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We investigate a compound Poisson infinite factor diffusionmodel which describes the relationship between the infinite-dimension
random risk resource and the corresponding stochastic process. We derive the no-arbitrage condition on the drift of instantaneous
forward rates in the compound model and study the impact of random jump on the price of the zero-coupon bond.

1. Introduction

In the study of the stochastic process, the expansion from
single-factor model to multiple-factor model greatly
improves its capability to describe the dynamic properties.
For the term structure of interest rates, multiple-factor
expansion enables itself tomore flexibly describe the relation-
ship between different maturities and their corresponding
risk-free interest rates.The term structure curve contains rich
information about the economy status and financial markets.
The literatures have witted extensive researches on this topic
for recent decades. For instance, the HJM model in [1, 2]
provides insight about arbitrage-free condition of the shift
and volatility of the dynamic process of forward interest rates
under the risk-free condition. Kennedy [3, 4], Goldstein [5],
and Santa-Clara and Didier [6] model each time-to-maturity
forward rate driven by its own shock termed Brown Sheet,
Random Field, or Stochastic String. In fact, the models in
[3–6] expand the multiple-factor model to infinite stochastic
factor with imperfect correlation among different maturities.
At the same time, the correlations are not confined by the
function form of volatilities. These results display greater
variability in the correlation between different maturities.

In this paper, according to the stochastic string model
presented in [6], we introduce a compound Poisson process
with a constant jump intensity and random jump size to cap-
ture information burst and resulting discontinuous path. We
derive the no-arbitrage condition in the compound Poisson
infinite-dimensional diffusion process in which the drift and

volatility of stochastic process under the risk-neutralmeasure
are satisfied. Some of the results in [6] are extended.

The paper is organized as follows. Section 2 reviews the
single-factor, multiple-factor model and stochastic string
model, which are related to our study. In Section 3, we add a
random jump process in the stochastic string model dis-
cussed in [6] and analyze its dynamic properties. An appli-
cation of our main result is presented in Section 4.

2. Single-Factor, Multiple-Factor Model and
Stochastic String Model

For a probability space (Ω,Φ, 𝑃), the dynamics of a stochastic
process 𝑓(𝑡, 𝑥) is described by

𝑑𝑓 (𝑡, 𝑥) = 𝛼 (𝑡, 𝑥) 𝑑𝑡 + 𝜎 (𝑡, 𝑥) 𝑑𝑊 (𝑡) , (1)
where 𝑊(𝑡) is a standard Wiener process and 𝛼(𝑡, 𝑥) and
𝜎(𝑡, 𝑥) are drift and volatility terms, respectively. When
𝑓(𝑡, 𝑥) is explained as the instantaneous forward rate at time
𝑡 for time-to-maturity 𝑥 > 0, (1) is the HJMmodel. The price
at time 𝑡 of a bond with maturity 𝑠 is

𝐵 (𝑡, 𝑠) = exp [−∫
𝑠−𝑡

0

𝑓 (𝑡, 𝑥) 𝑑𝑥] . (2)

The HJM model has no-arbitrage condition which is written
by

𝛼 (𝑡, 𝑥) =
𝜕𝑓 (𝑡, 𝑥)

𝜕𝑥
+ 𝜎 (𝑡, 𝑥) [∫

𝑥

0

𝜎 (𝑡, 𝑦) 𝑑𝑦 + 𝜃 (𝑡)] , (3)
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where the process 𝜃(𝑡) denotes the market price of risk at
time 𝑡. Using Itô’s formula, we calculate the dynamics of bond
prices as

𝑑𝐵 (𝑡, 𝑠)

𝐵 (𝑡, 𝑠)
= [𝑓 (𝑡, 𝑠 − 𝑡) − ∫

𝑠−𝑡

0

𝛼 (𝑡, 𝑦) 𝑑𝑦

+
1

2
(∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑦) 𝑑𝑦)

2

]𝑑𝑡

− [∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑦) 𝑑𝑦] 𝑑𝑊 (𝑡) .

(4)

Under the no-arbitrage condition, the instantaneous forward
rate of time-to-maturity 𝑥 is

𝑓 (𝑡, 𝑥) = 𝑓 (0, 𝑡 + 𝑥) + ∫
𝑡

0

𝜂 (𝑢, 𝑡 + 𝑥 − 𝑢) 𝑑𝑢

+ ∫
𝑡

0

𝜎 (𝑢, 𝑡 + 𝑥 − 𝑢) 𝑑𝑊 (𝑢) ,

(5)

where

𝜂 (𝑡, 𝑥) ≡ 𝜎 (𝑡, 𝑥) [∫
𝑥

0

𝜎 (𝑡, V) 𝑑V + 𝜃 (𝑡)] . (6)

In fact, every term structure model driven by Brownian
motion is a special case of the HJM model (e.g., the Vasicek
model in [7], the Hull-White model in [8], etc.). However,
the single-factor HJM model has a limitation that different
time-to-maturities are completely correlated; that is, their
correlation coefficient equals 1. This implies that

(1) the term structure curve would parallel shift which
limits its capability to generate richer class of dynam-
ics and shapes of the term structure of interest rates,

(2) it does not permit consistency with term structure
innovation along with the time.

