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A novel PDE-based image denoising approach is proposed in this paper. One designs here a nonlinear filter for image noise
reduction based on the diffusion flow generated by the porous media equation 𝜕𝑢/𝜕𝑡 = Δ𝛽(𝑢), where 𝛽 is a nonlinear continuous
function of the form 𝛽(𝑢) = 𝜆𝑢

𝑚, 0 < 𝑚 < 1. With respect to standard 2D Gaussian smoothing and some nonlinear PDE-based
filters, this one is more efficient to remove noise from degraded images and also to reduce “staircasing” effects and preserve the
image edges.

1. Introduction

Image noise removal constitutes a very important process,
often representing the first step of image analysis [1, 2].
Image denoising with feature preservation represents still a
focus in the image processing domain, remaining a serious
challenge for researchers. A robust denoising technique has
to successfully reduce the amount of noise while preserving
the edges and has no blurring effect on the processed image.

The most common noise results from the image acqui-
sition system can be modeled as Gaussian random noise
in most cases. Gaussian noise represents statistical noise
having the probability density function equal to that of the
normal distribution.Numerous image denoisingmodels have
been introduced in the past few decades. The conventional
filters such as averaging filter, median filter, and 2D Gaussian
filter are efficient in smoothing the noise, but also have
the disadvantage of blurring image edges [1, 2]. For this
reason, some nonlinear image filters, which produce more
satisfactory noise reduction results and preserve better the
integrity of edges and detail information,were introduced [3].

The nonlinear noise removal techniques based on Partial
Differential Equations (PDEs) have been extensively studied
in the last two decades [4–6]. The PDE models are the best
candidates for a very efficient image denoising. We proposed

several robust PDE-based models for noise removal and
image restoration in our previous works [7–9]. In this paper
we develop a novel PDE-based image denoising approach
based on nonlinear diffusion.

The idea of using the diffusion in image processing
arose from the use of the Gaussian filter in multiscale
image analysis. Nonlinear diffusion methods reduce noise
and enhance contours in images [8–11]. Numerous nonlinear
PDE denoising approaches based on diffusion have been
introduced since the early work of Perona and Malik in 1987
[10].The anisotropic diffusion developed by them, also called
Perona-Malik diffusion, was intended to smooth the image
while preserving its edges. Many denoising schemes based on
this influential work have been proposed in the last 25 years
[10, 11]. More closely of our approach is perhaps Kacur and
Mikula scheme [12] which we will briefly present later on.

In the next section of this paper we describe the porous
media diffusion filtering model. Then, the explicit version of
the fast diffusion filtering scheme is presented in Section 3.
Our denoising technique is compared with Perona-Malik
scheme and Kacur-Mikula scheme in the fourth section.
Other method comparisons and the numerical experiments
performed using the proposed approach are discussed in
Section 5. The paper ends with a section of conclusions.
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2. The Porous Media Diffusion Filtering

Numerous PDE image denoising and segmentation ap-
proaches are based on the following nonlinear diffusion
equation [10, 11]:

𝜕𝑢

𝜕𝑡
− div (𝑎 (∇𝑢)) = 0, in (0,∞) × Ω,

𝑢 (0, 𝑥) = 𝑔 (𝑥) , 𝑥 ∈ Ω,

(1)

where 𝑔 is the original noised image and 𝑢 = 𝑢(𝑡, 𝑥) is the
filtered image. Here Ω ⊂ 𝑅

2 is the image domain, 𝜕Ω is the
image boundary, and 𝑎 : 𝑅

2

→ 𝑅
2 is a given continuous and

monotone function. Very often, 𝑎 is a gradient mapping of
𝑎 = ∇𝑗, where 𝑗 : 𝑅

2

→ R is a convex continuous function.
To (1) boundary conditions of Dirichlet type: 𝑢 = 0 on

(0,∞) × 𝜕Ω or Neumann: 𝑎(∇𝑢)𝜐 = 0 on (0,∞) × 𝜕Ω are
taken. The special case, with 𝑗(𝑟) = |𝑟|

𝑑
= (𝑟
2

1
+ 𝑟
2

2
)
1/2, 𝑟 =

{𝑟
1
, 𝑟
2
}, leads to the so-called total variation model. There is a

large variety of nonlinear PDE models inspired by (1) which
attempt to eliminate the staircasing effect or to recover images
with edges and the total variation model is one of the most
efficient. Here we propose a nonlinear filter based on the flow
generated by the porous media equation:

𝜕𝑢

𝜕𝑡
− Δ𝛽 (𝑢) = 0 in (0,∞) × Ω,

𝛽 (𝑢) = 0 in (0,∞) × 𝜕Ω.

