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We use variational methods and iterative methods to investigate the solutions of impulsive differential equations with nonlinear
derivative dependence. The conditions for the existence of solutions are established. The main results are also demonstrated with
examples.

1. Introduction

Many dynamical systems have an impulsive dynamical
behavior due to abrupt changes at certain instants during the
evolution process. The mathematical description of these
phenomena leads to impulsive differential equations. Recent
development in this field has beenmotivated bymany applied
problems, such as control theory, population dynamics, and
medicine [1–9].

We consider the following nonlinear Dirichlet boundary
value problems for impulsive differential equations:
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where 𝑝 ≥ 2, 0 = 𝑡

0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑙
< 𝑡

𝑙+1
= 𝑇,

𝑔 ∈ 𝐿

∞
[0, 𝑇], 𝑓 : [0, 𝑇] × 𝑅 × 𝑅 → 𝑅 is continuous, and

𝐼

𝑗
: 𝑅 → 𝑅, 𝑗 = 1, 2, . . . , 𝑙, are continuous.

The characteristic of (1) is the presence of the first order
derivative in the nonlinearity term. Most of the results con-
cerning the existence of solutions of these equations are
obtained using upper and lower solutions methods, coinci-
dence degree theory, and fixed point theorems [10–14]. How-
ever, to the best of our knowledge, there are few papers con-
cernedwith the existence of solutions for impulsive boundary
value problems like problem (1) by using variationalmethods.
Motivated by [15, 16], in this paper we will fill the gap in this
area.

When there is no derivative in the nonlinearity term,
problem (1) has been extensively studied by [17–23], using
variational methods. We know, contrary to these equations,
(1) is not variational and the well-developed critical point
theory is of no avail for, at least, a direct attack to problem
(1). The technique used in this paper consists of, associating
with problem (1), a family of the followingDirichlet boundary
value problems with no dependence on the derivative of the
solution.Namely, for each𝑤 ∈ 𝑊

1,𝑝
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, we consider the problem
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𝑢 (0) = 𝑢 (𝑇) = 0.

(2)
Now problem (2) is variational and we can treat it by varia-
tional methods.

In this paper, we need the following conditions.
(𝑓
1
) 𝑓 : [0, 𝑇] × 𝑅 × 𝑅 → 𝑅 is measurable in 𝑡 ∈ [0, 𝑇] for
every (𝑥, 𝜁) ∈ 𝑅 × 𝑅 and continuous in (𝑥, 𝜁) ∈ 𝑅 × 𝑅
for a.e. 𝑡 ∈ [0, 𝑇].

(𝑓
2
) 𝑓(𝑡, 𝑥, 𝜁) = 𝑜(|𝑥|

𝑝−1
) as 𝑥 → 0 uniformly for 𝑡 ∈

[0, 𝑇] and 𝜁 ∈ 𝑅 and 𝑓(𝑡, 𝑥, 0) ̸= 0 for 𝑡 ∈ [0, 𝑇] and
𝑥 ∈ 𝑅.

(𝑓
3
) There exist constants𝐶 > 0 and 𝑟 ∈ (𝑝, +∞) such that
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≤ 𝐶 (1 + |𝑥|

𝑟−1
) , ∀𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝑅, 𝜁 ∈ 𝑅.

(3)

(𝑓
4
) There exist constants 𝜇 > 𝑝 and 𝑥

0
> 0 such that

0 < 𝜇𝐹 (𝑡, 𝑥, 𝜁) ≤ 𝑥𝑓 (𝑡, 𝑥, 𝜁) ,

∀𝑡 ∈ [0, 𝑇] , |𝑥| ≥ 𝑥

0
, 𝜁 ∈ 𝑅,

(4)

where 𝐹(𝑡, 𝑥, 𝜁) = ∫𝑥
0
𝑓(𝑡, 𝑠, 𝜁)𝑑𝑠.

(𝑓
5
) There exist constants 𝑎, 𝑏 > 0 such that

𝐹 (𝑡, 𝑥, 𝜁) ≥ 𝑎|𝑥|

𝜇
− 𝑏, ∀𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝑅, 𝜁 ∈ 𝑅. (5)

(𝑓
6
) The function 𝑓 satisfies the following conditions:
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1
] , 𝜁, 𝜁


∈ 𝑅,

(6)

where 𝜌
1
is a constant.

(𝐼
1
) 𝐼
𝑗
(𝑗 = 1, 2, . . . , 𝑙) are odd and nondecreasing, and

there exist constants 𝑎
𝑗
> 0, 𝑏

𝑗
> 0, and 𝑟

𝑗
∈ [0, 𝑝 −

1), 𝑗 = 1, 2, . . . , 𝑙 such that
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𝑗
(𝑢)











≤ 𝑎

𝑗
+ 𝑏

𝑗
|𝑢|

𝑟𝑗
, for 𝑗 = 1, 2, . . . , 𝑙. (7)

(𝐼
2
) There exists 0 < 𝜃 ≤ 𝑝 such that

𝜃∫

𝑢

0

𝐼

𝑗
(𝑠) 𝑑𝑠 ≥ 𝑢𝐼

𝑗
(𝑢) > 0, ∀𝑢 > 0. (8)

(𝐼
3
) |𝐼
𝑗
(𝑢) − 𝐼

𝑗
(V)| ≤ 𝛼

𝑗
|𝑢 − V|𝑝−1, for all 𝑢, V ∈ [−𝜌

1
, 𝜌

1
],

𝑗 = 1, 2, . . . , 𝑙.
The paper is organized as follows: Section 2 is the prelimi-

naries of this paper, Section 3 is devoted to show the solvabil-
ity of problem (2), and Section 4 will show the solvability of
problem (1).

2. Preliminaries

Firstly, we recall some facts which will be used in the proof of
our main result. It has been shown, for instance, in [16] that
the set of all eigenvalues of the following problem
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Each eigenvalue 𝜆
𝑘
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We need the following Lemmas.

Lemma 1 (see [24, Lemma 2.4]). If ess inf
𝑡∈[0,𝑇]

𝑔(𝑡) = 𝑚 >

−𝜆

1
, then the norms ‖ ⋅ ‖ and ‖ ⋅ ‖

𝑊
1,𝑝

0
are equivalent.

