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We investigate the disease’s dynamics of a reaction-diffusion epidemic model. We first give a priori estimates of upper and lower
bounds for positive solutions to model and then give the conditions of the existence and nonexistence of the positive nonconstant
steady states, which guarantees the existence of the stationary patterns.

1. Introduction

Infectious diseases are the second leading cause of death
worldwide, after heart disease, and are responsible for more
deaths annually than cancer [1]. Since the pioneer work of
Kermark and McKendrick [2], mathematical models have
been contributing to improve our understanding of infectious
disease dynamics and help us develop preventive measures to
control infection spread qualitatively and quantitatively.

Many studies indicate that spatial epidemiology with self-
diffusion has become a principal scientific discipline aiming
at understanding the causes and consequences of spatial
heterogeneity in disease transmission [3]. In these studies,
reaction-diffusion equations have been intensively used to
describe spatiotemporal dynamics. In particular, the spatial
spread of infections has been studied by analyzing traveling
wave solutions and calculating spread rates [4–10].

Besides, there has been some research on pattern for-
mation in the spatial epidemic model, starting with Turing’s
seminal paper [11]. Turing’s revolutionary idea was that the
passive diffusion could interact with chemical reaction in
such away that even if the reaction by itself has no symmetry-
breaking capabilities, diffusion can destabilize the symmetric
solutions with the result that the system with diffusion has
them [12]. In these studies [3, 13–20], via standard linear
analysis, the authors obtained the conditions of Turing insta-
bility, and, via numerical simulation, they showed the pattern

formation induced by self-diffusion or cross-diffusion and
found that model dynamics exhibits a diffusion controlled
formation growth to stripes, spots, and coexistence or chaos
pattern replication.

Recently, the researchers are interested in research on the
stationary patterns due to the existence and nonexistence
nonconstant solutions of the reaction-diffusion model [21–
29]. But the research on the existence and nonexistence
nonconstant solutions of reaction-diffusion epidemic model,
seems rare [3].

In this paper, we will focus on the disease’s dynamics
through studying the existence of the constant and noncon-
stant steady states of a simple reaction-diffusion epidemic
model.

The rest of this paper is organized as follows. In Section 2,
we derive a reaction-diffusion epidemic model. In Section 3,
we give a priori estimates of upper and lower bounds
for positive solutions to model. In Section 4, we give the
main results on the existence and nonexistence of positive
nonconstant steady states of the model. The paper ends with
a brief discussion in Section 5.

2. Basic Model

In [30], Berezovsky and coworkers introduced a simple
epidemic model through the incorporation of variable pop-
ulation, disease induced mortality, and emigration into the
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classic model of Kermark and McKendrick [2]. The total
population (𝑁) is divided into two groups susceptible (𝑆) and
infectious (𝐼); that is, 𝑁 = 𝑆 + 𝐼. The model describing the
relations between the state variables is

𝑑𝑆

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) − 𝛽

𝑆𝐼

𝑁
− (𝜇 + 𝜃) 𝑆,

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
− (𝜇 + 𝑑) 𝐼,

(1)

where the birth process incorporates density dependent
effects via a logistic equation with the intrinsic growth rate
𝑟 and the carrying capacity𝐾; 𝑆(𝑡), 𝐼(𝑡) represent population
densities of susceptible and infected population, respectively;
𝛽 denotes the transmission rate (the infection rate constant);
𝜇 is the natural mortality; 𝑑 denotes the disease-induced
mortality; 𝜃 is the per-capita emigration rate of noninfective.

For model (1), the epidemic threshold of basic reproduc-
tion number 𝑅

0
is then computed as

𝑅
0
=

𝛽

𝜇 + 𝑑
. (2)

The basic demographic reproductive number 𝑅
𝑑
is given

by

𝑅
𝑑
=

𝑟

𝜇 + 𝜃
. (3)

For simplicity, rescalling the model (1) by letting 𝑆 →

𝑆/𝐾, 𝐼 → 𝐼/𝐾, and 𝑡 → 𝑡/(𝜇 + 𝑑) leads to the following
model:

𝑑𝑆

𝑑𝑡
= ]𝑅
𝑑
(𝑆 + 𝐼) (1 − (𝑆 + 𝐼)) − 𝑅

0

𝑆𝐼

𝑆 + 𝐼
− ]𝑆,

𝑑𝐼

𝑑𝑡
= 𝑅
0

𝑆𝐼

𝑆 + 𝐼
− 𝐼,

(4)

where ] = (𝜇 + 𝜃)/(𝜇 + 𝑑) defined by the ratio of the average
life-span of susceptibles to that of infections and 𝑆 + 𝐼 ≤ 1.