(2)

The function 𝛽 can be multivalued but maximal mono-
tone, that is, (𝛽(𝑟

1
)−𝛽(𝑟

2
))(𝑟
1
−𝑟
2
) ≥ 0 for all 𝑟

1
, 𝑟
2
≥ 0 and the

range of 𝑟 → 𝑟 +𝛽(𝑟) is all of 𝑅. This equation is well known
as mathematical model for fluid diffusion in porous media
and the typical example is 𝛽(𝑢) = 𝜆|𝑢|

𝑚−1

𝑢 where 𝜆 > 0 and
0 < 𝑚 < ∞. The case 𝑚 > 1 models low diffusion processes
and 0 < 𝑚 < 1 fast diffusion. We note that the model (1) was
already used in our previous works for restoring (inpainting)
the grayscale images [7, 8].

Given the domainΩ ⊂ 𝑅
2, we denote by 𝐿

2

(Ω),𝑊𝑘,𝑝(Ω),
𝑘 = 1, 2, 1 ≤ 𝑝 ≤ ∞, the standard spaces of Lebesgue
integrable functions and the Sobolev spaces on Ω. We set
𝐻
𝑘

(Ω) = 𝑊
𝑘,2

(Ω), 𝐻1
0
(Ω) = {𝑢 ∈ 𝐻

1

(Ω); 𝑢 = 0 on 𝜕Ω},
and𝐻

−1

(Ω) the dual space of𝐻1
0
(Ω)with the norm denoting

|| ⋅ ||
𝐻
−1

(Ω)
. Consider here (2) with Dirichlet homogeneous

boundary conditions, that is,
𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) − Δ𝛽 (𝑢 (𝑡, 𝑥)) = 0 in (0,∞) × Ω, (3)

with 𝑢(0, 𝑥) = 𝑔(𝑥), 𝑥 ∈ Ω, and 𝛽(𝑢(𝑡, 𝑥)) = 0 on
(0,∞) × 𝜕Ω, under the following assumption: 𝛽 : 𝑅 → 𝑅 is
monotonically increasing 𝛽(0) = 0 and lim

𝑟→±∞
𝛽(𝑟) = ±∞.

Here Ω represents a bounded domain of 𝑅
2 with a

sufficiently smooth boundary, 𝜕Ω. By strong solution 𝑢 =

𝑢(𝑡, 𝑥) to (3) on [0, 𝑇], we mean an absolutely continuous
function 𝑢 : [0, 𝑇] → 𝐻

−1

(Ω) such that the strong derivative
(𝑑𝑢/𝑑𝑡)(𝑡) = lim

𝜀→0
(𝑢(𝑡 + 𝜀) − 𝑢(𝑡))/𝜀 in 𝐻

−1

(Ω) exists a.e.
on (0, 𝑇), 𝛽(𝑢(𝑡, ⋅)) ∈ 𝐻

1

0
(Ω) a.e. 𝑡 ∈ (0, 𝑇) and

𝑑𝑢 (𝑡)

𝑑𝑡
− Δ𝛽 (𝑢 (𝑡, ⋅)) = 0, a.e. 𝑡 ∈ (0, 𝑇) , (4)

where 𝑢(0) = 𝑔, and the Laplace operator Δ is considered in
the sense of distributions on domainΩ. It should be said that
a strong solution to (4) is also a weak solution in the classical
sense. Let us consider the nonlinear operator 𝐴 : 𝐷(𝐴) ⊂

𝐻
−1

(Ω) → 𝐻
−1

(Ω) defined by

𝐴𝑢 = −Δ𝛽 (𝑢) , ∀𝑢 ∈ 𝐷 (𝐴) (5)

with 𝐷(𝐴) = {𝑢 ∈ 𝐿
1

(Ω); 𝛽(𝑢) ∈ 𝐻
1

0
(Ω)} and rewrite (4) as

the infinite dimensional Cauchy problem:

𝑑𝑢

𝑑𝑡
(𝑡) + 𝐴𝑢 (𝑡) = 0, a.e. 𝑡 ∈ (0, 𝑇) . (6)