Lemma2 (see [24, Lemma 2.5]). There exists𝐶
2
> 0 such that

if 𝑢 ∈ 𝑊1,𝑝
0

, then
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2
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Lemma 3 (see [24, Lemma 2.6]). Let 𝑢 ∈ 𝑊

1,𝑝

0
(0, 𝑇); then

there exists 𝐶
1
∈ (0, 1) such that

‖𝑢‖

𝑝
≤

1

𝑝
√
𝜆

1
𝐶

1

‖𝑢‖ . (18)

For 𝑢 ∈ 𝑊1,𝑝(0, 𝑇), we have that 𝑢 and 𝑢 are both abso-
lutely continuous. Hence Δ𝑢(𝑡) = 𝑢(𝑡+) − 𝑢(𝑡−) = 0 for any
𝑡 ∈ [0, 𝑇]. If 𝑢 ∈ 𝑊1,𝑝

0
(0, 𝑇), then 𝑢 is absolutely continuous.

In this case, Δ𝑢(𝑡) = 𝑢


(𝑡

+
) − 𝑢


(𝑡

−
) = 0 may not hold

for some 𝑡 ∈ [0, 𝑇]. It leads to the impulsive effects. As a
consequence, we need to introduce a different concept of
solution.

Definition 4. A function
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, . . . , 𝑡
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is said to be a classical solution of problem (1) if 𝑢 satisfies the
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1
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, . . . , 𝑡
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𝑗
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and the boundary condition 𝑢(0) = 𝑢(𝑇) = 0.
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Definition 5. We say that a function 𝑢 ∈ 𝑊1,𝑝
0
(0, 𝑇) is a weak

solution of problem (1) if the identity

∫
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𝐼

𝑗
(𝑢 (𝑡

𝑗
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𝑗
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𝑇
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𝑓 (𝑡, 𝑢 (𝑡) , 𝑢



(𝑡)) V (𝑡) 𝑑𝑡

(24)

holds for any V ∈ 𝑊1,𝑝
0
(0, 𝑇).

Proposition 6. Under the hypotheses (𝑓
1
) and (𝑓

2
), the func-

tional 𝜑
𝑤
: 𝑊

1,𝑝

0
(0, 𝑇) → 𝑅 defined by

𝜑

𝑤
(𝑢) =

1

𝑝

‖𝑢‖

𝑝
− ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡) , 𝑤



(𝑡)) 𝑑𝑡
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𝑙

∑

𝑗=1

∫

𝑢(𝑡𝑗)

0

𝐼

𝑗
(𝑠) 𝑑𝑠

(25)
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𝑙
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𝐼

𝑗
(𝑢 (𝑡

𝑗
)) V (𝑡

𝑗
)

− ∫

𝑇
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𝑓 (𝑡, 𝑢 (𝑡) , 𝑤



(𝑡)) V (𝑡) 𝑑𝑡

(26)

for any V ∈ 𝑊

1,𝑝

0
(0, 𝑇). Moreover, the critical point of 𝜑

𝑤
is a

classical solutions of problem (2).
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Proof. Using the assumptions (𝑓
1
), we can obtain the conti-

nuity and differentiability of 𝜑
𝑤
and that 𝜑

𝑤
: 𝑊

1,𝑝

0
(0, 𝑇) →

(𝑊

1,𝑝

0
(0, 𝑇))

∗

is defined by
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𝑢 (𝑡) V (𝑡) 𝑑𝑡

+

𝑙

∑

𝑗=1

𝐼

𝑗
(𝑢 (𝑡

𝑗
)) V (𝑡

𝑗
)

− ∫

𝑇

0

𝑓 (𝑡, 𝑢 (𝑡) , 𝑤



(𝑡)) V (𝑡) 𝑑𝑡

(27)

for any V ∈ 𝑊1,𝑝
0
(0, 𝑇). It follows that the critical point of 𝜑

𝑤

is the weak solution of (2). Moreover, it is a classical solution
of problem (2).

Evidently, 𝑢(0) = 𝑢(𝑇) = 0 since 𝑢 ∈ 𝑊

1,𝑝

0
(0, 𝑇). By the

definition of weak solution, we have

∫

𝑇

0











𝑢



(𝑡)











𝑝−2

𝑢



(𝑡) V (𝑡) 𝑑𝑡 + ∫
𝑇

0

𝑔 (𝑡) |𝑢 (𝑡)|

𝑝−2
𝑢 (𝑡) V (𝑡) 𝑑𝑡

+

𝑙

∑

𝑗=1

𝐼

𝑗
(𝑢 (𝑡

𝑗
)) V (𝑡

𝑗
) − ∫

𝑇

0

𝑓 (𝑡, 𝑢 (𝑡) , 𝑤



(𝑡)) V (𝑡) 𝑑𝑡 = 0.

(28)

Choose V ∈ 𝑊

1,𝑝

0
(0, 𝑇) with V(𝑡) = 0 for every 𝑡 ∈ [0, 𝑡

𝑗
]⋃

[𝑡

𝑗+1
, 𝑇]; then

∫

𝑡𝑗+1

𝑡𝑗











𝑢



(𝑡)











𝑝−2

𝑢



(𝑡) V (𝑡) 𝑑𝑡

+ ∫

𝑡𝑗+1

𝑡𝑗

𝑔 (𝑡) |𝑢 (𝑡)|

𝑝−2
𝑢 (𝑡) V (𝑡) 𝑑𝑡

= ∫

𝑡𝑗+1

𝑡𝑗

𝑓 (𝑡, 𝑢 (𝑡) , 𝑤



(𝑡)) V (𝑡) 𝑑𝑡.

(29)

This implies that

− (











𝑢



(𝑡)











𝑝−2

𝑢



(𝑡))



+ 𝑔 (𝑡) |𝑢 (𝑡)|

𝑝−2
𝑢 (𝑡)

= 𝑓 (𝑡, 𝑢 (𝑡) , 𝑤



(𝑡)) , a.e. 𝑡 ∈ (𝑡
𝑗
, 𝑡

𝑗+1
) .

(30)

Hence, |𝑢|𝑝−2𝑢 ∈ 𝑊

1,∞
(𝑡

𝑗
, 𝑡

𝑗+1
) for every 𝑗 = 1, 2, . . . , 𝑙.

The impulsive condition in (2) is satisfied.This completes the
proof.

We will obtain the critical points of 𝜑
𝑤

by using the
Mountain Pass Theorem. Therefore, we state this theorem
precisely.

Lemma 7 (see [25]). Let 𝑋 be a real Banach space and 𝐼 ∈

𝐶


(𝑋, 𝑅) satisfy (PS)-condition. Suppose that 𝐼 satisfies the fol-

lowing conditions:
(i) 𝐼(0) = 0;
(ii) there exists constants 𝜌, 𝛼 > 0 such that 𝐼|

𝜕𝐵𝜌(0)
≥ 𝛼;

(iii) there exists 𝑒 ∈ 𝑋 \ 𝐵

𝜌
(0) such that 𝐼(𝑒) ≤ 0.