See [30] for more details.
Assume that the habitat Ω ⊂ R𝑚 (𝑚 ≥ 1) is a bounded

domainwith smooth boundary 𝜕Ω (when𝑚 > 1), andn is the
outward unit normal vector on 𝜕Ω.We consider the following
reaction-diffusion 𝑆𝐼 epidemic model:

𝜕𝑆

𝜕𝑡
− 𝑑
𝑆
Δ𝑆 = ]𝑅

𝑑
(𝑆 + 𝐼) (1 − (𝑆 + 𝐼))

− 𝑅
0

𝑆𝐼

𝑆 + 𝐼
− ]𝑆, 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝐼

𝜕𝑡
− 𝑑
𝐼
Δ𝐼 = 𝑅

0

𝑆𝐼

𝑆 + 𝐼
− 𝐼, 𝑥 ∈ Ω, 𝑡 > 0,

𝑆 (𝑥, 0) = 𝑆
0 (𝑥) > 0, 𝐼 (𝑥, 0) = 𝐼

0 (𝑥) ≥ 0, 𝑥 ∈ Ω,

𝜕𝑆

𝜕n
=

𝜕𝐼

𝜕n
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

(5)

where the nonnegative constants 𝑑
𝑆
and 𝑑

𝐼
are the diffu-

sion coefficients of 𝑆 and 𝐼, respectively. The symbol Δ is

the Laplacian operator. The homogeneous Neumann bound-
ary condition implies that the above model is self-contained
and there is no infection across the boundary.

The corresponding kineticmodel (5) with𝑚 = 2 has been
investigated by Wang et al. [20].

In this paper, we concentrated on the steady states of
model (5) which satisfy

− 𝑑
𝑆
Δ𝑆 = ]𝑅

𝑑 (𝑆 + 𝐼) (1 − (𝑆 + 𝐼)) − 𝑅
0

𝑆𝐼

𝑆 + 𝐼
− ]𝑆, 𝑥 ∈ Ω,

− 𝑑
𝐼
Δ𝐼 = 𝑅

0

𝑆𝐼

𝑆 + 𝐼
− 𝐼, 𝑥 ∈ Ω,

𝜕𝑆

𝜕n
=

𝜕𝐼

𝜕n
= 0, 𝑥 ∈ 𝜕Ω.

(6)

Throughout this paper, the positive solution (𝑆, 𝐼) satisfy-
ing model (6) refers to a classical one with 𝑆 > 0, 𝐼 > 0 on
Ω. Clearly, model (6) has a unique positive constant solution
(endemic equilibrium) 𝐸∗ = (𝑆

∗
, 𝐼
∗
) if 𝑅
𝑑
> (] + 𝑅

0
− 1)/𝑅

0
]

and 𝑅
0
> 1, where

𝑆
∗
=
]𝑅
0
𝑅
𝑑
− 𝑅
0
+ 1 − ]

]𝑅2
0
𝑅
𝑑

, 𝐼
∗
= (𝑅
0
− 1) 𝑆

∗
. (7)

3. A Priori Estimates for Positive
Solutions to Model (6)

Themain purpose of this section is to give a priori upper and
lower positive bounds for positive solution of model (6). To
this aim, we first cite two known results.The first is due to Lin
et al. [31] and the second to Lou and Ni [32]. In the following,
let us denote the constants ],𝑅

𝑑
, and𝑅

0
collectively byΛ.The

positive constants 𝐶, 𝐶, 𝐶, 𝐶∗, and so forth will depend only
on the domainsΩ and Λ.

Lemma 1 (Harnack inequality [31]). Let 𝑤 ∈ 𝐶
2
(Ω) ∩ 𝐶

1
(Ω)

be a positive solution toΔ𝑤(𝑥)+𝑐(𝑥)𝑤(𝑥) = 0, where 𝑐 ∈ 𝐶(Ω),
satisfying the homogeneous Neumann boundary conditions.
Then there exists a positive constant 𝐶∗ = 𝐶

∗
(‖𝑐‖
∞
, Ω), such

that

max
Ω

𝑤 ≤ 𝐶
∗min
Ω

𝑤. (8)

Lemma 2 (maximum principle [32]). Let Ω be a bounded
Lipschitz domain in R𝑚 and 𝑔 ∈ 𝐶(Ω ×R).

(a) Assume that 𝑤 ∈ 𝐶
2
(Ω) ∩ 𝐶

1
(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≥ 0, 𝑥 ∈ Ω,

𝜕𝑤

𝜕n
≤ 0, 𝑥 ∈ 𝜕Ω.

(9)

If 𝑤(𝑥
0
) = max

Ω
𝑤(𝑥), then 𝑔(𝑥

0
, 𝑤(𝑥
0
)) ≥ 0.
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(b) Assume that 𝑤 ∈ 𝐶
2
(Ω) ∩ 𝐶

1
(Ω) and satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≤ 0, 𝑥 ∈ Ω,

𝜕𝑤

𝜕n
≥ 0, 𝑥 ∈ 𝜕Ω.

(10)

If 𝑤(𝑥
1
) = min

Ω
𝑤(𝑥), then 𝑔(𝑥

1
, 𝑤(𝑥
1
)) ≤ 0.

