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We study the following Schrödinger-Poisson system: −Δ𝑢 + 𝑉(𝑥)𝑢 + 𝜙𝑢 = |𝑢|
𝑝−1

𝑢, −Δ𝜙 = 𝑢
2, lim|𝑥|→+∞𝜙(𝑥) = 0, where 𝑢, 𝜙 :

R3 → R are positive radial functions, 𝑝 ∈ (1, +∞), 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ R3, and 𝑉(𝑥) is allowed to take two different forms
including 𝑉(𝑥) = 1/(𝑥
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)
𝛼/2 with 𝛼 > 0. Two theorems for nonexistence of nontrivial solutions

are established, giving two regions on the 𝛼 − 𝑝 plane where the system has no nontrivial solutions.

1. Introduction

Schrödinger-Poisson systems arise in quantum mechanics
and have been studied by many researchers in the recent
years. A number of researches have been focused on quantum
transport in semiconductor devices using both mathematical
analysis and numerical analysis. Mathematical analysis plays
a very crucial role in any investigation. In this paper, we study
the nonexistence of nontrivial solutions for the following
system in R3:

−Δ𝑢 + 𝑉 (𝑥) 𝑢 + 𝜙 (𝑥) 𝑢 = |𝑢|
𝑝−1

𝑢,

−Δ𝜙 = 𝑢
2
, lim

|𝑥|→+∞
𝜙 = 0,

(1)

where 𝑢, 𝜙 : R3 → R are positive radial functions, 𝑥 =

(𝑥1, 𝑥2, 𝑥3) ∈ R3, 𝑝 ∈ (1, +∞), and 𝑉(𝑥) is allowed to have
two different forms including𝑉(𝑥) = 1/(𝑥

2

1
+ 𝑥
2

2
+ 𝑥
2

3
)
𝛼/2 and
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)
𝛼/2 with 𝛼 > 0.

The above system was introduced in [1] in the study of an
N-body quantum problem, that is, the Hartree-Fock system,
Kohn-Sham system and, so forth [1–4]. For 𝑉(𝑥) in the
form of a constant potential, the nonexistence of nontrivial

solutions of (1) for 𝑝 ∉ (1, 5) was proved in [5] by using a
Pohožaev-type identity. For 𝑉(𝑥) in the form of the singular
potentials as considered in this work, existence of positive
solutions has been established under certain assumption [6].
However, the conditions under which nontrivial solutions do
not exist have not yet been full established. Hence, in this
paper, we study the nonexistence of solutions to the problem
(1) with singular potential.

The main contribution of this work is the development
of analytical results giving two regions on the 𝛼 − 𝑝 plane
where the system (1) has no nontrivial solutions. The two
𝛼 − 𝑝 regions are shown in Figure 1. The rest of the paper
is organized as follows. In Section 2, we first give some basic
definitions and concepts and then, based on the method
in Badiale et al. [7], establish a Pohožaev-type identity. In
Section 3, we give two theorems summarizing the nonexis-
tence results we obtained and then prove the theorems.

2. Preliminaries and a PohoDaev-Type Identity

Firstly, we briefly introduce some notation and definitions
and recall some properties and known results of the second
equations (Poisson equation) in (1).Throughout the paper, we
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Figure 1: Diagram showing the two regions on the 𝛼−𝑝 plane where
system (1) has no nontrivial solution.

let 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ R3, 𝐷1,2(R3) = {𝑢(𝑥) ∈ 𝐿
6
(R3) : |∇𝑢| ∈

𝐿
2
(R3)}, 𝑟1 = (𝑥
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𝛼 > 0 we define
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3
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𝛼
1
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2
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2
𝑑𝑥 < ∞;

𝑢 (𝑥) = 𝑢 (𝑟2, 𝑥3) } .

