) = −𝑓

𝜙
(𝑥

󸀠
, 𝑥). The above assumption is

not too restrict.

Assumption 5. (i)The kernel𝐾 satisfies a Lipschitz condition
of order 𝛾 with 0 < 𝛾 < 1; that is, there exists some 𝑐

3
> 0

such that
󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑠, 𝑡) − 𝐾 (𝑠, 𝑡

󸀠
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

3

󵄨󵄨󵄨󵄨󵄨
𝑡 − 𝑡

󸀠󵄨󵄨󵄨󵄨󵄨

𝛾

2
. (24)

(ii) The ranking loss has an increment exponent 𝜃 ≥ 1; that
is, there exist some constants 𝜃 ≥ 1, 𝑐

4
such that

𝜙 (𝑡) ≤ 𝑐
4
(1 + |𝑡|)

𝜃
, 𝜙

󸀠

±
(𝑡) ≤ 𝑐

4
(1 + |𝑡|)

𝜃−1
, 𝑡 ∈ R, (25)

where 𝜙󸀠
±
denotes the right- and left-sided derivatives of 𝜙,

respectively.

Assumption 6. Themargin distribution 𝜌
𝑋
satisfies condition

𝐿
𝜏
with 0 < 𝜏 < ∞; that is, for some 𝑐

5
> 0 and any ball

𝐵(𝑥, 𝛿) := {𝑢 ∈ X | |𝑢 − 𝑥|
2
< 𝛿}, one has

𝜌
𝑋
(𝐵 (𝑥, 𝛿)) ≥ 𝑐

5
𝛿
𝜏
, ∀𝑥 ∈ X, 0 < 𝛿 ≤ 1. (26)

The last assumption concerns covering numbers. For a
subset S of a space with pseudometric 𝜌 and 𝛿 > 0. The
covering number N(𝛿,S, 𝜌) is defined to be the minimal
number 𝑙 such that there exist 𝑙 disks with radius 𝛿 covering
S. When Σ is compact this number is finite.

Assumption 7. (i) There are some 𝛼 > 0 and 𝑐
𝛼
> 0 such that

N (𝛿,X, |⋅|2) ≤ 𝑐6(
1

𝛿
)

𝛼

, ∀𝛿 > 0. (27)

(ii) For 𝑅 > 0, let 𝐵
𝑅
= {𝑓 ∈ Has

| ‖𝑓‖ ≤ 𝑅}. There are some
constant 𝑠 ∈ (0, 1), 𝑐

7
> 0 such that

logN (𝛿, 𝐵
1
, ‖⋅‖∞) ≤ 𝑐7𝛿

−𝑠
, ∀𝛿 > 0. (28)

It was shown in [18], under Assumptions 5(i), 6, and 7(i),
that the following holds:

logN (𝛿,X, |⋅|2) ≤ 𝑐6(
4𝑐

3

𝛿
)

𝛼/𝛾

log(2 + 4𝜅

𝛿
) , ∀0 < 𝛿 < 1.

(29)
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Therefor (ii) in Assumption 7 holds provided that 𝛼/𝛾 < 1.
We are in a position to state the main result of this paper.

The proof is given in Section 5.

Theorem 8. For any 𝜀 ∈ (0, 𝛽), under the Assumptions 2–7,
one has confidence at least 1 − 𝐶

𝜀
𝑒
−𝑡

𝑄 (𝑔
𝑛
) − 𝑄

∗
+ 𝜆Ω

𝑧
(𝑓

𝑧,𝜆
)

≤ 𝐶
󸀠
(max {(log 𝑛 + 𝑡)𝛾/𝜏, 𝑡})

(2−𝛼+𝑠)/(2−𝛼)

𝑛
−(𝛽−𝜀)𝜇

,

(30)

where 𝜇 = min{𝛾/𝜏(𝛽 + (1 − 𝛽)𝜃), 1/(𝛽 + (1 − 𝛽)𝜃), 1/((2 −
𝛼)𝛽 + 𝑠)} and 𝐶

𝜀
, 𝐶󸀠 are constants independent of 𝑡 or 𝑛.