One way to extend the model is by introducing the 𝑁-
dimensional Brownian motion to the term structure model
written by

𝑑𝑓 (𝑡, 𝑥) = 𝛼 (𝑡, 𝑥) 𝑑𝑡 +

𝑁

∑
𝑖=1

𝜎
𝑖

(𝑡, 𝑥) 𝑑𝑊
𝑖

. (7)

One can obtain the correlation of the forward rate curve
driven by the𝑁-dimensional Brownian motion as

𝑐 (𝑥, 𝑦) =
∑
𝑁

𝑖=1
𝜎𝑖 (𝑡, 𝑥) 𝜎

𝑖 (𝑡, 𝑦)

√∑
𝑁

𝑖=1
(𝜎𝑖 (𝑡, 𝑥))

2√∑
𝑁

𝑖=1
(𝜎𝑖 (𝑡, 𝑦))

2

. (8)

Different from the multiple-factor HJM model in (7), which
implies all assets shocked by the common 𝑁 factors, Santa-
Clara and Didier [6] model the forward rate as a stochastic
string and allow each forward rate to be driven by its own
random risk resource.

Assume that the dynamics of the instantaneous forward
rates at 𝑡 with time-to-maturity 𝑥 (𝑥 > 0) is modeled by

𝑑
𝑡
𝑓 (𝑡, 𝑥) = 𝛼 (𝑡, 𝑥) 𝑑𝑡 + 𝜎 (𝑡, 𝑥) 𝑑

𝑡
𝑊(𝑡, 𝑥) , (9)

where𝑊(𝑡, 𝑥) is a generalization of Brownian motion which
depends on both time 𝑡 and time-to-maturity 𝑥.The notation
𝑑
𝑡
()means that the increment is taken with respect to time 𝑡.

Equation (9) is not the infinite-dimensional simple gener-
alization of the multifactor HJM model, in which all for-
ward rates are subject to the same (possibly infinite) set of
Brownianmotion shocks. In this model, there is one different
stochastic shock for each time-to-maturity. Given time-to-
maturity 𝑥, the stochastic perturbation𝑊(𝑡, 𝑥) is a standard
Wiener process, which satisfies several requirements (see [6]
for details). For example, the correlation coefficient matrix is
positive semidefinite, whichmeans that, for all functions ℎ(𝑥)
in 𝐿2 and for some large enough constant 𝑇,

∫
𝑇

0

∫
𝑇

0

ℎ (𝑥) 𝑐 (𝑥, 𝑦) ℎ (𝑦) 𝑑𝑦 𝑑𝑥 ≥ 0. (10)

The no-arbitrage condition of the drift of instantaneous for-
ward rate is

𝛼 (𝑡, 𝑥) =
𝜕𝑓 (𝑡, 𝑥)

𝜕𝑥
+ 𝜎 (𝑡, 𝑥)

×[∫
𝑥

0

𝑐 (𝑥, 𝑦) 𝜎 (𝑡, 𝑦) 𝑑𝑦+∫
∞

0

𝑐 (𝑥, 𝑦) 𝜃 (𝑡, 𝑦) 𝑑𝑦] .

(11)

The solution of the stochastic differential equation for instan-
taneous forward interest rate is

𝑓 (𝑡, 𝑥) = 𝑓 (0, 𝑡 + 𝑥) + ∫
𝑡

0

𝑎 (𝑢, 𝑡 + 𝑥 − 𝑢) 𝑑𝑢

+ ∫
𝑡

0

𝜎 (𝑢, 𝑡 + 𝑥 − 𝑢) 𝑑
𝑢
𝑊(𝑢, 𝑡 + 𝑥 − 𝑢) ,

(12)

where

𝑎 (𝑡, 𝑥) ≡ 𝜎 (𝑡, 𝑥)

×[∫
𝑥

0

𝑐 (𝑥, 𝑦) 𝜎 (𝑡, 𝑦) 𝑑𝑦+∫
∞

0

𝑐 (𝑥, 𝑦) 𝜃 (𝑡, 𝑦) 𝑑𝑦] .

(13)

Under the arbitrage-free condition, we have

𝐵 (𝑡, 𝑠) = 𝐵 (0, 𝑠) exp [∫
𝑡

0

𝑟 (𝑢) 𝑑𝑢 − ∫
𝑡

0

𝑈 (𝑢, 𝑠 − 𝑢) 𝑑𝑢

−∫
𝑡

0

𝑉 (𝑢, 𝑠 − 𝑢) 𝑑
𝑢
𝑊(𝑢, 𝑠 − 𝑢)] ,

(14)

where

𝑈 (𝑡, 𝑥) ≡ ∫
∞

0

𝜃 (𝑡, 𝑦) ∫
𝑥

0

𝑐 (𝑦, 𝑧) 𝜎 (𝑡, 𝑧) 𝑑𝑧 𝑑𝑦,

𝑉 (𝑡, 𝑥) ≡ ∫
𝑥

0

𝜎 (𝑡, 𝑦) 𝑑𝑦.

(15)
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The covariance of different time-to-maturity zero-coupon
bond yields is

cov[𝑑𝐵 (𝑡, 𝑠)
𝐵 (𝑡, 𝑠)

,
𝑑𝐵 (𝑡, 𝑠)

𝐵 (𝑡, 𝑠)
]

= ∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑥) (∫
𝑠

−𝑡

0

𝑐 (𝑥, 𝑦) 𝜎 (𝑡, 𝑦) 𝑑𝑦)𝑑𝑥𝑑𝑡.

(16)

3. Compound Poisson Infinite-Dimensional
Diffusion Process

Information burst, some emergency events, crises, andmone-
tary target adjustment may cause the return and price of asset
jump. There are more and more empirical lines of evidence
which show that the interest rate models should incorporate
the jump risk. The difference of the asset price of continuous
path will disappear as the change of time converges to zero.
We know that in the jumpmodel, the difference does not con-
verge to zero, although its probability of jump occurrence will
converge to 0. Eberlein et al. [9] investigate the term structure
models driven by Lévy processes.