Then 𝐼 possesses a critical value 𝑐 ≥ 𝛼 given by

𝑐 = inf
𝑔∈Γ

max
𝑠∈[0,1]

𝐼 (𝑔 (𝑠)) , (31)

where 𝐵
𝜌
(0) is an open ball in 𝑋 of radius 𝜌 centered at 0 and

Γ = {𝑔 ∈ 𝐶 ([0, 1] , 𝑋) : 𝑔 (0) = 0, 𝑔 (1) = 𝑒} . (32)

3. The Solvability of (2)
Theorem 8. Suppose that (𝑓

1
)–(𝑓
5
) and (𝐼

1
) hold; then there

exist positive constants 𝑑
1
and 𝑑

2
such that, for each 𝑤 ∈

𝑊

1,𝑝

0
(0, 𝑇), problem (2) has one solution 𝑢

𝑤
such that 𝑑

1
≤

‖𝑢

𝑤
‖ ≤ 𝑑

2
.

Proof. (I) We show that 𝜑
𝑤
satisfies the (PS)-condition.

Assume that {𝑢
𝑛
}

𝑛∈N ⊂ 𝑊

1,𝑝

0
(0, 𝑇) is a sequence such that

{𝜑

𝑤
(𝑢

𝑛
)}

𝑛∈N is bounded and 𝜑
𝑤
(𝑢

𝑛
) → 0 as 𝑛 → +∞. We

will prove that the sequence {𝑢
𝑛
}

𝑛∈N is bounded. Obviously,
there exists a constant 𝐶

3
> 0 such that









𝜑

𝑤
(𝑢

𝑛
)









≤ 𝐶

3
,











𝜑



𝑤
(𝑢

𝑛
)











≤ 𝐶

3
for 𝑛 ∈ N. (33)

We set

𝑚

0
= max {𝑎

1
, 𝑎

2
, . . . , 𝑎

𝑙
} , 𝑀

0
= max {𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑙
} .

(34)

From (17), (25), (26), and (33), (𝑓
4
), and (𝐼

1
), we have

𝜇𝜑

𝑤
(𝑢

𝑛
) − 𝜑



𝑤
(𝑢

𝑛
) 𝑢

𝑛

= (

𝜇

𝑝

− 1)









𝑢

𝑛









𝑝

− ∫

𝑇

0

(𝜇𝐹 (𝑡, 𝑢

𝑛
, 𝑤


) − 𝑓 (𝑡, 𝑢

𝑛
, 𝑤


) 𝑢

𝑛
) 𝑑𝑡

+

𝑙

∑

𝑗=1

[𝜇∫

𝑢𝑛(𝑡𝑗)

0

𝐼

𝑗
(𝑠) 𝑑𝑠 − 𝐼

𝑗
(𝑢

𝑛
(𝑡

𝑗
)) 𝑢

𝑛
(𝑡

𝑗
)]

≥ (

𝜇

𝑝

− 1)









𝑢

𝑛









𝑝

−

𝑙

∑

𝑗=1

[(𝑎

𝑗
+ 𝑏

𝑗











𝑢

𝑛
(𝑡

𝑗
)











𝑟𝑗
) 𝑢

𝑛
(𝑡

𝑗
)]

−

𝑙

∑

𝑗=1

(𝑎

𝑗
+ 𝑏

𝑗
|𝑠|

𝑟𝑗
) 𝑑𝑠 − 𝐶

4

≥ (

𝜇

𝑝

− 1)









𝑢

𝑛









𝑝

− (𝜇 + 1)(𝐶

2
𝑙𝑚

0









𝑢

𝑛









+ 𝑀

0

𝑙

∑

𝑗=1

𝐶

𝑟𝑗+1

2









𝑢

𝑛









𝑟𝑗+1
) − 𝐶

4
.

(35)

By 𝑝 > 𝑟
𝑗
+ 1, we obtain that {𝑢

𝑛
} is bounded in𝑊1,𝑝

0
(0, 𝑇).
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Since𝑊1,𝑝
0
(0, 𝑇) is a reflexive Banach space, passing to a

subsequence if necessary, we can assume that

𝑢

𝑛
⇀ 𝑢 in 𝑊

1,𝑝

0
(0, 𝑇) ,

𝑢

𝑛
→ 𝑢 in 𝐿

𝑝

(0, 𝑇) ,

𝑢

𝑛
→ 𝑢 uniformly in 𝐶 [0, 𝑇] .

(36)

Hence

∫

𝑇

0

(𝑓 (𝑡, 𝑢

𝑛
, 𝑤


) − 𝑓 (𝑡, 𝑢, 𝑤


) 𝑢

𝑛
) (𝑢

𝑛
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡 → 0,

(37)

𝑙

∑

𝑗=1

[𝐼

𝑗
(𝑢

𝑛
(𝑡

𝑗
)) − 𝐼

𝑗
(𝑢 (𝑡

𝑗
))] (𝑢

𝑛
(𝑡

𝑗
) − 𝑢 (𝑡

𝑗
)) → 0.

(38)

Notice that

⟨𝜑



𝑤
(𝑢

𝑛
) − 𝜑



𝑤
(𝑢) , 𝑢

𝑛
− 𝑢⟩

= ∫

𝑇

0

(











𝑢



𝑛
(𝑡)











𝑝−2

𝑢



𝑛
(𝑡) −











𝑢



(𝑡)











𝑝−2

𝑢



(𝑡))

× (𝑢



𝑛
(𝑡) − 𝑢



(𝑡)) 𝑑𝑡

+ ∫

𝑇

0

(𝑔 (𝑡)









𝑢

𝑛
(𝑡)









𝑝−2

𝑢

𝑛
(𝑡) − |𝑢 (𝑡)|

𝑝−2
𝑢 (𝑡))

× (𝑢

𝑛
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡

+

𝑙

∑

𝑗=1

(𝐼

𝑗
(𝑢

𝑛
(𝑡

𝑗
)) − 𝐼

𝑗
(𝑢 (𝑡

𝑗
)) (𝑢

𝑛
(𝑡

𝑗
) − 𝑢 (𝑡

𝑗
)))

+ ∫

𝑇

0

(𝑓 (𝑡, 𝑢

𝑛
, 𝑤


) − 𝑓 (𝑡, 𝑢, 𝑤


)) (𝑢

𝑛
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡.