Theorem 3. If 𝑅
0
> 1, then the positive solution (𝑆(𝑥), 𝐼(𝑥))

of model (6) satisfies

max
Ω

𝑆 (𝑥) <
1

4
𝑅
𝑑
, max

Ω

𝐼 (𝑥) <
1

4
𝑅
𝑑
(𝑅
0
− 1) . (11)

Proof. Assume that (𝑆(𝑥), 𝐼(𝑥)) is a positive solution ofmodel
(6). We set

𝑆 (𝑥
1
) = max
Ω

𝑆 (𝑥) , 𝐼 (𝑥
2
) = max
Ω

𝐼 (𝑥) . (12)

By applying Lemma 2, we have

1

4
𝑅
𝑑
− ]𝑆 (𝑥

1
)

≥ ]𝑅
𝑑
(𝑆 (𝑥
1
) + 𝐼 (𝑥

1
)) (1 − (𝑆 (𝑥

1
) + 𝐼 (𝑥

1
))) − ]𝑆 (𝑥

1
)

≥
𝑅
0
𝑆 (𝑥
1
) 𝐼 (𝑥
1
)

𝑆 (𝑥
1
) + 𝐼 (𝑥

1
)

> 0,

(13)

and 𝑅
0
𝑆(𝑥
2
)𝐼(𝑥
2
)/(𝑆(𝑥

2
) + 𝐼(𝑥

2
)) ≥ 𝐼(𝑥

2
). This clearly gives

𝑆 (𝑥
1
) <

1

4
𝑅
𝑑
, 𝐼 (𝑥

2
) ≤ (𝑅

0
− 1) 𝑆 (𝑥

2
) <

1

4
𝑅
𝑑
(𝑅
0
− 1) .

(14)

Theorem 4. Assume that 𝑅
𝑑

> 1 and 𝑅
0

> 1. Let 𝑑 and 𝐷

be fixed positive constants.Then there exists a positive constant
𝐶 = 𝐶(Λ, 𝑑) such that, if 𝑑

𝑆
, 𝑑
𝐼

> 𝑑, every positive solution
(𝑆(𝑥), 𝐼(𝑥)) of model (6) satisfies

min
Ω

𝑆 (𝑥) > 𝐶, min
Ω

𝐼 (𝑥) > 𝐶. (15)

Proof. Let

𝑐
1
(𝑥) =

1

𝑑
𝑆

(]𝑅
𝑑
(1 +

𝐼

𝑆
) (1 − (𝑆 + 𝐼)) −

𝑅
0
𝐼

𝑆 + 𝐼
− ]) ,

𝑐
2 (𝑥) =

1

𝑑
𝐼

(
𝑅
0
𝑆

𝑆 + 𝐼
− 1) .

(16)

In view of Theorem 3, there exists a positive constant 𝐶 =

𝐶(Λ) such that ‖𝑐
1
(𝑥)‖
∞

≤ 𝐶, ‖𝑐
2
(𝑥)‖
∞

≤ 𝐶 provided that
𝑑
𝑆
, 𝑑
𝐼
> 𝑑. As 𝑆 and 𝐼 satisfy

Δ𝑆 (𝑥) + 𝑐
1 (𝑥) 𝑆 = 0, 𝑥 ∈ Ω,

Δ𝐼 (𝑥) + 𝑐
2
(𝑥) 𝐼 = 0, 𝑥 ∈ Ω,

𝜕𝑆

𝜕n
=

𝜕𝐼

𝜕n
= 0, 𝑥 ∈ 𝜕Ω.

(17)

It follows from Lemma 1 that there exists a positive constant
𝐶
∗
= 𝐶
∗
(Λ, 𝑑) such that

max
Ω

𝑆 ≤ 𝐶
∗min
Ω

𝑆, max
Ω

𝐼 ≤ 𝐶
∗min
Ω

𝐼 (18)

for 𝑑
𝑆
, 𝑑
𝐼
≥ 𝑑.

Now, on the contrary, suppose that (15) is not true,
then there exist sequences {𝑑

𝑆,𝑖
}
∞

𝑖=1
, {𝑑
𝐼,𝑖
}
∞

𝑖=1
with (𝑑

𝑆,𝑖
, 𝑑
𝐼,𝑖
) ∈

[𝑑,∞) × [𝑑,∞) and the positive solution (𝑆
𝑖
, 𝐼
𝑖
) of model (6)

corresponding to (𝑑
𝑆
, 𝑑
𝐼
) = (𝑑

𝑆,𝑖
, 𝑑
𝐼,𝑖
), such that

min
Ω

𝑆
𝑖
(𝑥) → 0 or min

Ω

𝐼
𝑖
(𝑥) → 0 as 𝑖 → ∞.

(19)

It follows from Lemma 1 that

𝑆
𝑖
(𝑥) → 0 or 𝐼

𝑖
(𝑥) → 0

uniformly on Ω as 𝑖 → ∞.