(2)

By Lemma 2.1 of [2], we know that −Δ𝜙(𝑥) = 𝑢
2 has a unique

solution in𝐷
1,2

(R3) with the form of

𝜙 (𝑥) := 𝜙𝑢 (𝑥) =
𝜋

4
∫

R3

𝑢
2
(𝑦)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑑𝑦 (3)

for any 𝑢 ∈ 𝐿
12/5

(R3), and
󵄩󵄩󵄩󵄩∇𝜙𝑢 (𝑥)

󵄩󵄩󵄩󵄩2
⩽ 𝐶‖𝑢‖

2

12/5
,

∫
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𝜙𝑢 (𝑥) 𝑢

2
𝑑𝑦 ⩽ 𝐶‖𝑢‖

4

12/5
.

(4)

By the Hardy-Littlewood-Sobolev inequality, we know that
∫
R3

𝜙𝑢(𝑥)𝑢V 𝑑𝑦 is well defined for any 𝑢, V ∈ 𝐿
2
∩𝐸. So we can

make the following definition.

Definition 1. For 𝑖 = 1 or 2, if (𝑢, 𝜙) ∈ 𝐿
2
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∩𝐸𝑖 ∩𝐶
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= ∫
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(5)

for all V ∈ 𝐿
2
∩ 𝐿
𝑝+1

∩ 𝐸, we say that (𝑢, 𝜙) is a solution of (1).

Now we establish a Pohožaev-type identity based on the
work by Badiale et al. [7]. For any 𝑢 ∈ 𝐶

2
(R3 \ {𝑟𝑖 = 0}),

𝑥 ∈ R3 \ {𝑟𝑖 = 0}, where 𝑖 = 1, 2, by a simple calculation, we
have

(𝑥 ⋅ ∇𝑢) Δ𝑢 = div [(𝑥 ⋅ ∇𝑢) ∇𝑢 −
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For any open subsetΩ ⊂ R3\{𝑟𝑖 = 0}, by using the divergence
theorem and (6), we get

∫

Ω
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So, by multiplying (1) by (𝑥 ⋅ ∇𝑢) and using (7), we get
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1
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Ω
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󵄨󵄨󵄨󵄨
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𝑑𝑥

= ∫

𝜕Ω

1

2
(𝑥 ⋅ ∇𝜙) (∇𝜙 ⋅ ]) − (𝑥 ⋅ ∇𝑢) (∇𝑢 ⋅ ]) 𝑑𝜎

+ ∫

𝜕Ω

{
1

2
(|∇𝑢|

2
−
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
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𝑢
2

𝑟
𝛼
𝑖

+ 𝜙𝑢
2
)

−
1

𝑝 + 1
|𝑢|
𝑝+1

} (𝑥 ⋅ ]) 𝑑𝜎.

(8)

3. Nonexistence Results for the System of
PohoDaev-Type Identity Equations

The nonexistence results we obtained for system (1) are
summarized in the following two theorems.

Theorem 2. For 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ R3 and 𝑉(𝑥) = 1/(𝑥
2

1
+

𝑥
2

2
+𝑥
2

3
)
𝛼/2, if 𝛼 ∈ (0, 3) and𝑝 ∈ (1,min{7/5, (3+𝛼)/(3−𝛼)})∪

[max{5, (3+𝛼)/(3−𝛼)}, +∞), or 𝛼 ∈ [3,∞) and 𝑝 ∈ (1, 7/5],
any solution (𝑢, 𝜙) of problem (1) is trivial.

Proof of Theorem 2. Let ∞ > 𝑅2 > 𝑅1 > 0, 𝐵𝑅 = {𝑥 ∈

R3, |𝑥| < 𝑅}, 𝐵𝑅 = {𝑥 ∈ R3, |𝑥| ⩽ 𝑅}, and Ω = 𝐵𝑅2
\ 𝐵𝑅1

; we
then have 𝜕Ω = 𝜕𝐵𝑅1

∪ 𝜕𝐵𝑅2
. Since 𝑢 ∈ 𝐸1 ∩ 𝐿

𝑝+1, 𝜙 ∈ 𝐷
1,2,

we have

∫

∞

0

𝑑𝑟∫

𝜕𝐵𝑟

|∇𝑢|
2
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2

+
𝑢
2

|𝑥|
𝛼 + 𝜙𝑢

2
+ |𝑢|
𝑝+1

𝑑𝜎

= ∫

R3
|∇𝑢|
2
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

|𝑥|
𝛼 + 𝜙𝑢

2

+ |𝑢|
𝑝+1

𝑑𝑥 < +∞.