(39)

From [26, Lemma 4.2], we see that there exists 𝐶
𝑝
> 0, for

any 𝑥, 𝑦 ∈ 𝑅:

(|𝑥|

𝑝−2
𝑥 −









𝑦









𝑝−2

𝑦) (𝑥 − 𝑦) ≥ 𝐶

𝑝









𝑥 − 𝑦









𝑝

, 𝑝 ≥ 2. (40)

Combining this inequality with (39), we have

𝐶

𝑝
(∫

𝑇

0

(











𝑢



𝑛
(𝑡) − 𝑢



(𝑡)











𝑝

+ 𝑔 (𝑡)









𝑢

𝑛
(𝑡) − 𝑢 (𝑡)









𝑝

) 𝑑𝑡)

≤











𝜑



𝑤
(𝑢

𝑛
) − 𝜑



𝑤
(𝑢)



















𝑢

𝑛
− 𝑢









+

𝑙

∑

𝑗=1

(𝐼

𝑗
(𝑢

𝑛
(𝑡

𝑗
)) − 𝐼

𝑗
(𝑢 (𝑡

𝑗
)) (𝑢

𝑛
(𝑡

𝑗
) − 𝑢 (𝑡

𝑗
)))

+ ∫

𝑇

0

(𝑓 (𝑡, 𝑢

𝑛
, 𝑤


) − 𝑓 (𝑡, 𝑢, 𝑤


)) (𝑢

𝑛
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡.

(41)

It follows from (37)–(39) that 𝑢
𝑛
→ 𝑢 in𝑊1,𝑝

0
(0, 𝑇). Hence,

𝜑

𝑤
satisfies (PS)-condition.
(II) We verify assumption (ii) of Lemma 7.

By (𝑓
2
), there exists 𝛿 ∈ (0, 1) such that









𝑓 (𝑡, 𝑥, 𝜁)









≤

𝜆

1
𝐶

1

2

|𝑥|

𝑝−1 for 𝑡 ∈ [0, 𝑇] , |𝑥| ≤ 𝛿, 𝜁 ∈ 𝑅.
(42)

Since 𝐹(𝑡, 0, 𝜁) = 0, it follows that









𝐹 (𝑡, 𝑥, 𝜁)









≤

𝜆

1
𝐶

1

2𝑝

|𝑥|

𝑝 for 𝑡 ∈ [0, 𝑇] , |𝑥| ≤ 𝛿, 𝜁 ∈ 𝑅.

(43)

Using (𝐼
1
), we have

𝑙

∑

𝑗=1

∫

𝑢(𝑡𝑗)

0

𝐼

𝑗
(𝑡) 𝑑𝑡 ≥ 0. (44)

Hence, from (18), (25), (35), (𝑓
2
), and (𝐼

1
), for ‖𝑢‖ ≤ 𝛿/𝐶

2
, we

have

𝜑

𝑤
(𝑢) =

1

𝑝

‖𝑢‖

𝑝
− ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡) , 𝑤



(𝑡)) 𝑑𝑡

+

𝑙

∑

𝑗=1

∫

𝑢(𝑡𝑗)

0

𝐼

𝑗
(𝑡) 𝑑𝑡

≥

1

𝑝

‖𝑢‖

𝑝
−

𝜆

1
𝐶

1

2𝑝

∫

𝑇

0

|𝑢 (𝑡)|

𝑝
𝑑𝑡

≥

1

𝑝

‖𝑢‖

𝑝
−

1

2𝑝

‖𝑢‖

𝑝
=

1

2𝑝

‖𝑢‖

𝑝
.

(45)

Set 𝛼 = (1/2𝑝)(𝛿/𝐶

2
)

𝑝, 𝜌 = 𝛿/𝐶

2
. Equation (45) shows that

‖𝑢‖ = 𝜌 implies that 𝜑
𝑤
(𝑢) ≥ 𝛼; that is, 𝜑

𝑤
satisfies assump-

tion (ii) of Lemma 7.
(III) We verify assumption (iii) of Lemma 7.
By (𝐼
1
) and (𝑓

5
), we know that for 𝑠 > 1

𝜑

𝑤
(𝑠𝑢) =

1

𝑝

‖𝑠𝑢‖

𝑝
− ∫

𝑇

0

𝐹 (𝑡, 𝑠𝑢 (𝑡) , 𝑤



(𝑡)) 𝑑𝑡

+

𝑙

∑

𝑗=1

∫

𝑠𝑢(𝑡𝑗)

0

𝐼

𝑗
(𝑡) 𝑑𝑡

≤

1

𝑝

‖𝑢‖

𝑝
𝑠

𝑝
+ 𝑙𝐶

2
‖𝑢‖

𝑙

∑

𝑗=1

(𝑎

𝑗
+ 𝑏

𝑗
|𝑠|

𝑟𝑗
) 𝐶

𝑟𝑗

2
‖𝑢‖

𝑟𝑗

− 𝑎|𝑠|

𝜇
∫

𝑇

0

|𝑢 (𝑡)|

𝜇
𝑑𝑡 + 𝑏𝑇.

(46)

Take V
0
∈ 𝑊

1,𝑝

0
(0, 𝑇) such that ‖V

0
‖ = 1. Since 𝜇 > 𝑝, 𝑎 > 0,

and 0 ≤ 𝑟

𝑗
< 𝑝 − 1, (46) implies that there exists 𝜉

1
> 1 such

that ‖𝑒‖ > 𝜌, and 𝜑
𝑤
(𝑒) < 0 if we set 𝑒 = 𝜉

1
V
0
. By Lemma 7,

𝜑

𝑤
possesses a critical value 𝑐 ≥ 𝛼 > 0 given by

𝑐


= inf
𝑔∈Γ

max
𝑠∈[0,1]

𝜑

𝑤
(𝑔 (𝑠)) , (47)
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where Γ = {𝑔 ∈ 𝐶([0, 1],𝑊

1,𝑝

0
(0, 𝑇)) : 𝑔(0) = 0, 𝑔(1) = 𝑒}.

Obviously, 𝜑
𝑤
(0) = 0, so according to Lemma 7, there exists

𝑢

𝑤
̸= 0 and 𝑢

𝑤
∈ 𝑋, such that

𝜑

𝑤
(𝑢

𝑤
) = 𝑐


, 𝜑

𝑤
(𝑢

𝑤
) = 0.