Based on the continuous path of instantaneous forward
rate used in Santa-Clara and Didier [6] and other works [3–
5], we introduce a compound Poisson process to capture the
yield curve jump. For each time-to-maturity 𝑥, assume that
the dynamics of instantaneous forward rate is
𝑑
𝑡
𝑓 (𝑡, 𝑥) = 𝛼 (𝑡, 𝑥) 𝑑𝑡 + 𝜎 (𝑡, 𝑥) 𝑑

𝑡
𝑊(𝑡, 𝑥) + 𝛾 (𝑡, 𝑥) 𝑑𝐽 (𝑡) ,

(17)
where 𝐽(𝑡) is a compound Poisson process and 𝐽(𝑡) =

∑
𝑁(𝑡)

𝑚=1
𝑌
𝑚
. Poisson process 𝑁(𝑡) counts the number of jumps

that occur at or before time 𝑡. 𝑌
𝑚
(𝑚 = 1, 2, . . .) are indepen-

dent identically distributed discrete random variables with
finite values 𝑎

1
, 𝑎
2
, . . . 𝑎
𝐾
, with probability 𝑃(𝑦

𝑗
= 𝑎
𝑖
) = 𝑝

𝑖
,

∑
𝐾

𝑖=1
𝑝
𝑖
= 1. 𝛾(𝑡, 𝑥) is a nonrandom function. The compound

jump is independent of the stochastic string𝑊(𝑡, 𝑥).
Applying the decomposition theorem of a compound

Poisson process (see [10]), 𝐽(𝑡) = ∑𝑁(𝑡)
𝑚=1

𝑌
𝑚
may be rewritten

as 𝐽(𝑡) = ∑𝐾
𝑖=1
𝑎
𝑖
𝑑𝑁
𝑖
(𝑡). So, we can rewrite the dynamics of

instantaneous forward rates as

𝑓 (𝑡, 𝑥) = 𝑓 (0, 𝑥) + ∫
𝑡

0

𝛼 (𝑢, 𝑥) 𝑑𝑢 + ∫
𝑡

0

𝜎 (𝑢, 𝑥) 𝑑
𝑢
𝑊(𝑢, 𝑥)

+

𝐾

∑
𝑖=1

∫
𝑡

0

𝛾 (𝑢, 𝑥) 𝑎
𝑖
𝑑𝑁
𝑖
(𝑢) ,

(18)
where𝑊(𝑡, 𝑥) is the same random risk resource as defined in
(9).

Assume that the market is complete, so that the existence
and uniqueness of the riskmarket price are guaranteed. It can
be proved that the continuous part of random risk factor is
independent of the jump risk factor.

For the continuous risk resource part, define

�̃� (𝑡, 𝑥) = 𝑊 (𝑡, 𝑥) + ∫
𝑡

0

∫
∞

0

𝜃 (𝑢, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑢, (19)

or in differential form

𝑑
𝑡
�̃� (𝑡, 𝑥) = 𝑑

𝑡
𝑊(𝑡, 𝑥) + ∫

∞

0

𝜃 (𝑡, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑡. (20)

The correlation coefficient for different time-to-maturity ran-
dom risk resource �̃�(𝑡, 𝑠) is the same as that of𝑊(𝑡, 𝑠). For
fixed time-to-maturity 𝑥, let

𝑍
0
(𝑡, 𝑥)

= exp [−∫
𝑡

0

∫
∞

0

𝜃 (𝑢, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦 𝑑
𝑢
𝑊(𝑢, 𝑦)

−
1

2
∫
𝑡

0

∫
∞

0

[𝜃 (𝑢, 𝑧) 𝑐 (𝑥, 𝑧)∫
∞

0

𝜃 (𝑢, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦]

× 𝑐 (𝑦, 𝑧) 𝑑𝑧 𝑑𝑢] ,

𝑍
𝑖
(𝑡, 𝑥) = exp [(𝜆

𝑖
− �̃�
𝑖
) 𝑡 + 𝑁

𝑖
(𝑡) log (�̃�

𝑖
− 𝜆
𝑖
)] ,

𝑖 = 1, 2, . . . , 𝐾,

𝑍 (𝑡, 𝑥) =

𝐾

∏
𝑖=0

𝑍
𝑖
(𝑡, 𝑥) ,

�̃� (𝐴) = ∫
𝐴

𝑍 (𝑇, 𝑥) 𝑑𝑃 ∀𝐴 ∈ Φ.

(21)

We obtain the risk-neutralmeasure �̃� under some conditions.
Using the properties of risk-neutralmeasure �̃�, for fixed time-
to-maturity 𝑥, we know that �̃�(𝑡, 𝑥) is a martingale. At the
same time, 𝐽(𝑡) = ∑𝐾

𝑖=1
𝑎
𝑖
𝑑𝑁
𝑖
(𝑡) is a compound Poisson pro-

cess with intensity �̃�. The jump sizes 𝑌
1
, 𝑌
2
⋅ ⋅ ⋅ are still I.I.D.

random variables, while the jump intensity satisfies �̃�(𝑌
𝑗
=

𝑎
𝑖
) = 𝑝(𝑎

𝑖
) = (�̃�

𝑖
/�̃�) (𝑖 = 1, 2, . . . , 𝐾) for arbitrary 𝑗,

where ∑𝐾
𝑖=1
𝜆
𝑖
= �̃� and each 𝜆

𝑖
(𝑖 = 1, 2, . . . , 𝐾) is a positive

constant. Notice that, under the new measure �̃�, �̃�(𝑡, 𝑥) is
still independent of𝑁

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝐾.