We note [13, 14] that the nonlinear operator is maximal
monotone (equivalently, m-accretive) in 𝐻

−1

(Ω) and that it
is just the subdifferential 𝜕𝜑 of the function

𝜑 (𝑢) =

{

{

{

∫
Ω

𝜂 (𝑢 (𝑥)) 𝑑𝑥, if 𝑢∈𝐿
1

(Ω)∩𝐻
−1

(Ω) , ℎ (𝑢)∈𝐿
1

(Ω)

+∞, otherwise
(7)

in the sense of convex analysis. Here, 𝜂(𝑟) = ∫
𝑟

0

𝛽(𝑠)𝑑𝑠. As
a matter of fact, the distribution space 𝐻

−1

(Ω) is the basic
functional space to study problem (4). Then, we have the
following.

Theorem 1. Let 𝑔 ∈ 𝐻
−1

(Ω). Then, (4) (equivalently, (6)) has
a unique strong solution 𝑢 : [0,∞) → 𝐻

−1

(Ω) satisfying

𝑡
𝑑𝑢

𝑑𝑡
∈ 𝐿
∞

(0, 𝑇;𝐻
−1

(Ω)) , 𝑡𝛽 (𝑢) ∈ 𝐿
∞

(0, 𝑇;𝐻
1

0
(Ω)) .

(8)

Moreover, 𝑢 is given by the exponential formula

𝑢 (𝑡) = lim
𝑛→∞

(𝐼 +
𝑡

𝑛
𝐴)

−𝑛

𝑔 uniformly on [0, 𝑇] . (9)

It should be recalled (see [13]) that this existence result
extends to nonhomogeneous Cauchy problem 𝑑𝑢/𝑑𝑡 +

𝐴𝑢(𝑡) = 𝑓(𝑡), 𝑡 ∈ (0, 𝑇), 𝑢(0) = 𝑔.
Theorem 1 is a consequence of the standard existence the-

ory for the infinite dimensional Cauchy problem associated
with maximal monotone (m-accretive) operators in Hilbert
spaces [13, 14]. It should be emphasized thatTheorem 1 applies
to (1) as well as to other nonlinear diffusion equations of
monotone type arising in the filtering theory. In particular,
(9) amounts to saying that the finite difference scheme,

𝑢
𝑘+1

+ ℎ𝐴𝑢
𝑘+1

= 𝑢
𝑘
, 𝑢
0
= 𝑔, 𝑘 = 0, 1, . . . , (10)

where 𝑘 = [𝑡/ℎ], is convergent to 𝑢(𝑡). In the linear case, that
is, 𝛽(𝑢) = 𝑢, this scheme is at origin of high-order Sobolev
gradient method developed in [15, 16]. Formula (9) is known
in the literature as the Crandall-Liggett exponential formula.
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The flow 𝑢(𝑡) = 𝑆(𝑡)𝑔 is a continuous semigroup
of contractions in 𝐻

−1

(Ω) in this case or in 𝐿
1

(Ω), in
other situation, and the denoising effect of (6) is due to
smoothing effect of 𝑆(𝑡) on initial data, a property which
is a characteristic to semigroups generated by the nonlinear
operators 𝐴 of the gradient type 𝜕𝜑, where 𝜑 is a convex and
lower semicontinuous function. Since Theorem 1 applies to
any initial data 𝑔 ∈ 𝐻

−1

(Ω), which is a quite general space
of distributions on Ω, the filter 𝑔 → 𝑆(𝑡)𝑔 can be used for
smoothing very noised images 𝑔.

It should be emphasized that, for filtering purpose, it
suffices to compute 𝑢(𝑡) at any time 𝑡 > 0 since the smoothing
effect does not increase with 𝑡. On the contrary, since for
𝑡 → 0 we have [13]

lim
𝑡→∞

𝑢 (𝑡) = 𝑢
∞

in 𝐻
−1

(Ω) , (11)

where 𝑢
∞

is a steady-state solution to A, that is, 𝐴𝑢
∞

= 0,
one might expect that, for a large t, the filtered image could
be far away from the original image 𝑔. This means that in
the algorithm (10), the best filtered image can be obtained
for 𝑘 → ∞, 𝑘ℎ ≈ 𝜀, and 𝜀 arbitrarily small. If one wants
to restore the image 𝑔 via step descent algorithm, then (6)
should be replaced by