(48)

(IV) We prove that 𝑑
1
≤ ‖𝑢

𝑤
‖ ≤ 𝑑

2
.

Since 𝑢
𝑤
is the solution of problem (2), we have

∫

𝑇

0











𝑢



𝑤











𝑝

𝑑𝑡 + ∫

𝑇

0

𝑔 (𝑡)









𝑢

𝑤









𝑝

𝑑𝑡 +

𝑙

∑

𝑗=1

𝐼

𝑗
(𝑢

𝑤
(𝑡

𝑗
)) 𝑢

𝑤
(𝑡

𝑗
)

= ∫

𝑇

0

𝑓 (𝑡, 𝑢

𝑤
, 𝑤


) 𝑢

𝑤
𝑑𝑡.

(49)

So









𝑢

𝑤









𝑝

+

𝑙

∑

𝑗=1

𝐼

𝑗
(𝑢

𝑤
(𝑡

𝑗
)) 𝑢

𝑤
(𝑡

𝑗
) = ∫

𝑇

0

𝑓 (𝑡, 𝑢

𝑤
, 𝑤


) 𝑢

𝑤
𝑑𝑡.

(50)

It follows from (𝑓

2
) and (𝑓

3
) that, given 𝜖 > 0, there exists a

positive constant 𝐶
𝜖
, independent of 𝑤, such that









𝑓 (𝑡, 𝑥, 𝜁)









≤ 𝜖|𝑥|

𝑝−1
+ 𝐶

𝜖
|𝑥|

𝑟−1
.

(51)

Hence, using (𝐼
1
), we have









𝑢

𝑤









𝑝

≤









𝑢

𝑤









𝑝

+

𝑙

∑

𝑗=1

𝐼

𝑗
(𝑢

𝑤
(𝑡

𝑗
)) 𝑢

𝑤
(𝑡

𝑗
)

= ∫

𝑇

0

𝑓 (𝑡, 𝑢

𝑤
, 𝑤


) 𝑢

𝑤
𝑑𝑡

≤ 𝜖∫

𝑇

0









𝑢

𝑤









𝑝

𝑑𝑡 + 𝐶

𝜖
∫

𝑇

0









𝑢

𝑤









𝑟

𝑑𝑡.

(52)

By Sobolev embedding theorem, we obtain









𝑢

𝑤









𝑝

≤ 𝜖 ⋅

1

𝜆

1
𝐶

1









𝑢

𝑤









𝑝

+ 𝐶

𝜖
⋅

1

(𝜆

1
𝐶

1
)

𝑟/𝑝









𝑢

𝑤









𝑟

. (53)

Set 𝜖/𝜆
1
𝐶

1
= 𝜖

 and 𝐶
𝜖
/(𝜆

1
𝐶

1
)

𝑟/𝑝
= 𝐶



𝜖
; then

(1 − 𝜖


)









𝑢

𝑤









𝑝

≤ 𝐶



𝜖









𝑢

𝑤









𝑟

, (54)

which implies








𝑢

𝑤









≥ 𝑑

1
. (55)

From the inf max characterization of 𝑢
𝑤
in (III), we obtain

𝜑

𝑤
(𝑢

𝑤
) ≤ max𝜑

𝑤
(𝑠V
0
) (56)

with V
0
chosen in (III). We estimate 𝜑

𝑤
(𝑠V
0
) using (𝑓

5
) and

(𝐼

1
):

𝜑

𝑤
(𝑠V
0
) ≤

1

𝑝

𝑠

𝑝
− 𝑎|𝑠|

𝜇
∫

𝑇

0









V
0









𝜇

𝑑𝑡 + 𝑏𝑇 − 𝑎

𝑗
𝑇

− 𝑏

𝑗
|𝑠|

𝑟𝑗
∫

𝑇

0









V
0









𝑟𝑗
𝑑𝑡 =: ℎ (𝑠) ,

(57)

whose maximum is achieved at some 𝑠
0
> 0 and the value

ℎ(𝑠

0
) can be taken as 𝑑

2
. Clearly it is independent of𝑤.Which

implies









𝑢

𝑤









≤ 𝑑

2
. (58)

This completes the proof.

Lemma9. Suppose that (𝑓
1
)–(𝑓
3
) hold and (𝑓

4
), (𝑓
5
), and (𝐼

1
)

hold only for positive 𝑥; then there exist positive constants 𝑑
3
,

and 𝑑
4
such that, for each 𝑤 ∈ 𝑊

1,𝑝

0
(0, 𝑇), problem (2) has a

positive solution 𝑢
𝑤
such that 𝑑

3
≤ ‖𝑢

𝑤
‖ ≤ 𝑑

4
.

Proof. Set

𝑓 (𝑡, 𝑢, 𝜁) = {

𝑓 (𝑡, 𝑢, 𝜁) , if 𝑢 ≥ 0,
0, if 𝑢 < 0,

𝐼

𝑗
(𝑢) = {

𝐼

𝑗
(𝑢) , if 𝑢 ≥ 0,

0, if 𝑢 < 0.

(59)

Consider the function

− (











𝑢



(𝑡)











𝑝−2

𝑢



(𝑡))



+ 𝑔 (𝑡) |𝑢 (𝑡)|

𝑝−2
𝑢 (𝑡)

= 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢



(𝑡)) , 𝑡 ̸= 𝑡

𝑗
, a.e. 𝑡 ∈ [0, 𝑇] ,

Δ𝑢


(𝑡

𝑗
) = 𝐼

𝑗
(𝑢 (𝑡

𝑗
)) , 𝑗 = 1, 2, . . . , 𝑙,

𝑢 (0) = 𝑢 (𝑇) = 0.

(60)

Obviously, 𝑓 satisfies (𝑓
1
)–(𝑓
5
), and 𝐼

𝑗
satisfies (𝐼

1
), so using

Theorem 8,we obtained a solution𝑢
𝑤
of (60).Multiplying the

equation by 𝑢−
𝑤
and integrating by parks, we conclude that

𝑢

−

𝑤
≡ 0. So 𝑢

𝑤
is positive.

Theorem 10. Suppose that (𝑓
1
)–(𝑓
5
) and (𝐼

2
) hold; then there

exist positive constants 𝑑
5
and 𝑑

6
such that, for each 𝑤 ∈

𝑊

1,𝑝

0
(0, 𝑇), problem (2) has one solution 𝑢

𝑤
such that 𝑑

5
≤

‖𝑢

𝑤
‖ ≤ 𝑑

6
.

