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Recently, a worst-case 𝑂(1/𝑡) convergence rate was established for the Douglas-Rachford alternating direction method of
multipliers (ADMM) in an ergodic sense. The relaxed proximal point algorithm (PPA) is a generalization of the original PPA
which includes the Douglas-Rachford ADMM as a special case. In this paper, we provide a simple proof for the same convergence
rate of the relaxed PPA in both ergodic and nonergodic senses.

1. Introduction

The finite-dimensional variational inequality (VI), denoted
by VI(Ω, 𝐹), is to find a vector 𝑤∗ ∈ Ω such that

(𝑤 − 𝑤
∗

)
𝑇

𝐹 (𝑤
∗

) ≥ 0, ∀𝑤 ∈ Ω, (1)

where Ω is a nonempty closed convex set in R𝑛 and 𝐹 is
a monotone mapping from R𝑛 into itself. The solution set,
denoted by Ω∗ is assumed to be nonempty. We refer to [1–4]
for the pivotal roles of VIs in various fields such as economics,
transportation, and engineering.

As is well known, proximal point algorithm (PPA), which
was presented originally in [5] and mainly developed in [6,
7], is a well-developed approach to solving VI(Ω, 𝐹). Let 𝑤𝑘
be the current approximation of a solution of (1); then PPA
generates the new iterate 𝑤𝑘+1 ∈ Ω by solving the following
auxiliary VI:

(𝑤 − 𝑤
𝑘+1

)
𝑇

[𝐹 (𝑤
𝑘+1

) +
1

𝛽
(𝑤
𝑘+1

− 𝑤
𝑘

)] ≥ 0, (2)

where 𝛽 is a positive constant. Compared to themonotoneVI
(1), (2) is easier to handle since it is a stronglymonotoneVI. In
this paper, we focus on the relaxed proximal point algorithm
(PPA) proposed by Gol’shtein and Tret’yakov in [8], which

combines the PPA step (3a) with a relaxation step (3b) as
follows:

𝑤
𝑘

∈ Ω, (𝑤 − 𝑤
𝑘

)
𝑇

[𝐹 (𝑤
𝑘

) + 𝐺 (𝑤
𝑘

− 𝑤
𝑘

)] ≥ 0,

∀𝑤 ∈ Ω,

(3a)

𝑤
𝑘+1

:= 𝑤
𝑘

− 𝛾 (𝑤
𝑘

− 𝑤
𝑘

) , (3b)

where 𝛾 ∈ (0, 2) is a relaxation factor and 𝐺 is a symmetric
positive semidefinite matrix. In particular, 𝛾 is called an
under-relaxation factor when 𝛾 ∈ (0, 1) or an over-relaxation
factor when 𝛾 ∈ (1, 2), and the relaxed PPA reduces to
the original PPA (2) when 𝛾 = 1 and 𝐺 = (1/𝛽)𝐼. For
convenience, we still use the notation ‖𝑤‖2

𝐺
to represent the

nonnegative number 𝑤𝑇𝐺𝑤 in our analysis.
The Douglas-Rachford alternating direction methods of

multipliers (ADMM) scheme proposed by Glowinski and
Marrocco in [9] (see also [10]) is a commonplace tool to solve
the convexminimization problemwith linear constraints and
a separable objective function as follows:

min {𝜃
1
(𝑥) + 𝜃

2
(𝑦) | 𝐴𝑥 + 𝐵𝑦 = 𝑏, 𝑥 ∈ X, 𝑦 ∈ Y} , (4)

where 𝐴 ∈ R𝑚×𝑛1 , 𝐵 ∈ R𝑚×𝑛2 , 𝑏 ∈ R𝑚, X ⊆ R𝑛1 , and
Y ⊆ R𝑛2 are closed convex sets and 𝜃

1
: R𝑛1 → R and
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𝜃
2
: R𝑛2 → R are convex smooth functions. The iterative

scheme of ADMM for solving (4) at the 𝑘-th iteration runs as

𝑥
𝑘+1

∈ X,

(𝑥 − 𝑥
𝑘+1

)
𝑇

{∇𝜃
1
(𝑥
𝑘+1

)