𝑑𝑢

𝑑𝑡
(𝑡) + 𝐴𝑢 (𝑡) + 𝜆 (𝑢 (𝑡) − 𝑔) = 0, 𝑡 ≥ 0, 𝜆 > 0 (12)

or, in its discrete version,

𝑢
𝑘+1

+ ℎ𝐴𝑢
𝑘+1

+ 𝜆ℎ (𝑢
𝑘+1

− 𝑔) = 𝑢
𝑘
, 𝑘 = 0, 1, . . . , (13)

because, by (11), lim
𝑡→∞

𝑢(𝑡) = 𝑢
∞
, where 𝐴𝑢

∞
+ 𝜆(𝑢

∞
−

𝑔) = 0, that is,

𝑢
∞

= arg min{∫
Ω

𝜂 (𝑢 (𝑥)) 𝑑𝑥 +
𝜆

2

󵄩󵄩󵄩󵄩𝑢 − 𝑔
󵄩󵄩󵄩󵄩
2

𝐻
−1

(Ω)
} . (14)

This procedure was used in [7] for restoring and inpaint-
ing significantly degraded images 𝑔. We also have the gen-
eration formula lim

𝑡→0
(𝑔 − 𝑆(𝑡)𝑔)/𝑡 = 𝐴𝑔 in 𝐻

−1

(Ω). This
means that the operator-𝐴 is the infinitesimal generator of the
semigroup 𝑆(𝑡) [12]. The smoothing performance of the filter
𝑆(𝑡) and its standard deviation is made precisely below.

Theorem 2. Let 𝑔 ∈ 𝐿
1

(Ω) be such that 𝛽(𝑔) ∈ 𝐻
1

0
(Ω). Then

𝑔 − 𝑆 (𝑡) 𝑔 = −𝑡Δ𝛽 (𝑔) + 𝑜 (𝑡) in 𝐻
−1

(Ω) . (15)

If 𝑗(𝑔) ∈ 𝐿
1

(Ω), then
󵄩󵄩󵄩󵄩𝑔 − 𝑆 (𝑡) 𝑔

󵄩󵄩󵄩󵄩
2

𝐻
−1

(Ω)
≤ 𝑡

󵄩󵄩󵄩󵄩𝑗 (𝑔)
󵄩󵄩󵄩󵄩𝐿1 (Ω)

, ∀𝑡 ≥ 0. (16)

Proof. Formula (15) is immediate by the continuity of
the function 𝑡 → −Δ𝛽(𝑆(𝑡)𝑔) from [0, 𝑇] to 𝐻

−1

(Ω).
As regards formula (16), we have 𝑔 − 𝑆(𝑡)𝑔 =

−∫
𝑡

0

Δ𝛽(𝑆(𝜏)𝑔)𝑑𝜏, for all 𝑡 ≥ 0, and this yields
‖𝑔 − 𝑆(𝑡)𝑔‖

2

𝐻
−1

(Ω)
≤ 𝑡 ∫

𝑡

0

‖𝛽(𝑆(𝜏)𝑔)‖
2

𝐻
−1

(Ω)
𝑑𝜏, for all 𝑡 ≥ 0,

while by equation (𝑑/𝑑𝜏)𝑆(𝜏) − Δ𝛽(𝑆(𝜏)𝑔) = 0, for all 𝜏 > 0,
we have, by multiplying with 𝛽(𝑆(𝜏)𝑔) in 𝐻

−1

(Ω),
∫
𝑡

0

||𝛽(𝑆(𝜏)𝑔)||
2

𝐻
1

0

(Ω)
𝑑𝜏 + ∫

Ω

𝑗(𝑆(𝑡)𝑔)𝑑𝑥 = ∫
Ω

𝑗(𝑔)𝑑𝑥, for
all 𝑡 ≥ 0.

We also note that for (4) the maximum principle is also
valid. More precisely, we have the following.

Theorem 3. Assume that 𝑔 ≥ 0, a.e. in Ω. Then, 𝑢(𝑡, 𝑥) ≥

0 𝑎.𝑒. (𝑡, 𝑥) ∈ (0,∞) × Ω.

Proof. Wemultiply (4) by (𝛽(𝑢))
− and integrate on (0, 𝑡) × Ω

to get 𝑢− ≡ 0, as claimed.