The first step of the proof is to decompose 𝑄(𝑔
𝑛
) − 𝑄

∗
+

𝜆Ω
𝑧
(𝑓

𝑧,𝜆
) into errors of different types as the following:

𝑄 (𝑔
𝑛
) − 𝑄

∗
+ 𝜆Ω

𝑧
(𝑓

𝑧,𝜆
) = 𝑆 (z, 𝜆) + 𝑃 (z, 𝜆) + 𝐷 (𝜆) , (31)

where

𝑆 (z, 𝜆) = {𝑄 (𝑔
𝑛
) − 𝑄

𝑛
(𝑔

𝑛
)} + {𝑄

𝑛
(𝑓

𝜆
) − 𝑄 (𝑓

𝜆
)} , (32)

referred to as sample error and

𝑃 (z, 𝜆) = {𝑄
𝑛
(𝑔

𝑛
) + 𝜆Ω

𝑧
(𝑓

𝑧,𝜆
)} − {𝑄

𝑛
(𝑓

𝜆
) + 𝜆

󵄩󵄩󵄩󵄩𝑓𝜆
󵄩󵄩󵄩󵄩} ,

(33)

referred to as hypothesis error. We bound hypothesis error
and sample error in the next two sections, respectively.

In the estimation of sample error, Hoeffding’s decompo-
sition of𝑈-statistic, which breaks𝑈-statistic into a sum of iid
random variables and a degenerate 𝑈-statistic (see Section 4
for details), is a useful tool.

3. Hypothesis Error

In this section, we bound hypothesis error 𝑃(z, 𝜆). This error
is caused as we switch from the minimizer 𝑓

𝑧,𝜆
of 𝑄

𝑛
(𝑓) +

𝜆Ω
𝑧
(𝑓) in Has

𝐾,𝑧
to the minimizer 𝑓

𝜆
of 𝑄(𝑓) + 𝜆||𝑓|| in

Has. Such errors are estimated in some papers, for example,
[7, 18], and so forth. We note that, different from [18, 19], the
underlying spaces Has

𝐾,𝑧
and Has are sets of antisymmetric

functions.We beginwith the representations of the functions.

Lemma 9. Let 𝑓 ∈ Has. For any 𝜂 > 0, one has a repre-
sentation:

𝑓 =
1

2

∞

∑

𝑖=1

𝑎
𝑖
(𝐾

(𝑥
𝑖
,𝑢
𝑖
)
− 𝐾

(𝑢
𝑖
,𝑥
𝑖
)
) , 𝑥

𝑖
, 𝑢

𝑖
∈ X,

∞

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 + 𝜂.

(34)

Proof. For any 𝜂 > 0, there are sequences {𝑠
𝑖
}
∞

𝑖=1
∈ X2 and

{𝑎
𝑖
}
∞

𝑖=1
∈ ℓ

1 such that 𝑓 = ∑
∞

𝑖=1
𝑎
𝑖
𝐾
𝑠
𝑖

, 𝑠
𝑖
∈ X2 and ∑∞

𝑖=1
|𝑎
𝑖
| ≤

‖𝑓‖ + 𝜂.
Denote 𝑠

𝑖
= (𝑥

𝑖
, 𝑢

𝑖
), 𝑥

𝑖
, 𝑢

𝑖
∈ X, 𝑖 = 1, 2, . . .. It follows from

(5) that

𝑓 (𝑥
󸀠
, 𝑥) =

∞

∑

𝑖=1

𝑎
𝑖
𝐾((𝑢

𝑖
, 𝑥

𝑖
) , (𝑥, 𝑥

󸀠
)) . (35)

The proof is complete by 𝑓(𝑥, 𝑥󸀠) = 1/2(𝑓(𝑥, 𝑥
󸀠
) − 𝑓(𝑥

󸀠
, 𝑥)).

A set {𝑥
𝑖
}
𝑛

𝑖=1
⊂ X is said to be Δ-dense in X if for any

𝑥 ∈ X there exists some 1 ≤ 𝑗 ≤ 𝑛 such that |𝑥 − 𝑥
𝑗
|
2
< Δ.

Proposition 10 ([19], Proposition 3.1). Let {𝑋
𝑗
}
𝑛

𝑗=1
be drawn

independently according to 𝜌
𝑋
. Then for any 𝑡 > 1, under

Assumption 6 and (i) in Assumption 7, with confidence at least
1 − 𝑒

−𝑡
, {𝑋

𝑗
}
𝑛

𝑗=1
is 𝑐

𝛼,𝜏
((log 𝑛 + 𝑡)/𝑛)𝛾/𝜏-dense inX, where 𝑐

𝛼,𝜏

is a constant that depends only on 𝛼 and 𝜏.

The hypothesis error 𝑃(z, 𝜆) is bounded by the following
proposition.