Theorem 1. If the market is complete, the arbitrage-free con-
dition of the instantaneous forward rate satisfies

𝛼 (𝑡, 𝑥) =
𝜕𝑓 (𝑡, 𝑥)

𝜕𝑥
+ 𝜎 (𝑡, 𝑥)

× [∫
𝑥

0

𝜎 (𝑡, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦 + ∫
∞

0

𝜃 (𝑡, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦]

−

𝐾

∑
𝑖=1

𝑎
𝑖
𝜆
𝑖
𝛾 (𝑡, 𝑥) exp [−𝑎

𝑖
∫
𝑥

0

𝛾 (𝑡, 𝑦) 𝑑𝑦] .

(22)
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Proof. The price at time 𝑡 of a zero-coupon bond with matur-
ity 𝑠 is 𝐵(𝑡, 𝑠) = exp[− ∫𝑠−𝑡

0

𝑓(𝑡, 𝑥)𝑑𝑥]. For fixed 𝑠, we have

ln (𝐵 (𝑡, 𝑠)) = −∫
𝑠−𝑡

0

𝑓 (𝑡, 𝑥) 𝑑𝑥. (23)

Differentiating with respect to time 𝑡 in (23), we obtain

𝑑
𝑡
ln𝐵 (𝑡, 𝑠) = 𝑓 (𝑡, 𝑠 − 𝑡) 𝑑𝑡 − ∫

𝑠−𝑡

0

𝑑
𝑡
𝑓 (𝑡, 𝑥) 𝑑𝑥

= 𝑓 (𝑡, 𝑠 − 𝑡) 𝑑𝑡 − ∫
𝑠−𝑡

0

𝛼 (𝑡, 𝑥) 𝑑𝑥 𝑑𝑡

− ∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑥) 𝑑
𝑡
𝑊(𝑡, 𝑥) 𝑑𝑥

− ∫
𝑠−𝑡

0

𝛾 (𝑡, 𝑥)

𝐾

∑
𝑖=1

𝑎
𝑖
𝑑𝑁
𝑖
(𝑡) 𝑑𝑥.

= [𝑓 (𝑡, 𝑠 − 𝑡) − ∫
𝑠−𝑡

0

𝛼 (𝑡, 𝑥) 𝑑𝑥] 𝑑𝑡

− ∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑥) 𝑑𝑥 𝑑
𝑡
𝑊(𝑡, 𝑥)

−

𝐾

∑
𝑖=1

∫
𝑠−𝑡

0

𝛾 (𝑡, 𝑥) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑡) .

(24)

Applying jump process Itô’s formula (see [10]), we have

𝑑
𝑡
𝐵 (𝑡, 𝑠)

= 𝐵 (𝑡, 𝑠) [𝑓 (𝑡, 𝑠 − 𝑡) − ∫
𝑠−𝑡

0

𝛼 (𝑡, 𝑥) 𝑑𝑥

+
1

2
∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑥) ∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥] 𝑑𝑡

− 𝐵 (𝑡, 𝑠) ∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑥) 𝑑𝑥 𝑑
𝑡
𝑊(𝑡, 𝑥)

+ 𝐵 (𝑡
−

, 𝑠)

𝐾

∑
𝑖=1

[exp(−𝑎
𝑖
∫
𝑠−𝑡

0

𝛾 (𝑡, 𝑥) 𝑑𝑥) − 1] 𝑑𝑁
𝑖
(𝑡) .

(25)

Under the risk-neutral probability measure �̃�, the price of
zero-coupon bond satisfies

𝑑
𝑡
𝐵 (𝑡, 𝑠) = 𝐵 (𝑡, 𝑠) 𝑟 (𝑡) 𝑑𝑡

− 𝐵 (𝑡, 𝑠) ∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑥) 𝑑𝑥 𝑑
𝑡
�̃� (𝑡, 𝑥)

+ 𝐵 (𝑡
−

, 𝑠)

𝐾

∑
𝑖=1

[exp(−𝑎
𝑖
∫
𝑠−𝑡

0

𝛾 (𝑡, 𝑥) 𝑑𝑥) − 1]

× 𝑑 (𝑁
𝑖
(𝑡) − 𝜆

𝑖
𝑡) .

(26)

Combining (25) with (26), we have

𝑟 (𝑡) = 𝑓 (𝑡, 𝑠 − 𝑡) − ∫
𝑠−𝑡

0

𝛼 (𝑡, 𝑥) 𝑑𝑥

+
1

2
∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑥) ∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

+ ∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑥) ∫
∞

0

𝜃 (𝑡, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

+

𝐾

∑
𝑖=1

[exp(−𝑎
𝑖
∫
𝑠−𝑡

0

𝛾 (𝑡, 𝑥) 𝑑𝑥) − 1] 𝜆
𝑖
,

(27)

which is the expression that the risk market prices satisfy. It
includesmarket prices of𝐾 jump risk factors and infinite ran-
dom risk resource. Note that the compensated Poisson pro-
cess 𝑁

𝑖
(𝑡) − 𝜆

𝑖
𝑡 in (26) is a martingale. Let 𝑠 − 𝑡 = 𝑥, and

applying the stochastic Fubini theorem, we rewrite (27) as

𝑟 (𝑡) = 𝑓 (𝑡, 𝑥) − ∫
𝑥

0

𝛼 (𝑡, 𝑦) 𝑑𝑦

+
1

2
∫
𝑥

0

𝜎 (𝑡, 𝑧) ∫
𝑥

0

𝜎 (𝑡, 𝑦) 𝑐 (𝑧, 𝑦) 𝑑𝑦 𝑑𝑧

+ ∫
𝑥

0

𝜎 (𝑡, 𝑧) ∫
∞

0

𝜃 (𝑡, 𝑦) 𝑐 (𝑧, 𝑦) 𝑑𝑦 𝑑𝑧

+

𝐾

∑
𝑖=1

[exp(−𝑎
𝑖
∫
𝑥

0

𝛾 (𝑡, 𝑦) 𝑑𝑦) − 1] 𝜆
𝑖
.