For denoising procedure, the filter𝑢(𝑡) = 𝑆(𝑡)𝑔, generated
by (2) in the fast diffusion case, that is, for 𝛽(𝑢) = 𝜆𝑢

𝑚, 0 <

𝑚 < 1 (like the classical Gaussian filter), has the disadvantage
that it is not localized as in this case the solution 𝑢 = 𝑢(𝑡, 𝑥)

to (2) propagates with infinite speed. Moreover, 𝑢(𝑡) has
extinction in a finite time which depends on the norm of
𝑔. The situation is different in the low diffusion case 𝛽(𝑢) =

𝜆𝑢
𝑚, 𝑚 > 1, where the propagation is with finite speed, and

so the denoising flow is localized.
In (2) onemight consider the Neumann boundary condi-

tion 𝛽(∇𝑢)𝜐 = 0 on (0,∞) × 𝜕Ω. In this case the operator 𝐴
is given by (5) where𝐷(𝐴) = {𝑢 ∈ 𝐿

1

(Ω), 𝛽(𝑢) ∈ 𝐻
1

(Ω)} and
Theorem 1 remains valid in the present situation; the basic
space is𝐻 = (𝐻

1

(Ω))
󸀠 instead of𝐻−1(Ω).

3. The Explicit Scheme of the PDE Algorithm

Now, let us consider the explicit version of the scheme
(10), obtained by the fast diffusion model. Namely, 𝑢𝑘+1 =

ℎΔ(𝑢
𝑘−1

)
1/𝛼

+ 𝑢
𝑘, 𝑘 = 0, 1, . . . , 𝑔 = 𝑢

0. We take 𝑔 = 𝑔
𝑖,𝑗

≈

𝑔(𝑖ℎ, 𝑗ℎ), where 𝑖 ∈ [1,𝑀] and 𝑗 ∈ [1,𝑁], and𝑚 = 1/𝛼.Thus,
the finite difference scheme leads to the following iterative
process:

𝑢
𝑘+1

𝑖,𝑗
= 𝑢
𝑘

𝑖,𝑗
+ 𝜆 ⋅ ((𝑢

𝑘−1

𝑖+1,𝑗
)
1/𝛼

+ (𝑢
𝑘−1

𝑖−1,𝑗
)
1/𝛼

+ (𝑢
𝑘−1

𝑖,𝑗−1
)
1/𝛼

+ (𝑢
𝑘−1

𝑖,𝑗+1
)
1/𝛼

− 4(𝑢
𝑘−1

𝑖,𝑗
)
1/𝛼

) ,

𝑢 (𝑖, 1) = 𝑢 (1, 𝑗) = 0, ∀𝑖, 𝑗,

(17)

where 𝜆 = ℎ/4𝑙
2, 𝑢0
𝑖,𝑗

= 𝑔
𝑖,𝑗
, and 𝑘 = 1, . . . , 𝐾.

Using the iterative scheme (17) with some properly
selected parameters 𝛼, 𝜆, and 𝐾, respectively, the initial
noised image is successfully filtered in 𝐾 steps. Therefore,
the obtained 𝑢

𝐾 represents the final image enhancement
result. The choice of 𝐾 in our simulation was dictated by the
numerous tests we have performed in specific examples.

A proper selection of the parameter values is very impor-
tant and cannot be a priori defined. It turns out that the
selection of a very large number of iterations, for example,
using a K > 40 value, could produce a blurring effect on the
processed image, while considering a very small𝐾 value, such
as K < 5, could result in an unsatisfactory image denoising
result. A great 𝐾 value increases also the computational
complexity of this filtering process, producing a much higher
computation time.

Also, using a large enough 𝜆 value, such as 𝜆 > 5, could
increase the degradation of the noised image. A very small
𝜆 parameter, such as 𝜆 < 0.1, produces no visible smoothing
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results. Obviously, the parameter 𝛼must satisfy the condition
1/𝛼 ∈ (0, 1), for a successfully noise removal.

4. Comparison with Other Noise
Removal Techniques

The denoising model discussed above is generated by the
minimization problem given by (14), where 𝑢 ∈ 𝐿

1

(Ω) ∩

𝐻
−1

(Ω) and 𝜂 is the potential function corresponding to
nonlinear diffusivity function 𝛽 : 𝑅 → 𝑅. The function
𝑢 → ||𝑢 − 𝑔||

2

𝐻
−1

(Ω)
is a penalty term which forces the

restored image 𝑢 = 𝑢(𝑥) to stay close to the initial image
𝑔 = 𝑔(𝑥).