Proposition 11. Assume Assumptions 5 and 6. Then for any
𝑡 > 1, with confidence at least 1 − 𝑒−𝑡, there holds

𝑃 (z, 𝜆) ≤ 𝐶󵄩󵄩󵄩󵄩𝑓𝜆
󵄩󵄩󵄩󵄩∞

(
log 𝑛 + 𝑡

𝑛
)

𝛾/𝜏

×(1 +
󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩f𝜆
󵄩󵄩󵄩󵄩∞

(
log 𝑛 + 𝑡

𝑛
)

𝛾/𝜏

)

𝜃−1

,

(36)

where 𝐶󸀠 is a constant independent of z, 𝜆, 𝑚, and 𝑡. (hereafter,
𝐶 and 𝐶󸀠 are constants which are independent of 𝑅, 𝑡, 𝑛, or 𝜆,
and may changes from line to line.)

Proof. The proof follows the line of [19, 20]. For any 𝜂 > 0,
let the representation 𝑓

𝜆
= ∑

∞

𝑖=1
𝑏
𝑖
(𝐾

(𝑥
𝑖
,𝑢
𝑖
)
− 𝐾

(𝑢
𝑖
,𝑥
𝑖
)
) with

∑
∞

𝑖=1
|𝑏
𝑖
| ≤ (

󵄩󵄩󵄩󵄩𝑓𝜆
󵄩󵄩󵄩󵄩∞

+ 𝜂)/2 be given in Lemma 9.
By Proposition 11, with confidence at least 1 − 𝑒

−𝑡, for
any 𝑖 = 1, 2, . . . , 𝑛, there are some 𝑋

𝑗
𝑖

, 𝑋
𝑘
𝑖

∈ {𝑋
𝑖
}
𝑛

𝑖=1
such

that max{|𝑥
𝑖
− 𝑋

𝑗
𝑖

|
2
, |𝑢

𝑖
− 𝑋

𝑘
𝑖

|} ≤ 𝑐
𝛼,𝜏
((log 𝑛 + 𝑡)/𝑛)1/𝜏. For

an integer 𝑁, which will be determined later, denote 𝑓 =

∑
𝑁

𝑖=1
𝑏
𝑖
(𝐾

(𝑋
𝑗𝑖
,𝑋
𝑘𝑖
)
− 𝐾

(𝑋
𝑘𝑖
,𝑋
𝑗𝑖
)
) ∈ Has

𝐾,𝑧
. So by Assumption 7,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 −

𝑁

∑

𝑖=1

𝑏
𝑖
(𝐾

(𝑥
𝑖
,𝑢
𝑖
)
− 𝐾

(𝑢
𝑖
,𝑥
𝑖
)
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩 + 𝜂) (
log 𝑛 + 𝑡

𝑛
)

𝛾/𝜏

,

(37)

where 𝐶 = 𝑐
3
𝑐
𝛾

𝛼,𝜏
.

Choose𝑁 such that ∑∞

𝑗=𝑁+1
|𝑏
𝑗
| < 𝜂/2. Therefore

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑁

∑

𝑖=1

𝑏
𝑖
(𝐾

(𝑥
𝑖
,𝑢
𝑖
)
− 𝐾

(𝑢
𝑖
,𝑥
𝑖
)
) − 𝑓

𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ 2𝜅

∞

∑

𝑗=𝑁+1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝜅𝜂. (38)

Consequently, 󵄩󵄩󵄩󵄩𝑓 − 𝑓𝜆
󵄩󵄩󵄩󵄩∞

≤ 𝐷
𝜂

:= 𝐶(
󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩∞
+ 𝜂)

((log 𝑛 + 𝑡)/𝑛)𝛾/𝜏 + 𝜅𝜂, which together with

󵄨󵄨󵄨󵄨𝑄𝑛
(𝑓

1
) − 𝑄

𝑛
(𝑓

2
)
󵄨󵄨󵄨󵄨

≤ 𝑐
4
(1 +max {󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩∞
,
󵄩󵄩󵄩󵄩𝑓2

󵄩󵄩󵄩󵄩∞
})
𝜃−1󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩∞

(39)
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yields, with confidence at least 1 − 𝑒−𝑡,

𝑄
𝑛
(𝑓) ≤ 𝑄

𝑛
(𝑓

𝜆
) + 𝑐

4
(1 +

󵄩󵄩󵄩󵄩𝑓𝜆
󵄩󵄩󵄩󵄩∞

+ 𝐷
𝜂
)
𝜃−1

𝐷
𝜂
. (40)

On the other hand, since 𝑓 ∈ Has
𝐾,𝑧

, the following holds by
(12) and (9), with confidence at least 1 − 𝑒−𝑡:

𝑄
𝑛
(𝑔

𝑛
) + 𝜆Ωz (𝑓𝑧,𝜆) ≤ 𝑄𝑛

(𝑓
𝑧,𝜆
) + 𝜆Ω

𝑧
(𝑓

𝑧,𝜆
)

≤ 𝑄
𝑛
(𝑓) + 2𝜆

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗

󵄨󵄨󵄨󵄨󵄨

≤ 𝑄
𝑛
(𝑓) + 𝜆 (

󵄩󵄩󵄩󵄩𝑓𝜆
󵄩󵄩󵄩󵄩 + 𝜂) ,

(41)

which together with (40) completes the proof by letting 𝜂 →

0.