(20)

(𝑆
𝑖
, 𝐼
𝑖
) satisfies

− 𝑑
𝑆,𝑖
Δ𝑆
𝑖
= ]𝑅
𝑑
(𝑆
𝑖
+ 𝐼
𝑖
) (1 − (𝑆

𝑖
+ 𝐼
𝑖
))

−
𝑅
0
𝑆
𝑖
𝐼
𝑖

𝑆
𝑖
+ 𝐼
𝑖

− ]𝑆
𝑖
, 𝑥 ∈ Ω,

− 𝑑
𝐼,𝑖
Δ𝐼
𝑖
=

𝑅
0
𝑆
𝑖
𝐼
𝑖

𝑆
𝑖
+ 𝐼
𝑖

− 𝐼
𝑖
, 𝑥 ∈ Ω,

𝜕𝑆
𝑖

𝜕n
=

𝜕𝐼
𝑖

𝜕n
= 0, 𝑥 ∈ 𝜕Ω.

(21)

Integrating by parts, we obtain that, for 𝑖 = 1, 2, . . .,

∫
Ω

(]𝑅
𝑑
(𝑆
𝑖
+ 𝐼
𝑖
) (1 − (𝑆

𝑖
+ 𝐼
𝑖
)) −

𝑅
0
𝑆
𝑖
𝐼
𝑖

𝑆
𝑖
+ 𝐼
𝑖

− ]𝑆
𝑖
)𝑑𝑥 = 0,

∫
Ω

𝐼
𝑖
(

𝑅
0
𝑆
𝑖

𝑆
𝑖
+ 𝐼
𝑖

− 1)𝑑𝑥 = 0.

(22)

By the regularity theory for elliptic equations [33], we see that
there exist a subsequence of {(𝑆

𝑖
, 𝐼
𝑖
)}
∞

𝑖
, which we will still

denote by {(𝑆
𝑖
, 𝐼
𝑖
)}
∞

𝑖
, and two nonnegative functions 𝑆, 𝐼 ∈

𝐶
2
(Ω), such that (𝑆

𝑖
, 𝐼
𝑖
) → (𝑆, 𝐼) in [𝐶

2
(Ω)]
2 as 𝑖 → ∞. By

(20), we have that 𝑆 ≡ 0 or 𝐼 ≡ 0.
Letting 𝑖 → ∞ in (22) we obtain that

∫
Ω

(]𝑅
𝑑
(𝑆 + 𝐼) (1 − (𝑆 + 𝐼)) −

𝑅
0
𝑆𝐼

𝑆 + 𝐼

− ]𝑆)𝑑𝑥 = 0,

∫
Ω

𝐼 (
𝑅
0
𝑆

𝑆 + 𝐼

− 1)𝑑𝑥 = 0.

(23)

Case 1 (𝑆 ≡ 0, 𝐼 ̸≡ 0 or 𝑆 ≡ 0, 𝐼 ≡ 0). Since 𝐼
𝑖
satisfies the

second inequality of (18), 𝐼
𝑖
> 0 on Ω. Therefore, 𝑅

0
𝑆
𝑖
/(𝑆
𝑖
+

𝐼
𝑖
) − 1 → −1 < 0 on Ω as 𝑖 → ∞. Hence, ∫

Ω
𝐼
𝑖
(𝑅
0
𝑆
𝑖
/(𝑆
𝑖
+

𝐼
𝑖
) − 1)𝑑𝑥 < 0 for sufficiently large 𝑖 which contradicts the

second integral identity of (22).
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Case 2 (𝐼 ≡ 0, 𝑆 ̸≡ 0). As above, 𝑆 > 0 on Ω. It follows from
the first integral identity of (23) that

∫
Ω

𝑆 (]𝑅
𝑑
(1 − 𝑆) − ]) 𝑑𝑥 = 0. (24)

This fact combines with 0 < 𝑆 ≤ (1/4)𝑅
𝑑
yielding to 𝑆 =

1 − 1/𝑅
𝑑
, which implies that 𝑅

0
𝑆
𝑖
/(𝑆
𝑖
+ 𝐼
𝑖
) → 𝑅

0
uniformly

on Ω as 𝑖 → ∞, since 𝐼
𝑖
→ 0 uniformly on Ω. As 𝑅

0
> 1,

this contradicts the second integral identity of (23) and the
fact that 𝐼

𝑖
> 0. This completes the proof.

4. Existence and Nonexistence of Positive
Nonconstant Steady States

In this section, we provide some sufficient conditions for the
existence and nonexistence of nonconstant positive solution
of model (6) by using the Leray-Schauder degree theory [34].
From now on, we denote by

0 = 𝜇
0
< 𝜇
1
< 𝜇
2
< 𝜇
3
< ⋅ ⋅ ⋅ (25)

the eigenvalues of the operator −Δ on Ω with the zero-flux
boundary conditions.