(28)

Differentiating (28) with respect to 𝑥, we obtain

𝜕𝑓 (𝑡, 𝑥)

𝜕𝑥
− 𝛼 (𝑡, 𝑥) + 𝜎 (𝑡, 𝑥)

× [∫
𝑥

0

𝜎 (𝑡, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦 + ∫
∞

0

𝜃 (𝑡, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦]

−

𝐾

∑
𝑖=1

𝑎
𝑖
𝜆
𝑖
𝛾 (𝑡, 𝑥) exp [−𝑎

𝑖
∫
𝑥

0

𝛾 (𝑡, 𝑦) 𝑑𝑦] = 0.

(29)

Rearranging (29), we obtain the arbitrage-free condition of
(22). It completes the proof.

Remark 2. When 𝑎
𝑖
= 0 (𝑖 = 1, 2, . . . 𝐾), (22) reduces to

𝛼 (𝑡, 𝑥) =
𝜕𝑓 (𝑡, 𝑥)

𝜕𝑥
+ 𝜎 (𝑡, 𝑥) ∫

𝑥

0

𝜎 (𝑡, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦

+ 𝜎 (𝑡, 𝑥) ∫
∞

0

𝜃 (𝑡, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦,

(30)

which is the arbitrage-free condition presented in [6]. More-
over, for arbitrary time-to-maturity 𝑥 and 𝑦, if 𝑐(𝑥, 𝑦) = 1,
and let∫∞

0

𝜃(𝑡, 𝑦)𝑑𝑦 = Θ(𝑡), then the arbitrage-free condition
becomes

𝛼 (𝑡, 𝑥) =
𝜕𝑓 (𝑡, 𝑥)

𝜕𝑥
+ 𝜎 (𝑡, 𝑥) [∫

𝑥

0

𝜎 (𝑡, 𝑦) 𝑑𝑦 + Θ (𝑡)] , (31)
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which is the arbitrage-free condition of the one-dimensional
HJM model.

Under the risk-neutral measure �̃�, the dynamics of
instantaneous forward rates which satisfy the arbitrage-free
condition can be rewritten as

𝑑
𝑡
𝑓 (𝑡, 𝑥) = 𝐴 (𝑡, 𝑥) 𝑑𝑡 + 𝜎 (𝑡, 𝑥) 𝑑

𝑡
�̃� (𝑡, 𝑥)

+

𝐾

∑
𝑖=1

𝑎
𝑖
𝛾 (𝑡, 𝑥) 𝑑𝑁

𝑖
(𝑡) ,

(32)

where

𝐴 (𝑡, 𝑥) ≡
𝜕𝑓 (𝑡, 𝑥)

𝜕𝑥
+ 𝜎 (𝑡, 𝑥) ∫

𝑥

0

𝜎 (𝑡, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦

−

𝐾

∑
𝑖=1

𝑎
𝑖
𝜆
𝑖
𝛾 (𝑡, 𝑥) exp [−𝑎

𝑖
∫
𝑥

0

𝛾 (𝑡, 𝑦) 𝑑𝑦] .

(33)

Theorem 3. Under the risk-neutral measure �̃�, the price at
time 𝑡 of a zero-coupon bond with maturity 𝑠 is

𝐵 (𝑡, 𝑠)

=𝐵 (0, 𝑠)

× exp[∫
𝑡

0

𝑟 (𝑢) 𝑑𝑢 − ∫
𝑡

0

∫
𝑠−𝑢

0

𝜎 (𝑢, 𝑥) 𝑑𝑥 𝑑
𝑢
�̃� (𝑢, 𝑥)

−
1

2
∫
𝑡

0

𝑑𝑢∫
𝑠−𝑢

0

𝜎 (𝑢, 𝑥)

× ∫
𝑠−𝑢

0

𝜎 (𝑢, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

−

𝐾

∑
𝑖=1

∫
𝑡

0

[exp(−𝑎
𝑖
∫
𝑠−𝑢

0

𝛾 (𝑢, 𝑥) 𝑑𝑥) − 1] 𝜆
𝑖
𝑑𝑢]

× exp[−
𝐾

∑
𝑖=1

∫
𝑡

0

∫
𝑠−𝑢

0

𝛾 (𝑢, 𝑥) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑢)] .