The above bound for 𝑃(z, 𝜆) is the same as in [20], both
using of the same density of {𝑋

𝑖
}
𝑛

𝑖=1
in X. However, the

functions considered there are defined on X, instead of X2

as present.

4. Sample Error

As in [2, 7], Hoeffding’s decomposition plays an impor-
tant role in the estimation for sample error. For any
𝑓(𝑥, 𝑥

󸀠
), 𝑥, 𝑥

󸀠
∈ X, denote

𝜑
𝑓
(𝑧, 𝑧

󸀠
) = 𝜙 (sign (𝑦 − 𝑦󸀠) 𝑓 (𝑥, 𝑥󸀠)) ,

𝑧 = (𝑥, 𝑦) , 𝑧
󸀠
= (𝑥

󸀠
, 𝑦

󸀠
) .

(42)

By Hoeffding’s decomposition of 𝑈-statistic, we have

𝑄(𝑓 − 𝑓
𝜙
) − 𝑄

𝑛
(𝑓 − 𝑓

𝜙
)

= 2 (𝑄 (𝑓 − 𝑓
𝜙
) − 𝑃

𝑛
(𝑃𝜑

𝑓
− 𝑃𝜑

𝑓
𝜙

)) − 𝑈
𝑛
(ℎ

𝑓
− ℎ

𝑓
𝜙

) ,

(43)

where ℎ
𝑓
(𝑧, 𝑧

󸀠
) = 𝜑

𝑓
(𝑧, 𝑧

󸀠
) − 𝑃𝜑

𝑓
(𝑧) − 𝑃𝜑

𝑓
(𝑧

󸀠
) + 𝑄(𝑓) and,

for any 𝑔(𝑧, 𝑧󸀠),

𝑃𝑔 (𝑧) = E (𝑔 (𝑍, 𝑍
󸀠
) | 𝑍 = 𝑧) ,

𝑃
𝑛
(𝑔) =

1

𝑛

𝑛

∑

𝑖=1

𝑔 (𝑍
𝑖
) ,

𝑈
𝑛
(𝑔) =

1

𝑛 (𝑛 − 1)
∑

𝑖 ̸= 𝑗

𝑔 (𝑍
𝑖
, 𝑍

𝑗
) .

(44)

Moreover, for any ranking rule 𝑓, we denote 𝑔
𝑓
(𝑧) =

𝑃𝜑
𝑓
(𝑧) − 𝑃𝜑

𝑓
𝜙

(𝑧). Then

𝑄(𝑓 − 𝑓
𝜙
) − 𝑃

𝑛
(𝑃𝜑

𝑓
− 𝑃𝜑

𝑓
𝜙

) = E (𝑔
𝑓
) − 𝑃

𝑛
(𝑔

𝑓
) . (45)

It is the deviation of sum of independent random variables
from their mean.

As seen, in Hoeffding’s decomposition (43), the first term
is a sum of iid variables and the second term 𝑈

𝑛
(ℎ

𝑓
−

ℎ
𝑓
𝜙

) is a degenerate 𝑈-statistic. The degeneration means
E(𝑈

𝑛
(ℎ

𝑓
(𝑍, 𝑍

󸀠
) − ℎ

𝑓
𝜙

(𝑍, 𝑍
󸀠
)) | 𝑍) = 0, ∀𝑍.

Denote

𝑆
1
= 𝑄 (𝑔

𝑛
) − 𝑄 (𝑓

𝜙
) − (𝑄

𝑛
(𝑔

𝑛
) − 𝑄

𝑛
(𝑓

𝜙
))

= 𝑄 (𝑔
𝑛
− 𝑓

𝜙
) − 𝑄

𝑛
(𝑔

𝑛
− 𝑓

𝜙
) ,

𝑆
2
= 𝑄

𝑛
(𝑓

𝜆
) − 𝑄

𝑛
(𝑓

𝜙
) − (𝑄 (𝑓

𝜆
) − 𝑄 (𝑓

𝜙
))

= 𝑄
𝑛
(𝑓

𝜆
− 𝑓

𝜙
) − 𝑄 (𝑓

𝜆
− 𝑓

𝜙
) ,

(46)

so that the sample error 𝑄(𝑔
𝑛
) − 𝑄

𝑛
(𝑔

𝑛
) + 𝑄

𝑛
(𝑓

𝜆
) − 𝑄(𝑓

𝜆
) =

𝑆
1
+ 𝑆

2
.