4.1. Nonexistence for Positive Nonconstant Steady States to
Model (6). This section is devoted to the consideration of the
nonexistence for the nonconstant positive solutions of model
(6), and, in the following results, the diffusion coefficients do
play a significant role.

Theorem 5. Assume that 𝑅
0

> 1. Let 𝐷
2
be a fixed positive

constant with 𝐷
2

> (𝑅
0

− 1)/𝜇
1
. Then there exists a

positive constant𝐷
1
(Λ,𝐷
2
) such that model (6) has no positive

nonconstant solution provided that 𝑑
𝑆
≥ 𝐷
1
and 𝑑

𝐼
≥ 𝐷
2
.

Proof. Let (𝑆(𝑥), 𝐼(𝑥)) be any positive solution of model (6)
and denote 𝑔 = |Ω|

−1
∫
Ω
𝑔𝑑𝑥. Then, multiplying the first

equation of model (6) by (𝑆−𝑆), integrating overΩ, by virtue
of Theorem 3, we have that

𝑑
𝑆
∫
Ω

|∇𝑆|
2
𝑑𝑥

= ∫
Ω

(𝑆 − 𝑆)

× (]𝑅
𝑑
(𝑆 + 𝐼) (1 − (𝑆 + 𝐼)) −

𝑅
0
𝑆𝐼

𝑆 + 𝐼
− ]𝑆) 𝑑𝑥

= ∫
Ω

(𝑆 − 𝑆)
2

× (] (𝑅
𝑑
− 1) − ]𝑅

𝑑
(𝑆 + 𝑆) + 2]𝑅

𝑑
𝐼 −

𝑅
0
𝐼𝐼

(𝑆 + 𝐼) (𝑆 + 𝐼)

)𝑑𝑥

+ ∫
Ω

(]𝑅
𝑑
(1 − (𝐼 + 𝐼) + 2𝑆) −

𝑅
0
𝑆𝑆

(𝑆 + 𝐼) (𝑆 + 𝐼)

)

× (𝑆 − 𝑆) (𝐼 − 𝐼) 𝑑𝑥,

≤ 𝐶
1
∫
Ω

(𝑆 − 𝑆)
2

+ 𝐶
2
∫
Ω


𝑆 − 𝑆




𝐼 − 𝐼


𝑑𝑥,

(26)

where 𝐶
1
, 𝐶
2
depend only on Λ. In a similar manner, we

multiply the second equation in model (6) by (𝐼 − 𝐼) to have

𝑑
𝐼
∫
Ω

|∇𝐼|
2
𝑑𝑥

= ∫
Ω

(𝐼 − 𝐼) (
𝑅
0
𝑆𝐼

𝑆 + 𝐼
− 𝐼) 𝑑𝑥

= ∫
Ω

(𝐼 − 𝐼)
2

(−1 +
𝑅
0
𝑆𝑆

(𝑆 + 𝐼) (𝑆 + 𝐼)

)𝑑𝑥

+ ∫
Ω

𝑅
0
𝐼𝐼

(𝑆 + 𝐼) (𝑆 + 𝐼)

(𝑆 − 𝑆) (𝐼 − 𝐼) 𝑑𝑥

≤ (𝑅
0
− 1)∫

Ω

(𝐼 − 𝐼)
2

𝑑𝑥

+ 𝑅
0
∫
Ω


𝑆 − 𝑆




𝐼 − 𝐼


𝑑𝑥.

(27)

It follows from (26), (27) and the 𝜀-Young inequality that

∫
Ω

(𝑑
𝑆|∇𝑆|
2
+ 𝑑
𝐼 |∇𝐼|
2
) 𝑑𝑥

≤ ∫
Ω

((𝐶
1
+

𝐶

2𝜀
) (𝑆 − 𝑆)

2

+ (𝑅
0
− 1 +

𝜀𝐶

2
) (𝐼 − 𝐼)

2

)𝑑𝑥,

(28)

where 𝐶 = 𝐶
2
+ 𝑅
0
. It follows from the well-known Poincaré

inequality that

∫
Ω

(𝑑
𝑆|∇𝑆|
2
+ 𝑑
𝐼 |∇𝐼|
2
) 𝑑𝑥

≤
1

𝜇
1

(𝐶
1
+

𝐶

2𝜀
)∫
Ω

|∇𝑆|
2
𝑑𝑥

+
1

𝜇
1

(𝑅
0
− 1 +

𝜀𝐶

2
)∫
Ω

|∇𝐼|
2
𝑑𝑥.

(29)

Since 𝑑
𝐼
𝜇
1

> 𝑅
0
− 1 from the assumption, we can find a

sufficiently small 𝜀
0
such that 𝑑

𝐼
𝜇
1
≥ 𝑅
0
−1+𝜀𝐶/2. Finally, by

taking𝐷
1
:= (1/𝜇

1
)(𝐶
1
+ 𝐶/2𝜀

0
) one can conclude that 𝑆 = 𝑆

and 𝐼 = 𝐼, which asserts our results.