Proof. (I) We show that 𝜑
𝑤
satisfies the (PS)-condition.

Assume that {𝑢
𝑛
}

𝑛∈N ⊂ 𝑊

1,𝑝

0
(0, 𝑇) is a sequence such that

{𝜑

𝑤
(𝑢

𝑛
)}

𝑛∈N is bounded and 𝜑
𝑤
(𝑢

𝑛
) → 0 as 𝑛 → +∞. We

will prove that the sequence {𝑢
𝑛
}

𝑛∈N is bounded.
It follows from (𝑓

3
), (𝑓
4
), and (𝐼

2
) that

𝜇𝜑

𝑤
(𝑢

𝑛
) − 𝜑



𝑤
(𝑢

𝑛
) 𝑢

𝑛

= (

𝜇

𝑝

− 1)









𝑢

𝑛









𝑝

− ∫

𝑇

0

(𝜇𝐹 (𝑡, 𝑢

𝑛
, 𝑤


)

−𝑓 (𝑡, 𝑢

𝑛
, 𝑤


) 𝑢

𝑛
) 𝑑𝑡
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+

𝑙

∑

𝑗=1

[𝜇∫

𝑢𝑛(𝑡𝑗)

0

𝐼

𝑗
(𝑠) 𝑑𝑠 − 𝐼

𝑗
(𝑢

𝑛
(𝑡

𝑗
)) 𝑢

𝑛
(𝑡

𝑗
)]

≥ (

𝜇

𝑝

− 1)









𝑢

𝑛









𝑝

− ∫

|𝑢𝑛|≥𝑥0

(𝜇𝐹 (𝑡, 𝑢

𝑛
, 𝑤


)

−𝑓 (𝑡, 𝑢

𝑛
, 𝑤


) 𝑢

𝑛
) 𝑑𝑡

− ∫

|𝑢𝑛|≤𝑥0

(𝜇𝐹 (𝑡, 𝑢

𝑛
, 𝑤


) − 𝑓 (𝑡, 𝑢

𝑛
, 𝑤


) 𝑢

𝑛
) 𝑑𝑡

≥ (

𝜇

𝑝

− 1)









𝑢

𝑛









𝑝

− 𝐶

6
.

(61)

Hence, {𝑢
𝑛
} is bounded in𝑊1,𝑝

0
(0, 𝑇). The following proof of

(PS)-condition is similar to that in (I) of Theorem 8.
(II) We verify assumption (ii) of Lemma 7.
Using (𝐼

2
), we have

𝑙

∑

𝑗=1

∫

𝑢(𝑡𝑗)

0

𝐼

𝑗
(𝑡) 𝑑𝑡 ≥ 0. (62)

The proof is similar to that in (II) of Theorem 8.
(III) We verify assumption (iii) of Lemma 7.
Take V

0
∈ 𝑊

1,𝑝

0
(0, 𝑇) such that ‖V

0
‖ = 1. By (𝐼

2
) and (𝑓

5
),

using Sobolev embedding theorem, we have

𝜑

𝑤
(𝑠V
0
) =

1

𝑝

𝑠

𝑝
− ∫

𝑇

0

𝐹 (𝑡, 𝑠V
0
(𝑡) , 𝑤



(𝑡))

+

𝑙

∑

𝑗=1

∫

𝑠V0(𝑡𝑗)

0

𝐼

𝑗
(𝑡) 𝑑𝑡

≤

1

𝑝

𝑠

𝑝
+ 𝑙𝑠‖𝑢‖

𝜃

∞
− 𝐶

7
|𝑠|

𝜇
∫

𝑇

0









V
0
(𝑡)









𝜇

𝑑𝑡 − 𝐶

8
𝑇

≤

1

𝑝

𝑠

𝑝
+ 𝐶

9
𝑠

𝜃
− 𝐶

10
|𝑠|

𝜇
− 𝐶

8
𝑇.

(63)

Since 𝜇 > 𝑝 ≥ 𝜃, (63) implies that there exists 𝜉
2
∈ 𝑅\{0} such

that ‖𝑒‖ > 𝜌 and 𝜑
𝑤
(𝑒) < 0 if we set 𝑒 = 𝜉

2
V
0
. By Lemma 7,

𝜑

𝑤
possess a critical value 𝑐 ≥ 𝛼 > 0, given by

𝑐


= inf
𝑔∈Γ

max
𝑠∈[0,1]

𝜑

𝑤
(𝑔 (𝑠)) , (64)

where Γ = {𝑔 ∈ 𝐶([0, 1],𝑊

1,𝑝

0
(0, 𝑇)) : 𝑔(0) = 0, 𝑔(1) = 𝑒}.

Obviously, 𝜑
𝑤
(0) = 0, so according to Lemma 7, there exists

𝑢

𝑤
̸= 0 and 𝑢

𝑤
∈ 𝑋, such that

𝜑

𝑤
(𝑢

𝑤
) = 𝑐


, 𝜑

𝑤
(𝑢

𝑤
) = 0.

(65)

(IV) We prove that 𝑑
5
≤ ‖𝑢

𝑤
‖ ≤ 𝑑

6
.

Like (IV) of Theorem 8, we can obtain that there exist
𝑑

5
> 0 such that









𝑢

𝑤









≥ 𝑑

5
. (66)

It follows from 𝑢

𝑤
satisfying (65) that

(

𝜇

𝑝

− 1)









𝑢

𝑤









𝑝

≤ 𝜇𝜑

𝑤
(𝑢

𝑤
) − 𝜑



𝑤
(𝑢

𝑤
) 𝑢

𝑤
+ 𝐶

11

= 𝜇𝜑

𝑤
(𝑢

𝑤
) + 𝐶

11

= 𝜇 inf
𝑔∈Γ

max
𝑠∈[0,1]

𝜑

𝑤
(𝑔 (𝑠)) + 𝐶

11

≤ 𝜇max
𝑠≥0

𝜑

𝑤
(𝑠V
0
) + 𝐶

11

≤ 𝜇(

1

𝑝

|𝑠|

𝑝
+

𝑙

∑

𝑗=1

∫

𝑠V0(𝑡𝑗)

0

𝐼

𝑗
(𝑡) 𝑑𝑡

−𝑎|𝑠|

𝜇
∫

𝑇

0









V
0









𝜇

𝑑𝑡 − 𝑏𝑇) + 𝐶

11

≤ 𝜇(

1

𝑝

|𝑠|

𝑝
+ |𝑠|

𝜃
𝑙









V
0









𝜃

∞

−𝑎|𝑠|

𝜇
∫

𝑇

0









V
0









𝜇

𝑑𝑡 + 𝑏𝑇) + 𝐶

11
.