We first estimate 𝑆
1
. Since 𝑔

𝑛
depends on z, by (43) and

(45), we need to consider the suprema of the sets

{E (𝑔
𝜋(𝑓)

) − 𝑃
𝑛
(𝑔

𝜋(𝑓)
) | 𝐹 ∈ F} ,

{
󵄨󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛
(ℎ

𝜋(𝑓)
− ℎ

𝑓
𝜙

)
󵄨󵄨󵄨󵄨󵄨󵄨
| 𝐹 ∈ F} ,

(47)

whereF, containing 𝑔
𝑛
, is (a subset of) a ball inHas.

With the above decomposition and the methods in [21],
the following proposition is established for the ball {𝑓 ∈ Has

𝐾
|

‖𝑓‖
𝐾
≤ 𝑅} and 𝜙(𝑡) = (1 − 𝑡)

+
in [7]. The Assumption 2

and the condition on the covering number of {𝑓 ∈ Has
𝐾
|

‖𝑓‖
𝐾
≤ 𝑅} play a crucial role. The arguments also work in

the present setting; that is, for the ball 𝐵
𝑅
= {𝑓 ∈ Has

|

‖𝑓‖ ≤ 𝑅}. For this we note that 𝜙 satisfies |𝜙(𝑡)−𝜙(𝑡󸀠)| ≤ 𝐶|𝑡−
𝑡
󸀠
|, 𝑡, 𝑡

󸀠
∈ [−1, 1]. Therefore, under (ii) of Assumption 5 and

(ii) of Assumption 7, the covering numberN(𝛿,G, ‖ ⋅ ‖
∞
) of

G = {𝑔
𝜋(𝑓)

| 𝑓 ∈ 𝐵
𝑅
} satisfies logN(𝛿,G, ‖ ⋅ ‖

∞
) ≤ 𝐶(𝑅/𝛿)

𝑠.
The interested reader may refer to [7, 21] for the details.

Proposition 12. Let𝑅 > 0 and 𝑡 > 0. Under Assumption 2, (ii)
of Assumption 5, and (ii) of Assumption 7, one has confidence
at least 1 − 𝑒−𝑡,

E (𝑔
𝜋(𝑓)

) − 𝑃
𝑛
(𝑔

𝜋(𝑓)
) ≤ 𝛿

0
+ 𝛿

1−(𝛼/2)

0
(E (𝑔

𝜋(𝑓)
))

(𝛼/2)

,

∀𝑓 ∈ 𝐵
𝑅
,

(48)

where 𝛿
0
is bounded by

𝛿
0
≤ 𝐶((

𝑡

𝑛
)

1/(2−𝛼)

+ (
𝑅
𝑠

𝑛
)

1/(2−𝛼+𝑠)

) , (49)

with 𝐶 being a constant independent of 𝑅, 𝑡, and 𝑛.

The estimation for the supremum sup
𝑓∈F
𝑅

|𝑈
𝑛
(ℎ

𝜋(𝑓)
−

ℎ
𝑓
𝜙

)| of 𝑈-process is much involved. The supremum of U-
processes has been studied in a few papers. The following
lemma follows from the proof of ([22, Theorem 3.2,𝑚 = 2]).

Lemma 13. Suppose that a function class F satisfies the
following conditions.
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(i) For any 𝑓 ∈ F, 𝑓(𝑧, 𝑧󸀠) = 𝑓(𝑧
󸀠
, 𝑧) and E(𝑓(𝑍, 𝑍󸀠

) |

𝑍) = 0.
(ii) F is uniformly bounded by a universal constant 𝐶

0
.

(iii) 𝐶F := ∫
∞

0
logN(𝛿,F, ‖ ⋅ ‖

∞
)𝑑𝛿 < ∞.

Then

E exp (𝜆√Γ
𝑛
) ≤ 𝐶 exp (𝐶󸀠

𝜆
2
𝐶F) , ∀𝜆 > 0, (50)

where 𝐶, 𝐶󸀠 are some constants, independent of 𝐶F, and

Γ
𝑛
= sup

𝑓∈F

󵄨󵄨󵄨󵄨(𝑛 − 1)𝑈𝑛
(𝑓)

󵄨󵄨󵄨󵄨 . (51)

Proposition 14. Suppose that (ii) in Assumption 7 holds.Then
one has with confidence at least 1 − 𝐶𝑒−𝑡

sup
𝑓∈FR

󵄨󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛
(ℎ

𝜋(𝑓)
− ℎ

𝑓
𝜙

)
󵄨󵄨󵄨󵄨󵄨󵄨
≤
𝐶
󸀠
(𝑅

𝑠
+ 1) 𝑡

𝑛
, (52)

whereF
𝑅
= {ℎ

𝜋(𝑓)
| 𝑓 ∈ 𝐵

𝑅
} and𝐶, 𝐶󸀠 are some positive con-

stants.