4.2. Existence for Positive Nonconstant Steady States to Model
(6). In this section, we discuss the global existence of
nonconstant positive classical solutions to model (6), which
guarantees the existence of the stationary patterns [21, 24, 26,
27].
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Unless otherwise specified, in this section, we always
require that 𝑅

𝑑
> (] + 𝑅

0
− 1)/𝑅

0
] and 𝑅

0
> 1, which

guarantees that model (6) has one positive constant steady
state 𝐸

∗. From now on, let us denote

u = (𝑆, 𝐼) ,

u∗ = (𝑆
∗
, 𝐼
∗
) = (

]𝑅
0
𝑅
𝑑
− 𝑅
0
+ 1 − ]

]𝑅2
0
𝑅
𝑑

, (𝑅
0
− 1) 𝑆

∗
) .

(30)

Let X = {u ∈ [𝐶
2
(Ω)]
2
| 𝜕u/𝜕n = 0, 𝑥 ∈ 𝜕Ω} and X+ =

{u ∈ X | 𝑆, 𝐼 > 0, 𝑥 ∈ Ω}. Then we write model (6) in the
form

− Δu = G (u) , 𝑥 ∈ Ω,

𝜕u
𝜕n

= 0, 𝑥 ∈ 𝜕Ω,

(31)

where

G (u) = (

1

𝑑
𝑆

(]𝑅
𝑑
(𝑆 + 𝐼) (1 − (𝑆 + 𝐼)) −

𝑅
0
𝑆𝐼

𝑆 + 𝐼
− ]𝑆)

1

𝑑
𝐼

(
𝑅
0
𝑆𝐼

𝑆 + 𝐼
− 𝐼)

) .

(32)

Define a compact operatorF : X+ → X+ by

F (u) := (I − Δ)
−1

{G (u) + u} , (33)

where (I − Δ)
−1 is the inverse operator of I − Δ subject to the

zero-flux boundary condition.Then u is a positive solution of
model (31) if and only if u satisfies

(I −F) u = 0, 𝑥 ∈ Ω. (34)

To apply the index theory, we investigate the eigenvalue
of the problem

− (I −Fu (u∗)) Ψ = 𝜆Ψ, Ψ ̸= 0, (35)

where Ψ = (Ψ
1
, Ψ
2
)
𝑇 andFu(u∗) = (I − Δ)

−1
(I + A) with

A = (

4𝑅
0
+ 2] − 𝑅

2

0
− ]𝑅
0
𝑅
𝑑
− ]𝑅
0
− 3

𝑑
𝑆
𝑅
0

−
]𝑅
0
𝑅
𝑑
+ 3 − 2𝑅

0
− 2]

𝑑
𝑆
𝑅
0

(𝑅
0
− 1)
2

𝑑
𝐼
𝑅
0

−
𝑅
0
− 1

𝑑
𝐼
𝑅
0

)

:= (

𝑑
−1

𝑆
𝑎
1

−𝑑
−1

𝑆
𝑎
2

𝑑
−1

𝐼
𝑎
3

−𝑑
−1

𝐼
𝑎
4

) .

(36)

𝜆 is an eigenvalue of (35) if and only if𝜆 is an eigenvalue of the
matrix (𝜇

𝑖
+1)
−1

(𝜇
𝑖
I−A) for any 𝑖 ≥ 0. Therefore, I−Fu(u∗)

is invertible if and only if, for any 𝑖 ≥ 0, the matrix

𝑀
𝑖
:= 𝜇
𝑖
I − A = (

𝜇
𝑖
− 𝑑
−1

𝑆
𝑎
1

𝑑
−1

𝑆
𝑎
2

−𝑑
−1

𝐼
𝑎
3

𝜇
𝑖
+ 𝑑
−1

𝐼
𝑎
4

) (37)

is invertible. A straightforward computation yields

det (𝑀
𝑖
) = 𝑑
−1

𝑆
𝑑
−1

𝐼

× (𝑑
𝑆
𝑑
𝐼
𝜇
2

𝑖
+ (𝑑
𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
) 𝜇
𝑖
+ 𝜌) ,

(38)

where 𝜌 = (1/𝑅
0
)(]𝑅
0
𝑅
𝑑
− 𝑅
0
+ 1 − ])(𝑅

0
− 1) > 0. For the

sake of convenience, we denote

𝐻(𝑑
𝑆
, 𝑑
𝐼
, 𝜇) = 𝑑

𝑆
𝑑
2
𝜇
2

𝑖
+ (𝑑
𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
) 𝜇
𝑖
+ 𝜌. (39)

Then𝐻(𝑑
𝑆
, 𝑑
𝐼
, 𝜇) = 𝑑

𝑆
𝑑
2
det(𝑀

𝑖
).