− 𝐴
𝑇

[𝜆
𝑘

− 𝐻(𝐴𝑥
𝑘+1

+ 𝐵𝑦
𝑘

− 𝑏)]} ≥ 0,

∀𝑥 ∈ X,

(5a)

𝑦
𝑘+1

∈ Y,

(𝑦 − 𝑦
𝑘+1

)
𝑇

{∇𝜃
2
(𝑦
𝑘+1

)

− 𝐵
𝑇

[𝜆
𝑘

− 𝐻(𝐴𝑥
𝑘+1

+ 𝐵𝑦
𝑘+1

− 𝑏)]} ≥ 0,

∀𝑦 ∈ Y,

(5b)

𝜆
𝑘+1

:= 𝜆
𝑘

− 𝐻(𝐴𝑥
𝑘+1

+ 𝐵𝑦
𝑘+1

− 𝑏) , (5c)

where𝐻 := ℎ𝐼 and ℎ is a positive constant. As shown in [11],
ADMM can be regarded as an application of the relaxed PPA
with 𝛾 = 1 (i.e., the original PPA (2)) and

𝐺 = (

0 0 0

0 𝐵
𝑇

𝐻𝐵 −𝐵
𝑇

0 −𝐵 𝐻
−1

) . (6)

Without further assumption on 𝐵, the matrix 𝐺 defined
previously can be guaranteed as a symmetric and positive
semidefinite matrix. Recently, He and Yuan in [12] have
shown a worst-case 𝑂(1/𝑡) convergence rate of the ADMM
scheme (5a), (5b), and (5c) in an ergodic sense. You et al. in
[13] have proved the same convergence rate of the Lagrangian
PPA-based contraction methods with nonsymmetric linear
proximal term in an ergodic sense. The purpose of this paper
is to establish the𝑂(1/𝑡) convergence rate of the relaxed PPA
(3a) and (3b) in both ergodic and nonergodic senses.

2. Preliminaries

In this section, we review somepreliminarieswhich are useful
for further discussions. More specially, we recall a useful
characterization on Ω∗, the variational reformulation of (4),
the relationship of the ADMM in [9, 10], and the relaxed PPA
in [8] for solving this variational reformulation.

First, we provide a useful characterization on Ω
∗ as

Theorem 2.3.5 in [14] andTheorem 2.1 in [12].

Theorem 1. The solution set of VI(Ω, 𝐹) is convex, and it can
be characterized as

Ω
∗

= ⋂

𝑤∈Ω

{𝑤 ∈ Ω : (𝑤 − 𝑤)
𝑇

𝐹 (𝑤) ≥ 0} . (7)

Based onTheorem 1, 𝑤 ∈ Ω can be regarded as an 𝜀-approx-
imation solution of VI(Ω, 𝐹) if it satisfies

sup
𝑤∈D

{(𝑤 − 𝑤)
𝑇

𝐹 (𝑤)} ≤ 𝜀, (8)

whereD ⊆ Ω is some compact set. As Definition 1 in [15], we
can take

D = B
Ω
(𝑤) := {𝑤 ∈ Ω | ‖𝑤 − 𝑤‖ ≤ 1} . (9)

In the following, we will give a variational reformulation
of (4). It is easy to see that the model (4) can be characterized
by a variational inequality problem: find 𝑤∗ = (𝑥

∗

, 𝑦
∗

, 𝜆
∗

) ∈

Ω := X ×Y ×R𝑚 such that

VI (Ω, 𝐹) : (𝑤 − 𝑤
∗

)
𝑇

𝐹 (𝑤
∗

) ≥ 0, ∀𝑤 ∈ Ω, (10a)

where

𝑤 = (

𝑥

𝑦

𝜆

) , 𝐹 (𝑤) = (

∇𝜃
1
(𝑥) − 𝐴

𝑇

𝜆

∇𝜃
2
(𝑦) − 𝐵

𝑇

𝜆

𝐴𝑥 + 𝐵𝑦 − 𝑏

) . (10b)

Note that the mapping 𝐹 is monotone since 𝜃
1
and 𝜃

2
are

convex. As shown in [11], the ADMM scheme (5a), (5b),
and (5c) is identical with the following iterative scheme in a
cyclical sense:

𝑥
𝑘

∈ X, (𝑥 − 𝑥
𝑘

)
𝑇

{∇𝜃
1
(𝑥
𝑘

)

−𝐴
𝑇

[𝜆
𝑘

− 𝐻(𝐴𝑥
𝑘

+ 𝐵𝑦
𝑘

− 𝑏)]} ≥ 0,

∀𝑥 ∈ X,

(11a)

𝜆̃
𝑘

:= 𝜆
𝑘

− 𝐻(𝐴𝑥
𝑘

+ 𝐵𝑦
𝑘

− 𝑏) , (11b)

𝑦
𝑘

∈ Y, (𝑦 − 𝑦
𝑘

)
𝑇

{∇𝜃
2
(𝑦
𝑘

)

− 𝐵
𝑇

[𝜆̃
𝑘

− 𝐻(𝐴𝑥
𝑘

+ 𝐵𝑦
𝑘

− 𝑏)] } ≥ 0,

∀𝑦 ∈ Y,

(11c)

𝑤
𝑘+1

= 𝑤
𝑘

− (𝑤
𝑘

− 𝑤
𝑘

) . (12)

Based on the definition (6) of the matrix 𝐺, we can rewrite
(11a), (11b), (11c), and (12) as a special case of the relaxed PPA
with 𝛾 = 1 immediately.

Lemma 2. For given 𝑤𝑘, let 𝑤𝑘 be generated by the ADMM
scheme (11a), (11b), and (11c). Then, one has

𝑤
𝑘

∈ Ω, (𝑤 − 𝑤
𝑘

)
𝑇

{𝐹 (𝑤
𝑘

) + 𝐺 (𝑤
𝑘

− 𝑤
𝑘

)} ≥ 0,

∀𝑤 ∈ Ω,

(13)

where 𝐹 and 𝐺 are defined by (10b) and (6), respectively.
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3. The Contraction of the Relaxed Proximal
Point Algorithm

In this section, we prove the contraction of the relaxed PPA.
First, we give an important lemma.

Lemma3. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by the
relaxed PPA (3a) and (3b), and let 𝐺 be a symmetric positive
semidefinite matrix. Then, one has

(𝑤 − 𝑤
𝑘

)
𝑇

𝐹 (𝑤
𝑘

)

≥
1

2𝛾
(
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘+1
󵄩󵄩󵄩󵄩󵄩

2

𝐺

−
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

)

+ (1 −
𝛾

2
)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

, ∀𝑤 ∈ Ω.

(14)

Proof. First, using (3a), we have

(𝑤 − 𝑤
𝑘

)
𝑇

𝐹 (𝑤
𝑘

) ≥ (𝑤 − 𝑤
𝑘

)
𝑇

𝐺(𝑤
𝑘

− 𝑤
𝑘

) , ∀𝑤 ∈ Ω.

(15)

Since 𝑤𝑘 − 𝑤𝑘 = (𝑤𝑘 − 𝑤𝑘+1)/𝛾 (see (3b)), we have

(𝑤 − 𝑤
𝑘

)
𝑇

𝐺(𝑤
𝑘

− 𝑤
𝑘

) =
1

𝛾
(𝑤 − 𝑤

𝑘

)
𝑇

𝐺(𝑤
𝑘

− 𝑤
𝑘+1

) .

(16)

Thus, it suffices to show that

(𝑤 − 𝑤
𝑘

)
𝑇

𝐺(𝑤
𝑘

− 𝑤
𝑘+1

)

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘+1
󵄩󵄩󵄩󵄩󵄩

2

𝐺

−
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

)

+ 𝛾 (1 −
𝛾

2
)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

.