(34)

Proof. We show that (34) is the solution of (26). Obviously,
when 𝑡 = 0, the result is correct. Let𝑌(𝑡) = 𝐵(0, 𝑠) exp[𝑋𝑐(𝑡)],
where

𝑋
𝑐

(𝑡) ≡ ∫
𝑡

0

𝑟 (𝑢) 𝑑𝑢 − ∫
𝑡

0

∫
𝑠−𝑢

0

𝜎 (𝑢, 𝑥) 𝑑𝑥 𝑑
𝑢
�̃� (𝑢, 𝑥)

−
1

2
∫
𝑡

0

𝑑𝑢∫
𝑠−𝑢

0

𝜎 (𝑢, 𝑥) ∫
𝑠−𝑢

0

𝜎 (𝑢, 𝑦) 𝑐 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

−

𝐾

∑
𝑖=1

∫
𝑡

0

[exp(−𝑎
𝑖
∫
𝑠−𝑢

0

𝛾 (𝑢, 𝑥) 𝑑𝑥) − 1] 𝜆
𝑖
𝑑𝑢.

(35)

Denote

𝐾 (𝑡) ≡ exp[−
𝐾

∑
𝑖=1

∫
𝑡

0

∫
𝑠−𝑢

0

𝛾 (𝑢, 𝑥) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑢)] . (36)

Then, we have

𝑑𝑌 (𝑡) = 𝑌 (𝑡) [𝑟 (𝑡) 𝑑𝑡 − ∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑥) 𝑑𝑥 𝑑
𝑡
�̃� (𝑡, 𝑥)

−

𝐾

∑
𝑖=1

[exp(−𝑎
𝑖
∫
𝑠−𝑡

0

𝛾 (𝑡, 𝑥) 𝑑𝑥) − 1] 𝜆
𝑖
𝑑𝑡] ,

(37)

𝑑𝐾 (𝑡) = 𝐾 (𝑡
−

)

× [

𝐾

∑
𝑖=1

[exp(−𝑎
𝑖
∫
𝑠−𝑡

0

𝛾 (𝑡, 𝑥) 𝑑𝑥) − 1] 𝑑𝑁
𝑖
(𝑡)] .

(38)

Notice that as the length of time interval converges to 0, there
is at most one jump in each time interval. Combining (37)
with (38), we obtain

𝑑
𝑡
𝐵 (𝑡, 𝑠)

= 𝑌 (𝑡) 𝑑𝐾 (𝑡) + 𝑑𝑌 (𝑡)𝐾 (𝑡) + 𝑑𝑌 (𝑡) 𝑑𝐾 (𝑡)

=𝑌 (𝑡)𝐾 (𝑡
−

)[

𝐾

∑
𝑖=1

[exp(−𝑎
𝑖
∫
𝑠−𝑡

0

𝛾 (𝑡, 𝑥) 𝑑𝑥) − 1]𝑑𝑁
𝑖
(𝑡)]

+ 𝑌 (𝑡)𝐾 (𝑡) [𝑟 (𝑡) 𝑑𝑡 − ∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑥) 𝑑𝑥 𝑑
𝑡
�̃� (𝑡, 𝑥)

−

𝐾

∑
𝑖=1

[exp(−𝑎
𝑖
∫
𝑠−𝑡

0

𝛾 (𝑡, 𝑥) 𝑑𝑥) − 1]𝜆
𝑖
𝑑𝑡]

+ 0

= 𝐵 (𝑡
−

, 𝑠)

𝐾

∑
𝑖=1

[exp(−𝑎
𝑖
∫
𝑠−𝑡

0

𝛾 (𝑡, 𝑥) 𝑑𝑥) − 1]

× 𝑑 (𝑁
𝑖
(𝑡) − 𝜆

𝑖
𝑡)

+ 𝐵 (𝑡, 𝑠) [𝑟 (𝑡) 𝑑𝑡 − ∫
𝑠−𝑡

0

𝜎 (𝑡, 𝑥) 𝑑𝑥 𝑑
𝑡
�̃� (𝑡, 𝑥)] .

(39)

Therefore, (34) is the solution of (26). It completes the proof.

Remark 4. In (34), it shows that the price of zero-coupon
bond is affected by two parts: continuous component and
jump component. For the continuous part, besides the risk-
free interest rate effect, the stochastic string risk resources
till to the maturity would generate an accumulated effect on
the price of zero-coupon bond. As the occurrence of jump,
its long-term accumulative effects will be offset by part of
−∑
𝐾

𝑖=1
∫
𝑡

0

[exp(−𝑎
𝑖
∫
𝑠−𝑢

0

𝛾(𝑢, 𝑥)𝑑𝑥)−1]𝜆
𝑖
𝑑𝑢.The correlation of

different maturities from time 𝑡 to maturity 𝑠 has an explicit
effect on the price. For the jump component, the effect is
scaled by the function 𝛾(𝑡, 𝑥), which captures the jump effect
on the financial variables.
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4. Application

The compound Poisson infinite diffusion model developed
in Section 3 comprises the traditional jump-diffusion model.
We consider that the jump sizes are discrete random vari-
ables. It is convenient to introduce the continuous jump
size model whose size is, for instance, normally distributed
random variable.

We consider the price of the short-term interest rate
futures. Assume that the financial market is shocked by two
kinds of random risk resource: one is continuous risk factor of
𝑊(𝑡, 𝑥) and the other is a compoundPoissonprocess. Assume
that the market is complete. Consider a futures contract
maturity at𝑇

𝑓
, 𝑡 < 𝑇

𝑓
< 𝑠, whose underlying asset is the zero-

coupon bond maturity at 𝑠. Denote the futures price at time
𝑡 as 𝐹(𝑡, 𝑇

𝑓
, 𝑠). Under the risk-neutral measure �̃�, the futures

price 𝐹(𝑡, 𝑇
𝑓
, 𝑠) is a martingale. We have

𝐹 (𝑡, 𝑇
𝑓
, 𝑠) = 𝐸

𝑡
[𝐹 (𝑇
𝑓
, 𝑇
𝑓
, 𝑠) | Φ

𝑡
] = 𝐸
�̃�

𝑡
[𝐵 (𝑇
𝑓
, 𝑠) | Φ

𝑡
] .