(9)

So, (9) shows that there exist sequences 𝑅1,𝑛
𝑛
󳨀→ 0 and 𝑅2,𝑛

𝑛
󳨀→

+∞ such that

𝑅1,𝑛 ∫

𝜕𝐵𝑅1,𝑛

|∇𝑢|
2
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

|𝑥|
𝛼 + 𝜙𝑢

2
+ |𝑢|
𝑝+1

𝑑𝜎
𝑛

󳨀→ 0,

𝑅2,𝑛 ∫

𝜕𝐵𝑅2,𝑛

|∇𝑢|
2
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

|𝑥|
𝛼 + 𝜙𝑢

2
+ |𝑢|
𝑝+1

𝑑𝜎
𝑛

󳨀→ 0.

(10)

On 𝜕𝐵𝑅1,𝑛
wehave ](𝑥) = −𝑥/𝑅1,𝑛. By usingCauchy inequality

and (10), we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜕𝐵𝑅1,𝑛

1

2
(𝑥 ⋅ ∇𝜙) (∇𝜙 ⋅ ]) − (𝑥 ⋅ ∇𝑢) (∇𝑢 ⋅ ]) 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑅1,𝑛 ∫

𝜕𝐵𝑅1,𝑛

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2
+ |∇𝑢|

2
𝑑𝜎
𝑛

󳨀→ 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜕𝐵𝑅1,𝑛

{
1

2
(|∇𝑢|

2
−
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

|𝑥|
𝛼 + 𝜙𝑢

2
) −

1

𝑝 + 1
|𝑢|
𝑝+1

}

× (𝑥 ⋅ ]) 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑅1,𝑛 ∫

𝜕𝐵𝑅1,𝑛

1

2
(|∇𝑢|

2
−
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

|𝑥|
𝛼 + 𝜙𝑢

2
)

+
1

𝑝 + 1
|𝑢|
𝑝+1

𝑑𝜎
𝑛

󳨀→ 0.

(11)

Similarly, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜕𝐵𝑅2,𝑛

1

2
(𝑥 ⋅ ∇𝜙) (∇𝜙 ⋅ ]) − (𝑥 ⋅ ∇𝑢) (∇𝑢 ⋅ ]) 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑅2,𝑛 ∫

𝜕𝐵𝑅2,𝑛

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2
+ |∇𝑢|

2
𝑑𝜎
𝑛

󳨀→ 0.

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜕𝐵𝑅2,𝑛

{
1

2
(|∇𝑢|

2
−
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

|𝑥|
𝛼 + 𝜙𝑢

2
)

−
1

𝑝 + 1
|𝑢|
𝑝+1

} (𝑥 ⋅ ]) 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑅2,𝑛 ∫

𝜕𝐵𝑅2,𝑛

1

2
(|∇𝑢|

2
−
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

|𝑥|
𝛼 + 𝜙𝑢

2
)

+
1

𝑝 + 1
|𝑢|
𝑝+1

𝑑𝜎
𝑛

󳨀→ 0.

(12)

Hence in (8), by setting Ω = 𝐵𝑅2,𝑛
\ 𝐵𝑅1,𝑛

, as 𝑛 → ∞, from
(11) and (12), we have

1

2
∫

R3
|∇𝑢|
2
𝑑𝑥 +

3 − 𝛼

2
∫

R3

𝑢
2

|𝑥|
𝛼 −

3

𝑝 + 1
∫

R3
|𝑢|
𝑝+1

𝑑𝑥

+
3

2
∫

R3
𝜙𝑢
2
𝑑𝑥 −

1

4
∫

R3

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2
𝑑𝑥 = 0.

(13)

By the second equation of (1), we have

∫

R3

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2
𝑑𝑥 = ∫

R3
𝜙𝑢
2
𝑑𝑥. (14)
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From (13) and (14), we get

1

2
∫

R3
|∇𝑢|
2
𝑑𝑥 +

3 − 𝛼

2
∫

R3

𝑢
2

|𝑥|
𝛼 +

5

4
∫

R3
𝜙𝑢
2
𝑑𝑥

−
3

𝑝 + 1
∫

R3
|𝑢|
𝑝+1

𝑑𝑥 = 0.