We compared our nonlinear diffusion-based noise
removal technique with Perona-Malik denoising scheme
[5, 10, 17] and other more general techniques (see [12]).
These approaches based on (1) reduces to the minimization
problem:

min{∫
Ω

𝑗 (∇𝑢) 𝑑𝑥 +
𝜆

2
∫
Ω

󵄩󵄩󵄩󵄩𝑢 − 𝑔
󵄩󵄩󵄩󵄩
2

𝑑𝑥; 𝑢 ∈ 𝐻
1

0
(Ω)} . (18)

The fact that the distance from 𝑢 to 𝑔 is taken in the norm
|| ⋅ ||
𝐻
−1

(Ω)
which is considerably weaker than the 𝐿2(Ω)-norm

considered in the Perona-Malik model as well as in most of
the denoising models [9–11] has the advantage that it allows
to work with very degraded initial images which practically
are not represented by Lebesgue integrable functions but by
distributions. However, it should be said that our model has
a considerable better smoothing effect than that proposed
by Perona and Malik. Indeed, as seen above, the solution
𝑢 to minimization problem satisfies the nonlinear elliptic
equation:

−Δ𝛽 (𝑢) + 𝜆 (𝑢 − 𝑔) = 0 in Ω (19)

with boundary conditions 𝛽(𝑢) ∈ 𝐻
1

0
(Ω) (or Neumann

flux boundary conditions as the basic space is (𝐻
1

(Ω))
󸀠,

the dual of 𝐻
1

(Ω), instead of 𝐻
1

0
(Ω)). As seen earlier, the

minimization problem can be replaced by the evolution
equations (4) or (13)).

This means that ∇𝛽(𝑢) = 𝛽
󸀠

(𝑢)∇𝑢 ∈ 𝐿
2

(Ω) which
indicates a smoothing effect comparable with the standard
one, but for a suitable choice of 𝛽 one can avoid the
“staircasing” effect which is common in denoising procedure
with high smoothing effect.

A reformulation of problem (14) and, implicitly, of the
dynamic model (3) allows a closer comparison of this model
with that inspired by the Perona-Malik classical denoising
technique [10]. If we denote by 𝐴

0
: 𝐷(𝐴

0
) ⊂ 𝐿

2

(Ω) →

𝐿
2

(Ω) the operator 𝐴
0
𝑢 = −Δ𝑢, 𝐷(𝐴

0
) = 𝐻

1

0
(Ω) ∩ 𝐻

2

(Ω)

and recall that 𝐴
0
is an isometry from 𝐻

1

0
(Ω) to 𝐻

−1

0
(Ω) for

𝑢 = 𝐴
1/2

0
𝑦, we can rewrite the minimization problem as

Min{∫
Ω

ℎ (𝐴
1/2

0
𝑦) 𝑑𝑥

+
𝜆

2

󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝐴

−1/2

0
𝑔
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

(Ω)

; 𝑦 ∈ 𝐷 (𝐴
1/2

0
)} ,

(20)

where 𝐴
1/2

0
is the square root of 𝐴

0
. The Euler-Lagrange

optimality condition for variational problem (20) can be
expressed as

𝐴
1/2

0
𝛽 (𝐴
1/2

0
𝑦) + 𝜆 (𝑦 − 𝐴

−1/2

0
𝑔) = 0. (21)

Keeping in mind that 𝐴1/2
0

is defined by

∫
Ω

𝐴
1/2

0
𝑢𝐴
1/2

0
𝑣𝑑𝑥

= −∫
Ω

Δ𝑢 (𝑥) 𝑣 (𝑥) 𝑑𝑥, 𝑢 ∈ 𝐷 (𝐴
0
) , 𝑣 ∈ 𝐷 (𝐴

1/2

0
) ,

(22)

we may interpret (21) (resp., (20)) in an appropriate sense (1).
From this perspective, the denoisingmodel (19) is close to the
“total variation model” (1) if 𝛽 is taken as

𝛽 (𝑟) = sgn 𝑟 =

{{

{{

{

1 if 𝑟 > 0,

−1 if 𝑟 < 0, 𝑟 ∈ 𝑅,

[−1, 1] if 𝑟 = 0.