(17)

By setting 𝑎 = 𝑤, 𝑏 = 𝑤𝑘, 𝑐 = 𝑤𝑘, and 𝑑 = 𝑤𝑘+1 in the identity

(𝑎 − 𝑏)
𝑇

𝐺 (𝑐 − 𝑑)

=
1

2
(‖𝑎 − 𝑑‖

2

𝐺
− ‖𝑎 − 𝑐‖

2

𝐺
)

+
1

2
(‖𝑐 − 𝑏‖

2

𝐺
− ‖𝑑 − 𝑏‖

2

𝐺
) ,

(18)

we derive that

(𝑤 − 𝑤
𝑘

)
𝑇

𝐺(𝑤
𝑘

− 𝑤
𝑘+1

)

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘+1
󵄩󵄩󵄩󵄩󵄩

2

𝐺

−
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

) .

(19)

On the other hand, using (3b), we have

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

=
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

−
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘

− 𝑤
𝑘

) − (𝑤
𝑘

− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

=
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

−
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘

− 𝑤
𝑘

) − 𝛾 (𝑤
𝑘

− 𝑤
𝑘

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

= 𝛾 (2 − 𝛾)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

.

(20)

Combining the last two equations, we obtain (17). The asser-
tion (14) follows immediately. The proof is completed.

With the proved lemma, we are now ready to show the
contraction of the relaxed PPA (3a) and (3b).

Theorem 4. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by
the relaxed PPA (3a) and (3b), and let𝐺 be a symmetric positive
semidefinite matrix. Then, for any 𝑘 ≥ 0, one has

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐺

− 𝛾 (2 − 𝛾)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

, ∀𝑤
∗

∈ Ω
∗

.

(21)

Proof. Setting 𝑤 = 𝑤
∗ in (14), we get

2𝛾(𝑤
∗

− 𝑤
𝑘

)
𝑇

𝐹 (𝑤
𝑘

)

≥
󵄩󵄩󵄩󵄩󵄩
𝑤
∗

− 𝑤
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐺

−
󵄩󵄩󵄩󵄩󵄩
𝑤
∗

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

+ 𝛾 (2 − 𝛾)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

.

(22)

On the other hand, since 𝐹 is monotone and 𝑤∗ ∈ Ω
∗, we

have

0 ≥ (𝑤
∗

− 𝑤
𝑘

)
𝑇

𝐹 (𝑤
∗

) ≥ (𝑤
∗

− 𝑤
𝑘

)
𝑇

𝐹 (𝑤
𝑘

) . (23)

It follows from the previous two inequalities that

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐺

− 𝛾 (2 − 𝛾)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

. (24)

The proof is completed.

4. Ergodic Worst-Case 𝑂(1/𝑡)
Convergence Rate

In this section, we will establish an ergodic worst-case𝑂(1/𝑡)
convergence rate for the relaxed PPA in the sense that after 𝑡
iterations of such an algorithm, we can find 𝑤 ∈ Ω such that

(𝑤 − 𝑤)
𝑇

𝐹 (𝑤) ≤ 𝜀, ∀𝑤 ∈ B
Ω
(𝑤) , (25)

with 𝜀 = 𝑂(1/𝑡) andB
Ω
(𝑤) := {𝑤 ∈ Ω | ‖𝑤 − 𝑤‖

𝐺
≤ 1}.
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Theorem 5. Let {𝑤𝑘} and {𝑤𝑘} be the sequences generated by
the relaxed PPA (3a) and (3b), and let𝐺 be a symmetric positive
semidefinite matrix. For any integer number 𝑡 > 0, let

𝑤
𝑡
:=

1

𝑡 + 1

𝑡

∑

𝑘=0

𝑤
𝑘

. (26)

Then, one has 𝑤
𝑡
∈ Ω and

(𝑤
𝑡
− 𝑤)
𝑇

𝐹 (𝑤) ≤
1

2𝛾 (𝑡 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑤
0

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺

, ∀𝑤 ∈ Ω. (27)

Proof. From (14), we have

(𝑤 − 𝑤
𝑘

)
𝑇

𝐹 (𝑤
𝑘

) +
1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥
1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺

, ∀𝑤 ∈ Ω.

(28)

Since 𝐹 is monotone, from the previous inequality, we have

(𝑤 − 𝑤
𝑘

)
𝑇

𝐹 (𝑤) +
1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥
1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺

, ∀𝑤 ∈ Ω.