(40)

Theorem 5. Under the risk-neutral measure �̃�, the futures
price with underlying asset as a zero-coupon bond is

𝐹 (𝑡, 𝑇
𝑓
, 𝑠)

= 𝐹 (0, 𝑇
𝑓
, 𝑠)

× exp[−∫
𝑡

0

∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑
𝑢
�̃� (𝑢, 𝑥 − 𝑢)

−

𝐾

∑
𝑖=1

∫
𝑡

0

∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑢)

−
1

2
∫
𝑡

0

(∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑𝑥

×∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑦 − 𝑢) 𝑐 (𝑥 − 𝑢, 𝑦 − 𝑢) 𝑑𝑦)𝑑𝑢

+

𝐾

∑
𝑖=1

∫
𝑡

0

𝜆
𝑖
[exp(−𝑎

𝑖
∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥) − 1]𝑑𝑢] .

(41)

Proof. Note that the zero-coupon bond price is a function of
instantaneous forward rates

𝐵 (𝑇
𝑓
, 𝑠) = exp [−∫

𝑠−𝑇
𝑓

0

𝑓 (𝑇
𝑓
, 𝑥) 𝑑𝑥] . (42)

Therefore, we have

ln𝐵 (𝑇
𝑓
, 𝑠)

= −∫
𝑠−𝑇
𝑓

0

𝑓 (𝑇
𝑓
, 𝑥) 𝑑𝑥

= −∫
𝑠−𝑇
𝑓

0

𝑓 (0, 𝑇
𝑓
+ 𝑥) 𝑑𝑥

− ∫
𝑠−𝑇
𝑓

0

∫
𝑇
𝑓

0

𝐴(𝑢, 𝑇
𝑓
+ 𝑥 − 𝑢) 𝑑𝑢 𝑑𝑥

− ∫
𝑠−𝑇
𝑓

0

∫
𝑇
𝑓

0

𝜎 (𝑢, 𝑇
𝑓
+ 𝑥 − 𝑢) 𝑑

𝑢
�̃� (𝑢, 𝑇

𝑓
+ 𝑥 − 𝑢) 𝑑𝑥

−

𝐾

∑
𝑖=1

∫
𝑠−𝑇
𝑓

0

∫
𝑇
𝑓

0

𝛾 (𝑢, 𝑇
𝑓
+ 𝑥 − 𝑢) 𝑎

𝑖
𝑑𝑁
𝑖
(𝑢) 𝑑𝑥

= −∫
𝑠

𝑇
𝑓

𝑓 (0, 𝑥) 𝑑𝑥 − ∫
𝑠

𝑇
𝑓

∫
𝑇
𝑓

0

𝐴 (𝑢, 𝑥 − 𝑢) 𝑑𝑢 𝑑𝑥

− ∫
𝑠

𝑇
𝑓

∫
𝑇
𝑓

0

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑
𝑢
�̃� (𝑢, 𝑥 − 𝑢) 𝑑𝑥

−

𝐾

∑
𝑖=1

∫
𝑠

𝑇
𝑓

∫
𝑇
𝑓

0

𝛾 (𝑢, 𝑥 − 𝑢) 𝑎
𝑖
𝑑𝑁
𝑖
(𝑢) 𝑑𝑥.

(43)

Applying the stochastic Fubini theorem and exchanging the
integral order, we obtain

ln𝐵 (𝑇
𝑓
, 𝑠) = − ∫

𝑠

𝑇
𝑓

𝑓 (0, 𝑥) 𝑑𝑥

− ∫
𝑇
𝑓

0

∫
𝑠

𝑇
𝑓

𝐴 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑𝑢

− ∫
𝑇
𝑓

0

∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑
𝑢
�̃� (𝑢, 𝑥 − 𝑢)

−

𝐾

∑
𝑖=1

∫
𝑇
𝑓

0

∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑢) .

(44)

Therefore, it has

𝐹 (𝑡, 𝑇
𝑓
, 𝑠)

= 𝐸
�̃�

𝑡
[𝐵 (𝑇
𝑓
, 𝑠) | Φ

𝑡
]

=𝐸
�̃�

𝑡
[exp( −∫

𝑠

𝑇
𝑓

𝑓 (0, 𝑥) 𝑑𝑥 − ∫
𝑇
𝑓

0

∫
𝑠

𝑇
𝑓

𝐴 (𝑢, 𝑥 − 𝑢)𝑑𝑥 𝑑𝑢

− ∫
𝑇
𝑓

0

∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑
𝑢
�̃� (𝑢, 𝑥 − 𝑢)

−

𝐾

∑
𝑖=1

∫
𝑇
𝑓

0

∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑢)) | Φ

𝑡
] .

(45)
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Taking out what is known, we obtain

𝐹 (𝑡, 𝑇
𝑓
, 𝑠)

= exp( − ∫
𝑠

𝑇
𝑓

𝑓 (0, 𝑥) 𝑑𝑥

− ∫
𝑇
𝑓

0

∫
𝑠

𝑇
𝑓

𝐴 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑𝑢

− ∫
𝑡

0

∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑
𝑢
�̃� (𝑢, 𝑥 − 𝑢)

−

𝐾

∑
𝑖=1

∫
𝑡

0

∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑢))

× 𝐸
�̃�

𝑡
[exp(−∫

𝑇
𝑓

𝑡

∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑
𝑢
�̃� (𝑢, 𝑥 − 𝑢))| Φ

𝑡
]

× 𝐸
�̃�

𝑡
[exp(−

𝐾

∑
𝑖=1

∫
𝑇
𝑓

𝑡

∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑢)) | Φ

𝑡
] .