(23)

Indeed, in this case, (21) reduces to

𝐴
1/2

(
𝐴
1/2

󵄨󵄨󵄨󵄨𝐴
1/2𝑦

󵄨󵄨󵄨󵄨

) + 𝜆 (𝑦 − 𝐴
1/2

𝑔) = 0

on {𝑥 ∈ Ω;𝐴
1/2

𝑦 (𝑥) ̸= 0} .

(24)

However, the present model is more convenient that the
“total variation model,” which is constructed in a nonener-
getic space (the space of function with bounded variation)
and so hard to treat from the computational point of view. As
a matter of fact, by the regularization necessary to construct
a viable numerical scheme, the “total variation model” loses
most of the theoretical advantages regarding the sharp edge
detection and elimination of the staircasing effect.

The simulation developed in the next section confirms
this important advantage (see the results depicted in Figures
1 and 2). We must emphasize also that there are numerous
empirical denoising schemes obtained by modifying the
original Perona-Malik model [5, 10, 11, 17–19], most of them
not well posed from the mathematical point of view. The
Kačur and Mikula denoising model [12] is based on the
boundary value problem:

𝜕

𝜕𝑡
𝑏 (𝑥, 𝑢) − div (𝑔 (

󵄨󵄨󵄨󵄨∇𝐺
𝜎
∗ 𝛽 (𝑥, 𝑢)

󵄨󵄨󵄨󵄨) ∇𝛽 (𝑥, 𝑢))

= 𝑓 (𝑢
0
− 𝑢) in (0, 𝑇) × Ω

(25)

with Neumann boundary condition ∇𝛽(𝑥, 𝑢) ⋅ 𝜐 = 0 on
(0, 𝑇) × Ω.

Here 𝑏(𝑥, ⋅) and 𝛽(𝑥, ⋅) are continuous andmonotonically
increasing, 𝑔 and 𝑓 are Lipschitzian, and 𝐺

𝜎
is a smoothing

kernel. In the special case 𝑓 = 0, 𝑔(𝑟) = 𝑟, and b, 𝛽

independent of 𝑥 problem (25) reduces to (2) with Neumann
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(a) Original Lena image (b) Image affected by Gaussian noise

(c) Classic Gaussian filtering result (d) Average filtering result

(e) Perona-Malik denoising scheme (f) Denoising result of the proposed model

Figure 1: Gaussian noise removal results produced by our technique and other approaches.

Table 1: Values of norm of the error image parameter for various noise reduction approaches.

Denoising technique Gaussian filter Average filter Perona-Malik filter Proposed AD filter
Norm of the error 6.40 × 10

3

6.05 × 10
3

6.84 × 10
3

5.15 × 10
3

Table 2: Values of norm of the error image parameter for various noise reduction approaches.

Denoising technique Gaussian filter Average filter Perona-Malik filter Proposed AD filter
Norm of the error 7.20 × 10

3

6.14 × 10
3

6.55 × 10
3

5.36 × 10
3
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boundary conditions and 𝛽 replaced by 𝛽 ⋅ 𝑏
−1. In general,

(25) can be rewritten as

𝜕𝑦

𝜕𝑡
− 𝑔 (

󵄨󵄨󵄨󵄨∇𝐺
𝜎
∗ 𝛽 (𝑥, 𝑢)

󵄨󵄨󵄨󵄨) Δ𝛽 (𝑥, 𝑢)

− ∇𝑔 (
󵄨󵄨󵄨󵄨∇𝐺
𝜎
∗ 𝛽 (𝑥, 𝑢)

󵄨󵄨󵄨󵄨) ∇𝛽 (𝑥, 𝑢)

= 𝑓 (𝑢
0
− 𝑏
−1

(𝑢)) in (0, 𝑇) × Ω

(26)

with appropriate Neumann boundary conditions. It should
be said that in this general form the Cauchy problem for
(25) or (26) is not well posed and so the finite difference
scheme (10) is not convergent. The model considered here is
mathematically well posed. It should be mentioned however
that in [12] a semi-implicit scheme is designed which is
convergent to a weak solution to (25).

5. Numerical Experiments and
Method Comparisons

The PDE-based image denoising technique proposed here
has been tested on various image datasets, satisfactory fil-
tering results being obtained. We have filtered hundreds of
grayscale images affected by various levels of Gaussian noise
using the described approach. An important advantage of our
filtering technique is that it performs a robust noise reduction
while preserving the image edges [20, 21].