Proof. We first claim that F
𝑅
satisfies the conditions in

Lemma 13. Indeed, condition (i) holds by definition of ℎ
𝜋(𝑓)

and 𝑓(𝑥, 𝑥󸀠) = −𝑓(𝑥
󸀠
, 𝑥) for any 𝑓 ∈ 𝐵

𝑅
. Also, by definition

of ℎ
𝑓
, for any 𝑓 ∈ F

𝑅
, ||ℎ

𝜋(𝑓)
||
∞

≤ 4𝜙(−1), implying (ii).
Moreover, by (ii) of Assumption 5
󵄩󵄩󵄩󵄩󵄩
ℎ
𝜋(𝑓
1
)
− ℎ

𝜋(𝑓
2
)

󵄩󵄩󵄩󵄩󵄩∞
≤ 𝐶

󵄩󵄩󵄩󵄩𝜋(𝑓1) − 𝜋(𝑓2)
󵄩󵄩󵄩󵄩∞

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓1 − 𝑓2

󵄩󵄩󵄩󵄩∞

(53)

we have

logN (F
𝑅
, 𝛿, ‖⋅‖∞) ≤ logN(𝐵

𝑅
,
𝛿

𝐶
, ‖⋅‖∞) ≤ 𝑐

7
(𝐶𝑅)

𝑠
𝛿
−𝑠

(54)

provided (ii) in Assumption 7. This establishes (iii), as
claimed.

Applying Markov’s inequality to exp(𝜆√Γ
𝑛
), with 𝜆 =

√𝑡/2𝐶
󸀠
𝑅
𝑠 and appealing to Lemma 13, we have P(Γ

𝑛
> 𝑡) ≤

𝐶𝑒
−𝑡/(4𝐶

󸀠
𝑅
𝑠
)
, ∀𝑡 > 0; that is,

P (Γ
𝑛
> 4𝐶

󸀠
𝑅
𝑠
𝑡) ≤ 𝐶𝑒

−𝑡
, ∀𝑡 > 0. (55)

For single function ℎ
𝑓
𝜙

, it is known in ([23, Proposition 2.3])
that

P(
󵄨󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛
(ℎ

𝑓
𝜙

)
󵄨󵄨󵄨󵄨󵄨󵄨
≥

𝐶
󸀠
𝑡

𝑛 − 1
) ≤ 𝐶𝑒

−𝑡
, (56)

which together with (55) completes the proof.

The estimation for 𝑆
2
is easy since𝑓

𝜆
does not changewith

the set z of samples.

Proposition 15. Assume Assumption 2. For any 𝑡 > 0, one has
with confidence at least 1 − 𝐶𝑒−𝑡

𝑆
2
≤ 𝐶

󸀠
𝑡 (

(1 + 𝜅
󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩∞
)
𝜃

3𝑛
+ (

1

𝑛
)

1/(2−𝛼)

) + 𝐷 (𝜆) , (57)

where 𝐶, 𝐶󸀠 are some constants, independent of 𝜆, 𝑡 and 𝑛.

Proof. Clearly, the function 𝑔
𝑓
𝜆

(𝑍) satisfies ‖𝑔
𝑓
𝜆

‖
∞
≤ 𝐶(1 +

‖𝑓
𝜆
‖
∞
)
𝜃. Then, by Assumption 2, we conclude, as in [20, 21],

with confidence at least 1 − e−𝑡, that

𝑃
𝑛
(𝑔

𝑓
𝜆

) − (𝑄 (𝑓
𝜆
) − 𝑄

∗
)

≤ 𝐶
󸀠
𝑡 (

(1 +
󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩∞
)
𝜃

3𝑛
+ (

1

𝑛
)

1/(2−𝛼)

) + 𝐷 (𝜆) .