(29)

Summing the inequality (29) over 𝑘 = 0, 1, . . . , 𝑡, we obtain

[(𝑡 + 1)𝑤 − (

𝑡

∑

𝑘=0

𝑤
𝑘

)]

𝑇

𝐹 (𝑤) +
1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
0

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥
1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑡+1

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥ 0, ∀𝑤 ∈ Ω.

(30)

Since ∑𝑡
𝑘=0

1/(𝑡 + 1) = 1, 𝑤
𝑡
is a convex combination of

𝑤
0

, 𝑤
1

, . . . , 𝑤
𝑡 and thus 𝑤

𝑡
∈ Ω. Using the notation of 𝑤

𝑡
, we

derive

(𝑤 − 𝑤
𝑡
)
𝑇

𝐹 (𝑤) +
1

2𝛾 (𝑡 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑤
0

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥ 0, ∀𝑤 ∈ Ω.

(31)

The assertion (27) follows from the previous inequality
immediately.

It follows from Theorem 4 that the sequence {‖𝑤𝑘‖
𝐺
} is

bounded. According to (21), the sequence {‖𝑤𝑘‖
𝐺
} is also

bounded. Therefore, there exists a constant𝐷 > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩𝐺

≤ 𝐷,
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩𝐺

≤ 𝐷, ∀𝑘 ≥ 0. (32)

Recall that𝑤
𝑡
is the average of {𝑤0, 𝑤1, . . . , 𝑤𝑡}.Thus, we have

‖𝑤
𝑡
‖
𝐺
≤ 𝐷. For any𝑤 ∈ B

Ω
(𝑤
𝑡
) := {𝑤 ∈ Ω | ‖𝑤 − 𝑤

𝑡
‖
𝐺
≤ 1},

we get

(𝑤
𝑡
− 𝑤)
𝑇

𝐹 (𝑤)

≤
1

2𝛾 (𝑡 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑤
0

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
1

2𝛾 (𝑡 + 1)
(
󵄩󵄩󵄩󵄩󵄩
𝑤
0

− 𝑤
𝑡

󵄩󵄩󵄩󵄩󵄩𝐺
+
󵄩󵄩󵄩󵄩𝑤𝑡 − 𝑤

󵄩󵄩󵄩󵄩𝐺)
2

≤
1

2𝛾 (𝑡 + 1)
(
󵄩󵄩󵄩󵄩󵄩
𝑤
0
󵄩󵄩󵄩󵄩󵄩𝐺
+
󵄩󵄩󵄩󵄩𝑤𝑡

󵄩󵄩󵄩󵄩𝐺 +
󵄩󵄩󵄩󵄩𝑤𝑡 − 𝑤

󵄩󵄩󵄩󵄩𝐺)
2

≤
(2𝐷 + 1)

2

2𝛾 (𝑡 + 1)
.

(33)

Thus, for any given 𝜀 > 0, after at most 𝑡 := ⌈((2𝐷+1)2/2𝛾𝜀)−
1⌉ iterations, we have

(𝑤
𝑡
− 𝑤)
𝑇

𝐹 (𝑤) ≤ 𝜀, ∀𝑤 ∈ B
Ω
(𝑤
𝑡
) , (34)

which means that 𝑤
𝑡
is an approximate solution of VI(Ω, 𝐹)

with an accuracy of 𝑂(1/𝑡). That is, a worst-case 𝑂(1/𝑡)

convergence rate of the relaxed PPA in an ergodic sense is
established.

Note that this convergence rate is in an ergodic sense
and 𝑤

𝑡
is a convex combination of the previous vectors

{𝑤
0

, 𝑤
1

, . . . , 𝑤
𝑡

} with equal weights. One may ask if we can
establish the same convergence rate in a nonergodic sense
directly for the sequence {𝑤𝑘} generated by the relaxed PPA
(3a) and (3b), and this is themain purpose of the next section.

5. Nonergodic Worst-Case 𝑂(1/𝑡)
Convergence Rate

This section shows that the relaxed PPA has a worst-case
𝑂(1/𝑡) convergence rate in a nonergodic sense. First, we
establish two important inequalities in the following lemmas.