If (𝑑
𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
)
2
> 4𝑑
𝑆
𝑑
2
𝜌, then𝐻(𝑑

𝑆
, 𝑑
𝐼
, 𝜇) = 0 has two

real roots 𝜇± given by

𝜇
+
(𝑑
𝑆
, 𝑑
𝐼
)

=
1

2𝑑
𝑆
𝑑
2

(𝑑
𝐼
𝑎
1
− 𝑑
𝑆
𝑎
4
+ √(𝑑

𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
)
2
− 4𝑑
𝑆
𝑑
2
𝜌) ,

𝜇
−
(𝑑
𝑆
, 𝑑
𝐼
)

=
1

2𝑑
𝑆
𝑑
2

(𝑑
𝐼
𝑎
1
− 𝑑
𝑆
𝑎
4
− √(𝑑

𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
)
2
− 4𝑑
𝑆
𝑑
2
𝜌) .

(40)

Set 𝐵 := 𝐵(𝑑
𝑆
, 𝑑
𝐼
) = {𝜇 : 𝜇 ≥ 0, 𝜇

−
(𝑑
𝑆
, 𝑑
𝐼
) < 𝜇 <

𝜇
+
(𝑑
𝑆
, 𝑑
𝐼
)}, 𝑆
𝑝

= {𝜇
0
, 𝜇
1
, 𝜇
2
, . . .}, and 𝑚(𝜇

𝑖
) the multiplicity

of 𝜇
𝑖
.
To compute index (I−F, u∗), we can assert the following

conclusion by Pang and Wang [22].

Lemma 6 (see [22]). Suppose 𝐻(𝑑
𝑆
, 𝑑
𝐼
, 𝜇
𝑖
) ̸= 0 for all 𝜇

𝑖
∈ 𝑆
𝑝
.

Then

𝑖𝑛𝑑𝑒𝑥 (I −F, u∗) = (−1)
𝜎
, (41)
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where

𝜎 =
{

{

{

∑

𝜇∈𝐵∩𝑆𝑗

𝑚(𝑢
𝑖
) , 𝑖𝑓 𝐵 ∩ 𝑆

𝑝
̸= 0,

0, 𝑖𝑓 𝐵 ∩ 𝑆
𝑝
= 0.

(42)

In particular, if 𝐻(𝑑
𝑆
, 𝑑
𝐼
, 𝜇) > 0 for all 𝜇 ≥ 0, then 𝜎 = 0.

From Lemma 6, we see that to calculate the index of
index(I − F, u∗), the key step is to determine the range of
𝜇 for which𝐻(𝑑

𝑆
, 𝑑
𝐼
, 𝜇) < 0.

Theorem 7. Assume that 𝑅
𝑑

> max{1, (] + 𝑅
0
− 1)/𝑅

0
]}. If

4𝑅
0
+2]−𝑅

2

0
− ]𝑅
0
𝑅
𝑑
− ]𝑅
0
−3 > 0, (4𝑅

0
+2]−𝑅

2

0
− ]𝑅
0
𝑅
𝑑
−

]𝑅
0
− 3)/𝑑

𝑆
𝑅
0
∈ (𝜇
𝑗
, 𝜇
𝑗+1

) for some 𝑗 ≥ 1, and ∑
𝑗

𝑖=1
𝑚(𝜇
𝑖
) is

odd, then there exists a positive constant 𝑑∗ such that model (6)
has at least one nonconstant solution if 𝑑

𝐼
> 𝑑
∗.

Proof. Since 4𝑅
0

+ 2] − 𝑅
2

0
− ]𝑅
0
𝑅
𝑑

− ]𝑅
0

− 3 > 0,
equivalently, 𝑎

1
> 0, it follows that if 𝑑

𝐼
is large enough, then

(𝑑
𝑆
𝑎
4
− 𝑑
𝐼
𝑎
1
)
2

> 4𝑑
𝑆
𝑑
𝐼
𝜌 and 0 < 𝜇

−
(𝑑
𝑆
, 𝑑
𝐼
) < 𝜇

+
(𝑑
𝑆
, 𝑑
𝐼
).

Furthermore,

𝜇
−
(𝑑
𝑆
, 𝑑
𝐼
) → 0, 𝜇

+
(𝑑
𝑆
, 𝑑
𝐼
) →

𝑎
1

𝑑
𝑆

, as 𝑑
𝐼
→ ∞.

(43)

Since 𝑎
1
/𝑑
𝑆
∈ (𝜇
𝑗
, 𝜇
𝑗+1

) for some 𝑗 ≥ 1, there exists 𝑑
0
≫ 1

such that

𝜇
+
(𝑑
𝑆
, 𝑑
𝐼
) ∈ (𝜇

𝑗
, 𝜇
𝑗+1

) , 0 < 𝜇
−
(𝑑
𝑆
, 𝑑
𝐼
) < 𝜇
1
,

∀𝑑
𝐼
≥ 𝑑
0
.