We have obtained the best denoising results for the
following set of parameters of the diffusion model provided
by formula (18): 𝛼 = 2, which corresponds to the physical
model of diffusion in plasma, 𝜆 = 1.5 and 𝑁 = 20.
Some grayscale image reduction examples based on these
parameter values are provided in Figures 1 and 2, respectively.

Numerous method comparisons have also been per-
formed. The denoising performance of our method has
been compared with performances of other noise removal
techniques, such as the 2D Gaussian filter, the averaging
filter, and Perona-Malik anisotropic diffusion scheme. From
the performed numerical experiments it is obvious that the
approach introduced here works better than these well-
known filtering algorithms, as one can observe in the figures.

In order to assess the performance levels of each image
denoising technique, one computes the norm of the error
image. Thus, for any initial image 𝑔 and its restored
version u, having the [𝑀 × 𝑁] size, the error value
√∑
𝑀

𝑥=1
∑
𝑁

𝑦=1
(𝑢(𝑥, 𝑦) − 𝑔(𝑥, 𝑦))

2 is calculated. One can see the
values of this norm of the image error parameter in the next
tables.

In Figure 1(a), the standard [512 × 512] image of Lena
is displayed in the grayscale form. Then, it is corrupted by
an amount of Gaussian noise characterized by parameters 0.2
(mean) and 0.02 (variance), the noising result being displayed
in Figure 1(b).

In Figure 1(c) the image denoising result produced by
the classic [3 × 3] Gaussian 2D filter kernel is displayed,
while the noise reduction obtained with an [3 × 3] averaging
filter kernel is represented in Figure 1(d). The noise removal

produced by the Perona-Malik approach is displayed in Fig-
ure 1(e), while the denoising result provided by the nonlinear
PDE model proposed here is represented in Figure 1(f).

The values of the norm of the error image corresponding
to all these image filtering methods are displayed in Table 1.
One can see that our anisotropic diffusion-based noise
reduction approach performs better than the other filters,
minimizing the respective error.

Another image denoisingmethod comparison example is
displayed in Figure 2. The same noise removal approaches
(standard Gaussian, average filtering, Perona-Malik, and
our technique) are applied on the standard Baboon image
corrupted by the same amount of Gaussian noise, their results
being represented in Figures 2(c)–2(f). The corresponding
values of the norm of the error image parameter are dis-
played in Table 2. One can observe the minimum error
value obtained by our proposed AD-based noise removal
algorithm.

Our filtering algorithm increases the image quality not
only by performing a robust Gaussian noise reduction, but
also by enhancing the grayscale image contrast. Also, the
proposed denoising technique runs quite fast, a [512 ×

512] digital image being processed in less than 1 s. The
time complexity decreases proportionally with the size of 𝐾
parameter.

6. Conclusions

A novel PDE-based image noise reduction technique has
been proposed in this paper. We have designed a robust
nonlinear image filter based on the flow generated by the
porous media equation.

The provided nonlinear diffusion-based denoising tech-
nique performs successfully for grayscale images corrupted
by 2D Gaussian noise, producing also an improved image
contrast. Our method is also an edge preserving noise
removal technique, which represents an important advan-
tage.

It has been compared with some influential anisotropic
diffusion approaches, like that proposed by Perona andMalik
[5, 10], the obtained comparison results being very encour-
aging for us. Also, it provides better smoothing results than
many other denoising techniques, while executing almost as
fast as them, given its quite low-time complexity.

We have also tested this PDE-based model on other types
of image noise and obtained mixed filtering results. While
our technique performs somewhat well for images affected
by some types of noise such as speckle [9], it does not succeed
in removing properly some other types of noise, like salt
and pepper. Therefore, designing some robust filters for other
types of image noise will represent the focus of our future
work in the image processing domain.

Because of its edge-preserving and contrast-enhancing
character, the technique described in this paper can be
successfully applied in image analysis domains requiring
image object emphasizing and detection.
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(a) Original Baboon image (b) Gaussian noise

(c) 2D Gaussian filtering (d) Average filtering

(e) Perona-Malik scheme (f) Our PDE based Model

Figure 2: Noise removal results provided by our model and other denoising techniques.
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