Lemma6. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by the
relaxed PPA (3a) and (3b), and let 𝐺 be a symmetric positive
semidefinite matrix. Then, one has

(𝑤
𝑘

− 𝑤
𝑘+1

)
𝑇

𝐺 [(𝑤
𝑘

− 𝑤
𝑘+1

) − (𝑤
𝑘

− 𝑤
𝑘+1

)] ≥ 0. (35)

Proof. Setting 𝑤 = 𝑤
𝑘+1 in (3a), we have

(𝑤
𝑘+1

− 𝑤
𝑘

)
𝑇

[𝐹 (𝑤
𝑘

) + 𝐺 (𝑤
𝑘

− 𝑤
𝑘

)] ≥ 0. (36)

Note that (3a) is also true for 𝑘 := 𝑘 + 1, and thus we have

(𝑤 − 𝑤
𝑘+1

)
𝑇

[𝐹 (𝑤
𝑘+1

) + 𝐺 (𝑤
𝑘+1

− 𝑤
𝑘+1

)] ≥ 0,

∀𝑤 ∈ Ω.

(37)
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Setting 𝑤 = 𝑤
𝑘 in the previous inequality, we obtain

(𝑤
𝑘

− 𝑤
𝑘+1

)
𝑇

[𝐹 (𝑤
𝑘+1

) + 𝐺 (𝑤
𝑘+1

− 𝑤
𝑘+1

)] ≥ 0. (38)

Adding (36) and (38) and using themonotonicity of 𝐹, we get
(35) immediately.

Lemma7. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by the
relaxed PPA (3a) and (3b), and let 𝐺 be a symmetric positive
semidefinite matrix. Then, one has

(𝑤
𝑘

− 𝑤
𝑘

)
𝑇

𝐺{(𝑤
𝑘

− 𝑤
𝑘

) − (𝑤
𝑘+1

− 𝑤
𝑘+1

)}

≥
1

𝛾

󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘

− 𝑤
𝑘

) − (𝑤
𝑘+1

− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

.

(39)

Proof. First, adding the term

{(𝑤
𝑘

− 𝑤
𝑘+1

) − (𝑤
𝑘

− 𝑤
𝑘+1

)}
𝑇

× 𝐺 {(𝑤
𝑘

− 𝑤
𝑘+1

) − (𝑤
𝑘

− 𝑤
𝑘+1

)}

(40)

to the both sides of (35), we get

(𝑤
𝑘

− 𝑤
𝑘+1

)
𝑇

𝐺{(𝑤
𝑘

− 𝑤
𝑘+1

) − (𝑤
𝑘

− 𝑤
𝑘+1

)}

≥
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘

− 𝑤
𝑘+1

) − (𝑤
𝑘

− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

.

(41)

Reordering (𝑤𝑘−𝑤𝑘+1)−(𝑤𝑘−𝑤𝑘+1) in the previous inequality
to (𝑤𝑘 − 𝑤𝑘) − (𝑤𝑘+1 − 𝑤𝑘+1), we get

(𝑤
𝑘

− 𝑤
𝑘+1

)
𝑇

𝐺{(𝑤
𝑘

− 𝑤
𝑘

) − (𝑤
𝑘+1

− 𝑤
𝑘+1

)}

≥
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘

− 𝑤
𝑘

) − (𝑤
𝑘+1

− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

.

(42)

Substituting the term 𝑤
𝑘

− 𝑤
𝑘+1

= 𝛾(𝑤
𝑘

− 𝑤
𝑘

) (see (3b)) into
the left-hand side of the last inequality, we obtain (39). The
proof is completed.

Next, we prove that {‖𝑤𝑘 − 𝑤𝑘‖
𝐺
} is monotonically non-

increasing.