(15)

On the other hand, multiplying (1) by 𝑢 and integrating the
result overΩ, whereΩ ⊂ R3 \ {0}, we have

∫

Ω

−Δ𝑢𝑢 +
𝑢
2

|𝑥|
𝛼 + 𝜙 (𝑥) 𝑢

2
𝑑𝑥 = ∫

Ω

|𝑢|
𝑝+1

𝑑𝑥. (16)

Using the divergence theorem to the first term of (16) yields
that

∫

Ω

−Δ𝑢𝑢𝑑𝑥 = ∫

Ω

∇𝑢∇𝑢𝑑𝑥 − ∫

𝜕Ω

𝑢
𝜕𝑢

𝜕]
𝑑𝜎, (17)

while the Hölder inequality gives

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜕Ω

𝑢
𝜕𝑢

𝜕]
𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ {∫

𝜕Ω

𝑢
6
𝑑𝜎}

1/6

{∫

𝜕Ω

|∇𝑢|
2
𝑑𝜎}

1/2

|𝜕Ω|
1/3

.

(18)

SettingΩ = 𝐵𝑅2,𝑛
\ 𝐵𝑅1,𝑛

, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜕𝐵𝑅1,𝑛

𝑢
𝜕𝑢

𝜕]
𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶{∫

𝜕𝐵𝑅1,𝑛

𝑢
6
𝑑𝜎}

1/6

{∫

𝜕𝐵𝑅1,𝑛

|∇𝑢|
2
𝑑𝜎}

1/2

×
󵄨󵄨󵄨󵄨𝑅1,𝑛

󵄨󵄨󵄨󵄨

2/3 𝑛
󳨀→ 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜕𝐵𝑅2,𝑛

𝑢
𝜕𝑢

𝜕]
𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶{∫

𝜕𝐵𝑅2,𝑛

𝑢
6
𝑑𝜎}

1/6

{∫

𝜕𝐵𝑅2,𝑛

|∇𝑢|
2
𝑑𝜎}

1/2

×
󵄨󵄨󵄨󵄨𝑅2,𝑛

󵄨󵄨󵄨󵄨

2/3 𝑛
󳨀→ 0.

(19)

From (16)-(17) and (19), we have

∫

R3
|∇𝑢|
2
𝑑𝑥 + ∫

R3

𝑢
2

|𝑥|
𝛼 𝑑𝑥 + ∫

R3
𝜙𝑢
2
𝑑𝑥

− ∫

R3
|𝑢|
𝑝+1

𝑑𝑥 = 0.

(20)

By combining (15) and (20), we have

(
1

2
−

3

𝑝 + 1
)∫

R3
|∇𝑢|
2
𝑑𝑥 + (

3 − 𝛼

2
−

3

𝑝 + 1
)∫

R3

𝑢
2

|𝑥|
𝛼 𝑑𝑥

+ (
5

4
−

3

𝑝 + 1
)∫

R3
𝜙𝑢
2
𝑑𝑥 = 0.

(21)

For 1 < 𝑝 ⩽ min{(3 + 𝛼)/(3 − 𝛼), 7/5} or 𝑝 ⩾ max{5, (3 +

𝛼)/(3 − 𝛼)}, we have

3

𝑝 + 1
⩽ min {

1

2
,
3 − 𝛼

2
,
5

4
}

or 3

𝑝 + 1
⩾ max {

1

2
,
3 − 𝛼

2
,
5

4
} .

(22)

Then (21) gives that the solution (𝑢, 𝜙) ∈ 𝐿
𝑝+1

(R3)∩𝐸1(R
3
)∩

𝐶
2
(R3 \ {0}) × 𝐷

1,2
∩ 𝐶
2
(R3)must be trivial.

Let 𝐿4loc(R
3
) = {𝑢(𝑥) : for any open domain Ω ⊂ R3,

𝑢(𝑥) ∈ 𝐿
4
(Ω)}. Similar to Theorem 2, we get another nonex-

istence result to the system (1) with potential function𝑉(𝑥) =

1/(𝑥
2

1
+ 𝑥
2

2
)
𝛼/2.