(46)

Applying independent theorem in [10], we have

𝐹 (𝑡, 𝑇
𝑓
, 𝑠)

= exp[−∫
𝑠

𝑇
𝑓

𝑓 (0, 𝑥) 𝑑𝑥

− ∫
𝑇
𝑓

0

∫
𝑠

𝑇
𝑓

𝐴 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑𝑢

− ∫
𝑡

0

∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑
𝑢
�̃� (𝑢, 𝑥 − 𝑢)

−

𝐾

∑
𝑖=1

∫
𝑡

0

∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑢)]

× 𝐸
�̃�

𝑡
[exp(−∫

𝑇
𝑓

𝑡

∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑
𝑢
�̃� (𝑢, 𝑥 − 𝑢))]

× 𝐸
�̃�

𝑡
[exp(−

𝐾

∑
𝑖=1

∫
𝑇
𝑓

𝑡

∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑢))] ,

(47)

where the first conditional expectation is

𝐸
�̃�

𝑡
[exp(−∫

𝑇
𝑓

𝑡

∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑
𝑢
�̃� (𝑢, 𝑥 − 𝑢))]

= exp[1
2
∫
𝑇
𝑓

𝑡

(∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑𝑥

×∫
𝑠

𝑇
𝑓

𝜎 (𝑢,𝑦 − 𝑢) 𝑐 (𝑥 − 𝑢,𝑦 − 𝑢) 𝑑𝑦)𝑑𝑢] .

(48)

The conditional expectation of the increments of jump
process is

𝐸
�̃�

𝑡
[exp(−

𝐾

∑
𝑖=1

∫
𝑇
𝑓

𝑡

∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑢))]

=exp[
𝐾

∑
𝑖=1

∫
𝑇
𝑓

𝑡

𝜆
𝑖
[exp(−𝑎

𝑖
∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥)− 1] 𝑑𝑢] .

(49)

Thus, the price of futures is

𝐹 (𝑡, 𝑇
𝑓
, 𝑠)

= exp[−∫
𝑠

𝑇
𝑓

𝑓 (0, 𝑥) 𝑑𝑥 − ∫
𝑇
𝑓

0

∫
𝑠

𝑇
𝑓

𝐴 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑𝑢

− ∫
𝑡

0

∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢) 𝑑𝑥 𝑑
𝑢
�̃� (𝑢, 𝑥 − 𝑢)

−

𝐾

∑
𝑖=1

∫
𝑡

0

∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥𝑎
𝑖
𝑑𝑁
𝑖
(𝑢)

+
1

2
∫
𝑇
𝑓

𝑡

∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑥 − 𝑢)

×∫
𝑠

𝑇
𝑓

𝜎 (𝑢, 𝑦 − 𝑢) 𝑐 (𝑥 − 𝑢, 𝑦 − 𝑢) 𝑑𝑦 𝑑𝑥 𝑑𝑢]

×exp[
𝐾

∑
𝑖=1

∫
𝑇
𝑓

𝑡

𝜆
𝑖
[exp(−𝑎

𝑖
∫
𝑠

𝑇
𝑓

𝛾 (𝑢, 𝑥 − 𝑢) 𝑑𝑥)− 1]𝑑𝑢] .

(50)

Rearranging (50), we obtain the futures price expressed as
(41). It completes the proof.

Acknowledgments

Thanks are due to the referees whose meaningful suggestions
are very helpful to revise the paper.This work is supported by
the Fundamental Research Funds for the Central Universities
(JBK130401).

References

[1] D. C.Heath, R. A. Jarrow, andA.Morton, “Bond pricing and the
term structure of interest rates: a discrete time approximitation,”
Journal of Financial and Quantitative Analysis, vol. 25, no. 4, pp.
419–440, 1990.

[2] D. C. Heath, R. A. Jarrow, and A. Morton, “Bond pricing and
the term structure of interest rates: a new methodology for
contingent claims valuation,” Econometrica, vol. 60, no. 60, pp.
77–105, 1992.

[3] D. P. Kennedy, “The term structure of interest rates as aGaussian
random field,”Mathematical Finance, vol. 4, no. 3, pp. 247–258,
1994.

[4] D. P. Kennedy, “Characterizing Gaussian models of the term
structure of interest rates,”Mathemnatical Finance, vol. 7, no. 2,
pp. 107–118, 1997.



8 Abstract and Applied Analysis

[5] R. S. Goldstein, “The term structure of interest rates as a random
field,”TheReview of Financial Studies, vol. 13, no. 2, pp. 365–384,
2000.

[6] P. Santa-Clara and S. Didier, “The dynamics of the forward
interest rate curve with stochastic string shocks,”The Review of
Financial Studies, vol. 14, no. 1, pp. 149–185, 2001.

[7] O. Vasicek, “An equilibrium characterization of the term struc-
ture,” Journal of Financial Economics, vol. 5, pp. 177–188, 1977.

[8] J. Hull and A.White, “Pricing interest rate derivative securities,”
The Review of Financial Studies, vol. 3, no. 4, pp. 573–592, 1990.

[9] E. Eberlein, J. Jacod, and S. Raible, “Lévy term structuremodels:
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