(67)

Let

𝑟 (𝑡) =

1

𝑝

|𝑡|

𝑝
+ 𝑡

𝜃
𝑙









V
0









𝜃

∞
− 𝑎𝑡

𝜇
∫

𝑇

0









V
0









𝜇

𝑑𝑡, 𝑡 ≥ 0. (68)

Since 𝜇 > 𝑝 ≥ 𝜃, then 𝑟(𝑡) can achieve its maximum at some
𝑡, which implies there exist 𝑑

6
> 0 such that









𝑢

𝑤









≤ 𝑑

6
. (69)

This completes the proof.

Lemma 11. Suppose that (𝑓
1
)–(𝑓
3
) hold and (𝑓

4
), (𝑓
5
), and

(𝐼

2
) hold only for positive 𝑥, then there exist positive constants

𝑑

7
, and 𝑑

8
such that, for each 𝑤 ∈ 𝑊

1,𝑝

0
(0, 𝑇), problem (2) has

a positive solution 𝑢
𝑤
such that 𝑑

7
≤ ‖𝑢

𝑤
‖ ≤ 𝑑

8
.

Proof. The proof is similar to that of Lemma 9, so we omit
it.

Remark 12. By the same method, we can discuss the negative
solution of (2).

4. The Solvability of (1)
Theorem 13. Assume that (𝑓

1
)–(𝑓
6
) and (𝐼

1
) and (𝐼

3
) hold;

then problem (1) has one nontrivial solution provided

𝑘 =

𝐿

2
𝜆

−1/𝑝

1
𝐶

−1−(1/𝑝)

1

𝐶

𝑝
− 𝐿

1
𝜆

−1

1
𝐶

−1

1
− 𝐶

𝑝

2
∑

𝑙

𝑗=1
𝛼

𝑗

(70)

satisfying 0 < 𝑘 < 1.
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Proof. We construct a sequence {𝑢
𝑛
} ∈ 𝑊

1,𝑝

0
(0, 𝑇) as solu-

tions of the following problem:

− (











𝑢



𝑛
(𝑡)











𝑝−2

𝑢



𝑛
(𝑡))



+ 𝑔 (𝑡)









𝑢

𝑛
(𝑡)









𝑝−2

𝑢

𝑛
(𝑡)

= 𝑓 (𝑡, 𝑢

𝑛
(𝑡) , 𝑢



𝑛−1
(𝑡)) , 𝑡 ̸= 𝑡

𝑗
, a.e. 𝑡 ∈ [0, 𝑇] ,

Δ𝑢



𝑛
(𝑡

𝑗
) = 𝐼

𝑗
(𝑢

𝑛
(𝑡

𝑗
)) , 𝑗 = 1, 2, . . . , 𝑙,

𝑢

𝑛
(0) = 𝑢

𝑛
(𝑇) = 0

(1.1

𝑛
)

obtained in Theorem 8, starting with an arbitrary 𝑢

0
∈

𝑊

1,𝑝

0
(0, 𝑇). It follows from the Sobolev embedding theorem

that ‖𝑢
𝑛
‖

∞
≤ 𝜌

1
. Using (1.1

𝑛
) and (1.1

𝑛+1
), we obtain

∫

𝑇

0











𝑢



𝑛
(𝑡)











𝑝−2

𝑢



𝑛
(𝑡) (𝑢



𝑛+1
− 𝑢



𝑛
) 𝑑𝑡

+ ∫

𝑇

0

𝑔 (𝑡)









𝑢

𝑛
(𝑡)









𝑝−2

𝑢

𝑛
(𝑡) (𝑢

𝑛+1
− 𝑢

𝑛
) 𝑑𝑡

+

𝑙

∑

𝑗=1

𝐼

𝑗
(𝑢

𝑛
(𝑡

𝑗
)) (𝑢

𝑛+1
(𝑡

𝑗
) − 𝑢

𝑛
(𝑡

𝑗
))

= ∫

𝑇

0

𝑓 (𝑡, 𝑢

𝑛
, 𝑢



𝑛−1
) (𝑢

𝑛+1
− 𝑢

𝑛
) 𝑑𝑡,

∫

𝑇

0











𝑢



𝑛+1
(𝑡)











𝑝−2

𝑢



𝑛+1
(𝑡) (𝑢



𝑛+1
− 𝑢



𝑛
) 𝑑𝑡

+ ∫

𝑇

0

𝑔 (𝑡)









𝑢

𝑛+1
(𝑡)









𝑝−2

𝑢

𝑛+1
(𝑡) (𝑢

𝑛+1
− 𝑢

𝑛
) 𝑑𝑡

+

𝑙

∑

𝑗=1

𝐼

𝑗
(𝑢

𝑛+1
(𝑡

𝑗
)) (𝑢

𝑛+1
(𝑡

𝑗
) − 𝑢

𝑛
(𝑡

𝑗
))

= ∫

𝑇

0

𝑓 (𝑡, 𝑢

𝑛+1
, 𝑢



𝑛
) (𝑢

𝑛+1
− 𝑢

𝑛
) 𝑑𝑡.

(71)

Hence,

𝐶

𝑝
(∫

𝑇

0

(











𝑢



𝑛+1
− 𝑢



𝑛











𝑝

+ 𝑔 (𝑡)









𝑢

𝑛+1
− 𝑢

𝑛









𝑝

) 𝑑𝑡)

≤ ∫

𝑇

0

[𝑓 (𝑡, 𝑢

𝑛+1
, 𝑢



𝑛
) − 𝑓 (𝑡, 𝑢

𝑛
, 𝑢



𝑛−1
)] (𝑢

𝑛+1
− 𝑢

𝑛
) 𝑑𝑡

+

𝑙

∑

𝑗=1

[𝐼

𝑗
(𝑢

𝑛
(𝑡

𝑗
)) − 𝐼

𝑗
(𝑢

𝑛+1
(𝑡

𝑗
))]

× (𝑢

𝑛+1
(𝑡

𝑗
) − 𝑢

𝑛
(𝑡

𝑗
))

= ∫

𝑇

0

[𝑓 (𝑡, 𝑢

𝑛+1
, 𝑢



𝑛
) − 𝑓 (𝑡, 𝑢

𝑛
, 𝑢



𝑛
)]