Theorem 3. For 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ R3 and 𝑉(𝑥) = 1/(𝑥
2

1
+

𝑥
2

2
)
𝛼/2, if 𝛼 ∈ (0, 3) and 𝑝 ∈ (1,min{7/5, (3 + 𝛼)/(3 − 𝛼)}) ∪

[max{5, (3+𝛼)/(3−𝛼)}, +∞), or 𝛼 ∈ [3,∞) and 𝑝 ∈ (1, 7/5],
any solution (𝑢, 𝜙) of problem (1) with (∇𝑢, ∇𝜙) ∈ 𝐿

4

𝑙𝑜𝑐
(R3) ×

𝐿
4

𝑙𝑜𝑐
(R3) is trivial.

Proof of Theorem 3. For any 𝑅2 > 𝑅1 > 0, setting Ω =

Ω𝑅1 ,𝑅2
:= {𝑥 ∈ 𝐵𝑅2

: 𝑟2 > 𝑅1}, then 𝜕Ω𝑅1 ,𝑅2
= {𝑥 ∈

𝜕𝐵𝑅2
: 𝑟2 ⩾ 𝑅1} ∪ {𝑥 ∈ 𝐵𝑅2

: 𝑟2 = 𝑅1} := Σ𝑅1 ,𝑅2
∪ Γ𝑅1 ,𝑅2

,

where Γ𝑅1 ,𝑅2
= {𝑥 ∈ R3 : 𝑟2 = 𝑅1, |𝑥3| < √𝑅

2
2
− 𝑅
2
1
} and

](𝑥) = (−𝑥1/𝑅1, −𝑥2/𝑅1, 0) on Γ𝑅1 ,𝑅2
. Note that

∫

𝑅2

0

𝑑𝑅1 ∫

𝜏𝑅1,𝑅2

(|∇𝑢|
2
+ |∇𝑢|

4
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

4

+
𝑢
2

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2
+ 𝜙𝑢
2
+ |𝑢|
𝑝+1

)𝑑𝜎

= ∫

𝐵𝑅2

(|∇𝑢|
2
+ |∇𝑢|

4
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

4

+
𝑢
2

𝑟
𝛼
2

+ 𝜙𝑢
2
+ |𝑢|
𝑝+1

)𝑑𝑥 < ∞.

(23)

Let

𝑓 (𝑅1) = 𝑅1 ∫

𝑇𝑅1,𝑅2

(|∇𝑢|
2
+ |∇𝑢|

4
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

4

+𝜙𝑢
2
+

𝑢
2

𝑟
𝛼
2

+ |𝑢|
𝑝+1

)𝑑𝜎 ⩾ 0.

(24)

Then

∫

𝑅2

0

𝑓 (𝑅1)

𝑅1

𝑑𝑅1 < ∞. (25)

So we must have 𝑅1,𝑛

𝑛
󳨀→ 0 such that

𝑓 (𝑅1,𝑛)
𝑛

󳨀→ 0. (26)
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By using Cauchy inequality and (24)–(26), we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏𝑅1,𝑛,𝑅2

{
1

2
(|∇𝑢|

2
−
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

𝑟
𝛼
2

+ 𝜙𝑢
2
)

−
1

𝑝 + 1
|𝑢|
𝑝+1

} (𝑥 ⋅ ]) 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑅1,𝑛 ∫

𝜏𝑅1,𝑛,𝑅2

(|∇𝑢|
2
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

𝑟
𝛼
2

+ |𝑢|
𝑝+1

)𝑑𝜎
𝑛

󳨀→ 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏𝑅1,𝑛,𝑅2

[
1

2
(𝑥 ⋅ ∇𝜙) (∇𝜙 ⋅ ]) − (𝑥 ⋅ ∇𝑢) (∇𝑢 ⋅ ])] 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏𝑅1,𝑛,𝑅2