(58)

It remains to estimate 𝑈
𝑛
(ℎ

𝑓
𝜆

− ℎ
𝑓
𝜙

). For any single
function 𝑔 with 𝑔(𝑧, 𝑧󸀠) = 𝑔(𝑧

󸀠
, 𝑧) and E[𝑔(𝑍, 𝑍󸀠

) | 𝑍] =

0, ∀𝑍, we have by [23, Proposition 2.3]

P(
󵄨󵄨󵄨󵄨𝑈𝑛

(𝑔)
󵄨󵄨󵄨󵄨 ≥

𝐶
󸀠
𝑡
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩∞

𝑛 − 1
) ≤ 𝐶𝑒

−𝑡
, (59)

which together with ‖ℎ
𝑓
𝜆

− ℎ
𝑓
𝜙

‖
∞

≤ 𝐶
󸀠
(1 + ‖𝑓

𝜆
‖
∞
)
𝜃 implies,

with confidence at least 1 − 𝐶𝑒−𝑡, that

󵄨󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛
(ℎ

𝑓
𝜆

− ℎ
𝑓
𝜙

)
󵄨󵄨󵄨󵄨󵄨󵄨
≤
𝐶
󸀠
(1 +

󵄩󵄩󵄩󵄩𝑓𝜆
󵄩󵄩󵄩󵄩∞

)
𝜃

𝑡

𝑛
, (60)

where 𝐶 and 𝐶󸀠 are constants. The proof is complete.

5. Proof of Theorem 8

Theorem 16. For 𝑅 such that Ω
𝑧
(𝑓

𝑧,𝜆
) ≤ 𝑅 and any 𝑡 > 1,

under Assumptions 2–7, one has with confidence at least 1 −
𝐶𝑒

−𝑡

𝑄 (𝑔
𝑛
) − 𝑄

∗
+ 𝜆Ω

𝑧
(𝑓

𝑧,𝜆
)

≤ 𝐶
󸀠
((

log 𝑛 + 𝑡
𝑛

)

𝛾/𝜏

𝜆
(𝛽−1)𝜃

+ (
𝑡

𝑛
)

1/(2−𝛼)

+ (
𝑅
𝑠

𝑛
)

1/(2−𝛼+𝑠)

+
(𝑅

𝑠
+ 1) 𝑡

𝑛
+
𝑡𝜆

(𝛽−1)𝜃

𝑛
+ 𝜆

𝛽
),

(61)

where 𝐶,𝐶󸀠 are constant independent of 𝑅, 𝑡, or 𝑛.

Proof. We note that

󵄩󵄩󵄩󵄩𝑓𝜆
󵄩󵄩󵄩󵄩∞

≤ 𝜅
󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩 ≤
𝜅𝐷 (𝜆)

𝜆
≤ 𝐶𝜆

𝛽−1
. (62)

ByΩ
𝑧
(𝑓

𝑧,𝜆
) ≤ 𝑅, a combination of Propositions 11, 12, 14, and

15 yields that, with confidence at least 1 − 𝐶𝑒−𝑡,

𝑄 (𝑔
𝑛
) − 𝑄

∗
+ 𝜆Ω

𝑧
(𝑓

𝑧,𝜆
)

≤ 𝐶
1
(
log 𝑛 + 𝑡

𝑛
)

𝛾/𝜏

𝜆
(𝛽−1)𝜃

+ 𝛿
0
+ 𝛿

1−𝛼/2

0
{𝑄 (𝑓) − 𝑄

∗
}
𝛼/2

+
𝐶
2
(𝑅

𝑠
+ 1) 𝑡

𝑛
+ 𝐶

3
𝑡 (

𝜆
(𝛽−1)𝜃

3𝑛
+ (

1

𝑛
)

1/(2−𝛼)

) + 2𝜆
𝛽
,

(63)
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where 𝐶
𝑖
, 𝑖 = 1, 2, 3, are constants, and 𝛿

0
is bounded by (49).

Putting 𝑥 = 𝑄(𝑔
𝑛
) − 𝑄

∗
+ 𝜆Ω

𝑧
(𝑓

𝑧,𝜆
) and ] = 𝛼/2 into the

implication relation

𝑥 ≤ 𝑎𝑥
]
+ 𝑏, 𝑎, 𝑏, 𝑥 > 0 󳨐⇒ 𝑥 ≤ max {(2𝑎)1/(1−]), 2𝑏} , (64)

we obtain (61) from (63). Therefore, the conditional proba-
bility of the event that inequality (61) holds, given the event
Ω
𝑧
(𝑓

𝑧,𝜆
) ≤ 𝑅, is at least 1 − 𝐶𝑒−𝑡. The proof is complete.

For any 𝑅, denote the random event Ω
𝑧
(𝑓

𝑧,𝜆
) ≤ 𝑅 by 𝜉

𝑅
.