× (𝑢

𝑛+1
− 𝑢

𝑛
) 𝑑𝑡

+ ∫

𝑇

0

[𝑓 (𝑡, 𝑢

𝑛
, 𝑢



𝑛
) − 𝑓 (𝑡, 𝑢

𝑛
, 𝑢



𝑛−1
)] (𝑢

𝑛+1
− 𝑢

𝑛
) 𝑑𝑡

+

𝑙

∑

𝑗=1

[𝐼

𝑗
(𝑢

𝑛
(𝑡

𝑗
)) − 𝐼

𝑗
(𝑢

𝑛+1
(𝑡

𝑗
))]

× (𝑢

𝑛+1
(𝑡

𝑗
) − 𝑢

𝑛
(𝑡

𝑗
))

≤ 𝐿

1
∫

𝑇

0









𝑢

𝑛+1
− 𝑢

𝑛









𝑝

𝑑𝑡 + 𝐿

2
∫

𝑇

0











𝑢



𝑛
− 𝑢



𝑛−1











𝑝−1

×









𝑢

𝑛+1
− 𝑢

𝑛









𝑑𝑡

+

𝑙

∑

𝑗=1

𝛼

𝑗











𝑢

𝑛+1
(𝑡

𝑗
) − 𝑢

𝑛
(𝑡

𝑗
)











𝑝

.

(72)

Using (17) and (18) and by Hölder inequality, we have









𝑢

𝑛+1
− 𝑢

𝑛









𝑝−1

≤

𝐿

2
𝜆

−1/𝑝

1
𝐶

−1/𝑝

1

𝐶

𝑝
− 𝐿

1
𝜆

−1

1
𝐶

−1

1
− 𝐶

𝑝

2
∑

𝑙

𝑗=1
𝛼

𝑗

[∫

𝑇

0











𝑢



𝑛
− 𝑢



𝑛−1











𝑝

𝑑𝑡]

(𝑝−1)/𝑝

=

𝐿

2
𝜆

−1/𝑝

1
𝐶

−1/𝑝

1

𝐶

𝑝
− 𝐿

1
𝜆

−1

1
𝐶

−1

1
− 𝐶

𝑝

2
∑

𝑙

𝑗=1
𝛼

𝑗









𝑢

𝑛
− 𝑢

𝑛−1









𝑝−1

𝑊
1,𝑝

0

≤

𝐿

2
𝜆

−1/𝑝

1
𝐶

−1−(1/𝑝)

1

𝐶

𝑝
− 𝐿

1
𝜆

−1

1
𝐶

−1

1
− 𝐶

𝑝

2
∑

𝑙

𝑗=1
𝛼

𝑗









𝑢

𝑛
− 𝑢

𝑛−1









𝑝−1

;

(73)

that is,









𝑢

𝑛+1
− 𝑢

𝑛









≤ 𝑘

1/(𝑝−1) 






𝑢

𝑛
− 𝑢

𝑛−1









.
(74)

Since 𝑘 is less than 1, then it follows that {𝑢
𝑛
} strongly con-

verges in𝑊1,𝑝
0
(0, 𝑇), as it easily follows proving that {𝑢

𝑛
} is a

Cauchy sequence in𝑊1,𝑝
0
(0, 𝑇). ByTheorem 8, we know that

𝑢 ̸= 0. In this way we obtain a nontrivial solution of (1).

Example 14. Let 𝑡
1
∈ (0, 𝑇) and 𝑝 = 2; consider the following

nonlinear Dirichlet impulsive problem:

− 𝑢



(𝑡) + (−1 − 𝑡) 𝑢 (𝑡) = 𝑢

3

(𝑡) (1 + sin 𝑢 (𝑡)) ,

a.e. 𝑡 ∈ [0, 𝑇] , 𝑡 ̸= 𝑡

1
,

Δ𝑢


(𝑡

1
) =

3
√

𝑢 (𝑡

1
),

𝑢 (0) = 𝑢 (𝑇) = 0.

(75)

Compared with (1), 𝑓(𝑡, 𝑢, 𝑢) = 𝑢

3
(1 + sin 𝑢) and

𝐼

1
(𝑢) = 𝑢

1/3. We can take 𝜇 = 3 and 𝜃 = 5/3. Then by
simple computation, it is easy to verify that all conditions of
Theorem 13 are satisfied. Hence, byTheorem 13, problem (75)
has one nontrivial solution.
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Theorem 15. Assume that (𝑓
1
)–(𝑓
6
) and (𝐼

2
) and (𝐼

3
) hold;

then problem (1) has one nontrivial solution provided

𝑘 =

𝐿

2
𝜆

−1/𝑝

1
𝐶

−1−(1/𝑝)

1

𝐶

𝑝
− 𝐿

1
𝜆

−1

1
𝐶

−1

1
− 𝐶

𝑝

2
∑

𝑙

𝑗=1
𝛼

𝑗

(76)

satisfying 0 < 𝑘 < 1.

Proof. We construct a sequence {𝑢
𝑛
} ∈ 𝑊

1,𝑝

0
(0, 𝑇) as solu-

tions of the problem (1.1

𝑛
) obtained in Theorem 10, starting

with an arbitrary 𝑢
0
∈ 𝑊

1,𝑝

0
(0, 𝑇). The rest of proof is similar

to that of Theorem 13, so we omit it.

Example 16. Let 𝑡
1
∈ (0, 𝑇) and 𝑝 = 4; consider the following

nonlinear Dirichlet impulsive problem:

− (











𝑢



(𝑡)











2

𝑢



(𝑡))



− 𝑡

2

|𝑢 (𝑡)|

2
𝑢 (𝑡) = 𝑢

7

(𝑡) (2 + cos 𝑢 (𝑡)) ,

a.e. 𝑡 ∈ [0, 𝑇] , 𝑡 ̸= 𝑡

1
,

Δ𝑢


(𝑡

1
) = 𝑢

2
(𝑡

1
) ,

𝑢 (0) = 𝑢 (𝑇) = 0.

(77)

Comparedwith (1),𝑓(𝑡, 𝑢, 𝑢) = 𝑢7(2+cos 𝑢) and 𝐼
1
(𝑢) =

𝑢

2. We can take 𝜇 = 6 and 𝑟
1
= 2. Then by simple compu-

tation, it is easy to verify that all conditions of Theorem 15
are satisfied. Hence, by Theorem 15, problem (77) has one
nontrivial solution.

Remark 17. In order to discuss the positive solutions of (1), we
can argue as in Theorem 8, by replacing 𝑓 by 𝑓. By the same
method, we can discuss the negative solutions of (1).
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