(𝑥 ⋅ ∇𝜙) (∇𝜙 ⋅ ]) 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏𝑅1,𝑛,𝑅2

(𝑥 ⋅ ∇𝑢) (∇𝑢 ⋅ ]) 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑅2 ∫

𝜏𝑅1,𝑛,𝑅2

(|∇𝑢|
2
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
) 𝑑𝜎

⩽ 𝑅2
[

[

{∫

𝜏𝑅1,𝑛,𝑅2

𝑑𝜎}

1/2

{∫

𝜏𝑅1,𝑛,𝑅2

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

4
𝑑𝜎}

1/2

+ {∫

𝜏𝑅1,𝑛,𝑅2

𝑑𝜎}

1/2

{∫

𝜏𝑅1,𝑛,𝑅2

|∇𝑢|
4
𝑑𝜎}

1/2

]

]

= √2𝜋𝑅
3/2

2
[

[

{𝑅1,𝑛 ∫

𝜏𝑅1,𝑛,𝑅2

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

4
𝑑𝜎}

1/2

+ {𝑅1,𝑛 ∫

𝜏𝑅1,𝑛,𝑅2

|∇𝑢|
4
𝑑𝜎}

1/2

]

]

𝑛
󳨀→ 0.

(27)

It is easy to see that Σ𝑅1,𝑛 ,𝑅2 ⊂ Σ𝑅1,𝑛+1 ,𝑅2
and ∪𝑛Σ𝑅1,𝑛 ,𝑅2

= {𝑥 ∈

𝜕𝐵𝑅2
: 𝑟2 ̸= 0}. Let Ω = Ω𝑅1 ,𝑅2

in (18) by using the definition
of 𝜕Ω𝑅1 ,𝑅𝑛 and (27), we get

1

2
∫

𝐵𝑅2

|∇𝑢|
2
𝑑𝑥 +

3 − 𝛼

2
∫

𝐵𝑅2

𝑢
2

𝑟
𝛼
2

−
3

𝑝 + 1
∫

𝐵𝑅2

|𝑢|
𝑝+1

𝑑𝑥

+
3

2
∫

𝐵𝑅2

𝜙𝑢
2
𝑑𝑥 −

1

4
∫

𝐵𝑅2

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2
𝑑𝑥

= ∫

𝜕𝐵𝑅2

1

2
(𝑥 ⋅ ∇𝜙) (∇𝜙 ⋅ ]) − (𝑥 ⋅ ∇𝑢) (∇𝑢 ⋅ ]) 𝑑𝜎

+ ∫

𝜕𝐵𝑅2

{
1

2
(|∇𝑢|

2
−
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

𝑟
𝛼
2

+ 𝜙𝑢
2
)

−
1

𝑝 + 1
|𝑢|
𝑝+1

} (𝑥 ⋅ ]) 𝑑𝜎.

(28)

Similar to (12), we have 𝑅2,𝑛

𝑛
󳨀→ +∞ such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜕𝐵𝑅2,𝑛

{
1

2
(|∇𝑢|

2
−
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

𝑟
𝛼
2

+ 𝜙𝑢
2
)

−
1

𝑝 + 1
|𝑢|
𝑝+1

} (𝑥 ⋅ ]) 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑅2,𝑛 ∫

𝜕𝐵𝑅2,𝑛

|∇𝑢|
2
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
+

𝑢
2

𝑟
𝛼
2

+ 𝜙𝑢
2
+ |𝑢|
𝑝+1

𝑑𝜎
𝑛

󳨀→ 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜕𝐵𝑅2,𝑛

1

2
(𝑥 ⋅ ∇𝜙) (∇𝜙 ⋅ ]) − (𝑥 ⋅ ∇𝑢) (∇𝑢 ⋅ ]) 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑅2,𝑛 ∫

𝜕𝐵𝑅2,𝑛

|∇𝑢|
2
+
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨

2
𝑑𝜎
𝑛

󳨀→ 0.

(29)

As 𝑛 → +∞, (28)–(29) imply that

1

2
∫

R3
|∇𝑢|
2
𝑑𝑥 +

3 − 𝛼

2
∫

R3

𝑢
2

𝑟
𝛼
𝑖

−
3

𝑝 + 1
∫

R3
|𝑢|
𝑝+1

𝑑𝑥

+
3

2
∫

R3
𝜙𝑢
2
𝑑𝑥 −

1

4
∫

R3

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2
𝑑𝑥 = 0.