(44)

ByTheorem 5, we know that there exists 𝑑 > 𝑑
0
such that

model (6) with diffusion coefficients 𝑑
𝑆
= 𝑑 and 𝑑

𝐼
≥ 𝑑 has

no nonconstant solutions.Moreover, we can choose𝑑 so large
that 𝑎

1
/𝑑 < 𝜇

1
. It follows that there exists 𝑑∗ > 𝑑 such that

0 < 𝜇
−
(𝑑
𝑆
, 𝑑
𝐼
) < 𝜇
+
(𝑑
𝑆
, 𝑑
𝐼
) < 𝜇
1
, ∀𝑑

𝐼
≥ 𝑑
∗
. (45)

We shall prove that, for any𝑑
𝐼
≥ 𝑑
∗, model (6) has at least one

nonconstant positive solution. On the contrary, suppose that
this assertion is not true for some 𝑑

∗

𝐼
> 𝑑
∗. In the following,

wewill derive a contradiction by using a homotopy argument.
By virtue of Theorems 3 and 4, there exists a positive

constant 𝐶 = 𝐶(Λ, 𝑑, 𝑑
𝑆
, 𝑑
∗
, 𝑑
𝐼

∗
) such that the positive

solution (𝑆(𝑥), 𝐼(𝑥)) of model (6) satisfies 𝐶−1 < 𝑆, 𝐼 < 𝐶.
Set

M = {(𝑆, 𝐼) ∈ 𝐶 (Ω) × 𝐶 (Ω) : 𝐶
−1

< 𝑆, 𝐼 < 𝐶, 𝑥 ∈ Ω} ,

(46)

and define

Φ : M × [0, 1] → 𝐶(Ω) × 𝐶 (Ω) (47)

by

Φ (u, 𝜃) = (I − Δ)
−1

{G (u, 𝜃) + u} , (48)

where

G (u, 𝜃)

=(

(𝜃𝑑
𝑆
+(1 − 𝜃) 𝑑)

−1
(]𝑅
𝑑 (𝑆+𝐼) (1− (𝑆+𝐼))−

𝑅
0
𝑆𝐼

𝑆 + 𝐼
− ]𝑆)

(𝜃𝑑
𝐼
+ (1 − 𝜃) 𝑑

∗
)
−1

(
𝑅
0
𝑆𝐼

𝑆 + 𝐼
− 𝐼)

) .

(49)

It is clear that finding the positive solution ofmodel (31) is
equivalent to finding the fixed point ofΦ(u, 1) inM. Further,
by virtue of the definition ofM, we have thatΦ(u, 𝜃) = 0 has
no fixed point in 𝜕M for all 0 ≤ 𝜃 ≤ 1.

Since Φ(u, 𝑡) is compact, the Leray-Schauder topological
degree deg(I − Φ(u, 𝜃),M, 0) is well defined. From the
invariance of Leray-Schauder degree at the homotopy, we
deduce

deg (I − Φ (u, 1) ,M, 0) = deg (I − Φ (u, 0) ,M, 0) . (50)

In view of 𝜇− ∈ (𝜇
𝑖
, 𝜇
𝑖+1

) and 𝜇
+

∈ (𝜇
𝑗
, 𝜇
𝑗+1

), we have
𝐵(𝑑
𝑆
, 𝑑
𝐼
)∩𝑆
𝑗
= {𝜇
𝑖+1

, 𝜇
𝑖+2

, . . . , 𝜇
𝑝
}. Clearly, I−Φ(u, 1) = I−F.

Thus, if model (6) has no other solutions except the constant
one u∗, then Lemma 6 shows that

deg (I − Φ (u, 1) ,M, 0)

= index (I −F, u∗) = (−1)
∑
𝑗

𝑖=1
𝑚(𝑢𝑖) = −1.

(51)

On the contrary, by the choice of 𝑑 and 𝑑
∗, we have that

𝐵(𝑑
1
, 𝑑
2
) ∩ 𝑆
𝑝
= 0 and u∗ is the only fixed point ofΦ(u, 0). It

therefore follows from Lemma 6 that

deg (I − Φ (u, 0) ,M, 0)

= index (I −F, u∗) = (−1)
0

= 1.

(52)

From (50)–(52), we get a contradiction.Therefore, there exists
a nonconstant solution of model (6). The proof is completed.

5. Discussion

In this paper, we investigate the disease’s dynamics through
studying the existence and nonexistence positive constant
steady states of a reaction-diffusion epidemic model. We give
a priori estimates for positive solutions to model and show
that the nonconstant positive steady states exist due to the
emergence of diffusion, which demonstrates that stationary
patterns can be found as a result of diffusion. The numerical
results about the stationary patterns for model (5) can be
found in [20].

On the other hand, there are plenty of papers which focus
on the pattern formation of reaction-diffusion population
models via standard linear analysis method and numerical
simulations. But there is little literature analytically concern-
ing the existence of a stationary patterns via theory and
methods of partial differential equations infrequently. The
methods and results in the present paper may enrich the
research of pattern formation in the spatial epidemic model.
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