Obviously, P(𝜉
𝑅
) = 1 for 𝑅 = 𝜙(0)/𝜆. However, to prove

Theorem 8, a smaller𝑅withP(𝜉
𝑅
) = 1 is desired. To this end,

we apply the iteration technique for estimation of Ω
𝑧
(𝑓

𝑧,𝜆
)

introduced in [17].
Recall that 𝜇 is given in Theorem 8. It is easily seen that,

for 𝜆 = 𝑛−𝜇, 𝑅 ≤ 𝑛
1/𝑠,

(
1

𝑛
)

𝛾/𝜏

𝜆
(𝛽−1)𝜃

≤ 𝜆
𝛽
,

1

𝑛
𝜆
(𝛽−1)𝜃

≤ 𝜆
𝛽
,

(
1

𝑛
)

1/(2−𝛼)

≤
(𝑅

𝑠
+ 1)

𝑛
≤ (

𝑅
𝑠

𝑛
)

1/(2−𝛼+𝑠)

≤ 𝜆
𝛽
(𝜆

1−𝛽
𝑅)

𝑠/(2−𝛼+𝑠)

.

(65)

Therefore, we have, by Theorem 16, with the conditional
probability at least 1 − 𝐶𝑒−𝑡, given 𝜉

𝑅
,

𝑄 (𝑔
𝑛
) − 𝑄

∗
+ 𝜆Ω

𝑧
(𝑓

𝑧,𝜆
)

≤ 𝐶
󸀠max {(log 𝑛 + 𝑡)𝛾/𝜏, 𝑡} 𝜆𝛽 ((𝜆1−𝛽𝑅)

𝑠/(2−𝛼+𝑠)

+ 2) .

(66)

If 𝜆𝛽−1𝑅−1 = 𝑂(1), the above inequality becomes

𝑄 (𝑔
𝑛
) − 𝑄

∗
+ 𝜆Ω

𝑧
(𝑓

𝑧,𝜆
)

≤ 𝐶
󸀠max {(log 𝑛 + 𝑡)𝛾/𝜏, 𝑡} 𝜆𝛽(𝜆1−𝛽𝑅)

𝑠/(2−𝛼+𝑠)

.

(67)

Consequently, given event 𝜉
𝑅
with 𝜆𝛽−1𝑅−1 = 𝑂(1), 𝑅 ≤ 𝑛

1/𝑠,
we have with confidence at least 1 − 𝐶𝑒−𝑡,

󵄩󵄩󵄩󵄩𝑓𝑧,𝜆
󵄩󵄩󵄩󵄩 ≤ Ω𝑧

(𝑓
𝑧,𝜆
) ≤ 𝑟 (𝑅)

:= 𝐶
󸀠max {(log 𝑛 + 𝑡)𝛾/𝜏, 𝑡}

× 𝜆
(𝛽−1)((1−𝑠)/(2−𝛼+𝑠))

𝑅
𝑠/(2−𝛼+𝑠)

.

(68)

Let 𝑅(0) = 𝜙(0)/𝜆, 𝑅(𝑘) = 𝑟(𝑅(𝑘−1)), 𝑘 = 1, 2, . . .. By induc-
tion, it is easy to prove 𝜆𝛽−1(𝑅(𝑘))−1 = 𝑂(1), 𝑅

(𝑘)
≤ 𝑛

1/𝑠.
Since P{𝜉

𝑅
0

} = 1, we have with confidence at least 1 −

𝑘𝐶𝑒
−𝑡
Ω
𝑧
(𝑓

𝑧,𝜆
) ≤ 𝑅

(𝑘)
, 𝑘 = 1, 2, . . .,. Clearly,

𝑅
(𝑘)

≤ (𝐶
󸀠max {(log 𝑛 + 𝑡)𝛾/𝜏, t})

(1−]𝑘+1)/(1−])

× 𝜆
𝛽−1

𝜆
−(1/(2−𝛼+𝑠))

𝑘+1

,

𝑘 = 1, 2, . . . ,

(69)

where ] = 𝑠/(2 − 𝛼 + 𝑠) < 1.
For any 𝜀 > 0, let 𝑘 be the smallest integer such

that (1/(2 − 𝛼 + 𝑠))𝑘+1 < 𝜀. Substituting 𝑅 = 𝑅
(𝑘) into

(67), we bound the right hand side of (67) by
(𝐶

󸀠max{(log 𝑛 + 𝑡)𝛾/𝜏, 𝑡})
1/(1−])

𝜆
𝛽−𝜀, with confidence at

least 1 − 𝐶
𝜀
𝑒
−𝑡, where 𝐶

𝜀
= 𝑘𝐶. This completes the proof.
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[23] M. A. Arcones and E. Giné, “Limit theorems for 𝑈-processes,”
The Annals of Probability, vol. 21, no. 3, pp. 1494–1542, 1993.