(30)

Since ∫
R3

|∇𝜙|
2
𝑑𝑥 = ∫

R3
𝜙𝑢
2
𝑑𝑥, we have

1

2
∫

R3
|∇𝑢|
2
𝑑𝑥 +

3 − 𝛼

2
∫

R3

𝑢
2

𝑟
𝛼
2

+
5

4
∫

R3
𝜙𝑢
2
𝑑𝑥

−
3

𝑝 + 1
∫

R3
|𝑢|
𝑝+1

𝑑𝑥 = 0.

(31)

On the other hand, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏𝑅1,𝑛,𝑅2

𝑢 (∇𝑢 ⋅ ]) 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ {∫

𝜏𝑅1,𝑛,𝑅2

|𝑢|
6
𝑑𝜎}

1/6

{∫

𝜏𝑅1,𝑛,𝑅2

|∇𝑢|
3
𝑑𝜎}

1/3

󵄨󵄨󵄨󵄨󵄨
𝜏𝑅1,𝑛 ,𝑅2

󵄨󵄨󵄨󵄨󵄨

1/2

≤ 𝐶 ⋅ {∫

𝜏𝑅1,𝑛,𝑅2

𝑅1,𝑛|𝑢|
6
𝑑𝜎}

1/6

× {∫

𝜏𝑅1,𝑛,𝑅2

𝑅1,𝑛|∇𝑢|
3
𝑑𝜎}

1/3

𝑛
󳨀→ 0.

(32)

So if we multiply (1) by 𝑢 and then integrate over the domain
Ω𝑅1,𝑛 ,𝑅2

and let 𝑛 → +∞, we have

∫

𝐵𝑅2

|∇𝑢|
2
𝑑𝑥 + ∫

𝐵𝑅2

𝑢
2

𝑟
𝛼
2

𝑑𝑥 + ∫

𝐵𝑅2

𝜙𝑢
2
𝑑𝑥 − ∫

𝐵𝑅2

|𝑢|
𝑝+1

𝑑𝑥

= ∫

𝜕𝐵𝑅2

𝑢 (∇𝑢 ⋅ ]) 𝑑𝜎.

(33)
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As for (20), we have

∫

R3
|∇𝑢|
2
𝑑𝑥 + ∫

R3

𝑢
2

𝑟
𝛼
2

𝑑𝑥 + ∫

R3
𝜙𝑢
2
𝑑𝑥 − ∫

R3
|𝑢|
𝑝+1

𝑑𝑥 = 0.

(34)

From (31) and (34), we have

(
1

2
−

3

𝑝 + 1
)∫

R3
|∇𝑢|
2
𝑑𝑥 + (

3 − 𝛼

2
−

3

𝑝 + 1
)∫

R3

𝑢
2

𝑟
𝛼
2

𝑑𝑥

+ (
5

4
−

3

𝑝 + 1
)∫

R3
𝜙𝑢
2
𝑑𝑥 = 0.

(35)

For 1 < 𝑝 ⩽ min{(3 + 𝛼)/(3 − 𝛼), 7/5} or 𝑝 ⩾ max{5, (3 +

𝛼)/(3 − 𝛼)}, (35) implies that the solution of problem (1) with
𝑖 = 2, (𝑢, 𝜙) ∈ 𝐿

𝑝+1
(R3) ∩ 𝐸2(R

3
) ∩ 𝐶
2
(R3 \ {0}) × 𝐷

1,2
∩

𝐶
2
(R3), which satisfies (∇𝑢, ∇𝜙) ∈ 𝐿

4

loc(R
3
) × 𝐿
4

loc(R
3
), must

be trivial.

4. Conclusion

We mainly study the nonexistence of nontrivial solutions to
system (1) in this paper, giving two regions on the 𝛼−𝑝 plane
where the system (1) has no nontrivial solutions; see Figure 1.
In another paper, we will study the existence of nontrivial
solutions to system (1).
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