Theorem 8. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by
the relaxed PPA (3a) and (3b), and let𝐺 be a symmetric positive
semidefinite matrix. Then, one has

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
𝑘+1

󵄩󵄩󵄩󵄩󵄩𝐺
≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩𝐺
, ∀𝑘 ≥ 0. (43)

Proof. Setting 𝑎 = 𝑤𝑘−𝑤𝑘 and 𝑏 = 𝑤𝑘+1−𝑤𝑘+1 in the identity

‖𝑎‖
2

𝐺
− ‖𝑏‖
2

𝐺
= 2𝑎
𝑇

𝐺 (𝑎 − 𝑏) − ‖𝑎 − 𝑏‖
2

𝐺
, (44)

we obtain
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐺

= 2(𝑤
𝑘

− 𝑤
𝑘

)
𝑇

𝐺{(𝑤
𝑘

− 𝑤
𝑘

) − (𝑤
𝑘+1

− 𝑤
𝑘+1

)}

−
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘

− 𝑤
𝑘

) − (𝑤
𝑘+1

− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

.

(45)

Inserting (39) into the first term of the right-hand side of the
last equality and using 𝛾 ∈ (0, 2), we obtain

2(𝑤
𝑘

− 𝑤
𝑘

)
𝑇

𝐺{(𝑤
𝑘

− 𝑤
𝑘

) − (𝑤
𝑘+1

− 𝑤
𝑘+1

)}

−
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘

− 𝑤
𝑘

) − (𝑤
𝑘+1

− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥
2 − 𝛾

𝛾

󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘

− 𝑤
𝑘

) − (𝑤
𝑘+1

− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥ 0.

(46)

The assertion (43) follows immediately.

With Theorems 4 and 8, we can prove the worst-case
𝑂(1/𝑡) convergence rate in a nonergodic sense for the relaxed
PPA.

Theorem 9. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by
the relaxed PPA (3a) and (3b), and let𝐺 be a symmetric positive
semidefinite matrix. Then, for any integer 𝑡 ≥ 0, one has

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑡

− 𝑤
𝑡
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
1

𝛾 (2 − 𝛾) (𝑡 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑤
0

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐺

, ∀𝑤
∗

∈ Ω
∗

.

(47)

Proof. Summing the inequality (21) over 𝑘 = 0, 1, . . . , 𝑡, we
obtain

𝛾 (2 − 𝛾)

𝑡

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
0

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐺

−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑡+1

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
0

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐺

, ∀𝑤
∗

∈ Ω
∗

.

(48)

According to Theorem 8, the sequence {‖𝑤
𝑘

− 𝑤
𝑘

‖
𝐺
} is

monotonically nonincreasing. Therefore, we have

(𝑡 + 1)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑡

− 𝑤
𝑡
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤

𝑡

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝐺

. (49)

The assertion (47) follows from (48) and (49) immediately.

Note that Ω∗ is convex and closed (see Theorem 1). Let
𝑑 := inf{‖𝑤0 − 𝑤∗‖

𝐺
| 𝑤
∗

∈ Ω
∗

}. Then, for any given 𝜀 > 0,
Theorem 9 shows that the relaxed PPA (3a) and (3b) needs at
most ⌈𝑑2/(𝜀𝛾(2−𝛾))−1⌉ iterations to ensure that ‖𝑤𝑡 − 𝑤𝑡‖2

𝐺
≤

𝜀. Recall that 𝑤𝑡 is a solution of VI(Ω, 𝐹) if ‖𝑤𝑡 − 𝑤𝑡‖2
𝐺
= 0.

In other words, if ‖𝑤𝑡 − 𝑤𝑡‖2
𝐺
= 0, we have 𝐺(𝑤𝑡 − 𝑤𝑡) = 0

since 𝐺 is a positive semidefinite matrix. And thus from (3a),
it follows that

(𝑤 − 𝑤
𝑡

)
𝑇

𝐹 (𝑤
𝑡

) ≥ 0, ∀𝑤 ∈ Ω, (50)

whichmeans that𝑤𝑡 is a solution of VI(Ω, 𝐹) according to (1).
A worst-case 𝑂(1/𝑡) convergence rate in a nonergodic sense
for the relaxed PPA (3a) and (3b) is thus established from
Theorem 9.
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6. Concluding Remarks

This paper established theworst-case𝑂(1/𝑡) convergence rate
in both ergodic and nonergodic senses for the relaxed PPA.
Recall that ADMM is a primal application of the relaxed PPA
with 𝛾 = 1. And thus ADMM also has the same worst-
case𝑂(1/𝑡) convergence rate in both ergodic and nonergodic
senses.
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