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The purpose of this paper is to introduce and analyze modified hybrid steepest-descent methods for a general system of variational
inequalities (GSVI), with solutions being also zeros of an 𝑚-accretive operator 𝐴 in the setting of real uniformly convex and 2-
uniformly smooth Banach space 𝑋. Here the modified hybrid steepest-descent methods are based on Korpelevich’s extragradient
method, hybrid steepest-descent method, and viscosity approximation method. We propose and consider modified implicit and
explicit hybrid steepest-descent algorithms for finding a common element of the solution set of the GSVI and the set𝐴−1(0) of zeros
of 𝐴 in𝑋. Under suitable assumptions, we derive some strong convergence theorems. The results presented in this paper improve,
extend, supplement, and develop the corresponding results announced in the earlier and very recent literature.

1. Introduction

Let 𝑋 be a real Banach space whose dual space is denoted by
𝑋
∗.The normalized duality mapping 𝐽 : 𝑋 → 2

𝑋

∗

is defined
by

𝐽 (𝑥) = {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
2

=




𝑥
∗





2

} , ∀𝑥 ∈ 𝑋,

(1)
where ⟨⋅, ⋅⟩ denotes the generalized duality pairing. It is an
immediate consequence of the Hahn-Banach theorem that
𝐽(𝑥) is nonempty for each 𝑥 ∈ 𝑋. Let 𝐶 be a nonempty
closed convex subset of 𝑋. A mapping 𝑇 : 𝐶 → 𝐶 is called
nonexpansive if ‖𝑇𝑥−𝑇𝑦‖ ≤ ‖𝑥−𝑦‖ for every𝑥, 𝑦 ∈ 𝐶.The set
of fixed points of 𝑇 is denoted by Fix(𝑇). We use the notation
⇀ to indicate the weak convergence and → to indicate the
strong convergence. A mapping 𝐴 : 𝐶 → 𝑋 is said to be

(i) accretive if for each 𝑥, 𝑦 ∈ 𝐶 there exists 𝑗(𝑥 − 𝑦) ∈

𝐽(𝑥 − 𝑦) such that
⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0; (2)

(ii) 𝛼-strongly accretive if for each 𝑥, 𝑦 ∈ 𝐶 there exists
𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛼




𝑥 − 𝑦






2

, (3)

for some 𝛼 ∈ (0, 1);
(iii) 𝛽-inverse strongly accretive if for each 𝑥, 𝑦 ∈ 𝐶 there

exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛽




𝐴𝑥 − 𝐴𝑦






2

, (4)

for some 𝛽 > 0;
(iv) 𝜆-strictly pseudocontractive [1] (see also [2]) if for

each 𝑥, 𝑦 ∈ 𝐶 there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − y) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤




𝑥 − 𝑦






2

− 𝜆




𝑥 − 𝑦 − (𝐴𝑥 − 𝐴𝑦)






2

(5)

for some 𝜆 ∈ (0, 1).
It is worth emphasizing that the definition of the inverse

strongly accretive mapping is based on that of the inverse
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strongly monotone mapping, which was studied by so many
authors; see, for example, [3–5]. Let 𝑈 = {𝑥 ∈ 𝑋 : ‖𝑥‖ = 1}

denote the unite sphere of 𝑋. A Banach space 𝑋 is said to be
uniformly convex if for each 𝜖 ∈ (0, 2] there exists 𝛿 > 0 such
that for all 𝑥, 𝑦 ∈ 𝑈





𝑥 − 𝑦





≥ 𝜖 ⇒





𝑥 + 𝑦






2

≤ 1 − 𝛿. (6)

It is known that a uniformly convex Banach space is reflexive
and strictly convex. A Banach space𝑋 is said to be smooth if
the limit

lim
𝑡→0





𝑥 + 𝑡𝑦





− ‖𝑥‖

𝑡

(7)

exists for all 𝑥, 𝑦 ∈ 𝑈; in this case, 𝑋 is also said to have
a Gateaux differentiable norm. Moreover, it is said to be
uniformly smooth if this limit is attained uniformly for 𝑥, 𝑦 ∈

𝑈; in this case, 𝑋 is also said to have a uniformly Frechet
differentiable norm. The norm of 𝑋 is said to be the Frechet
differential if for each 𝑥 ∈ 𝑈 this limit is attained uniformly
for 𝑦 ∈ 𝑈. In the meantime, we define a function 𝜌 :

[0,∞) → [0,∞) called the modulus of smoothness of 𝑋
as follows:

𝜌 (𝜏) = sup {

1

2

(




𝑥 + 𝑦





+




𝑥 − 𝑦





) − 1 :

𝑥, 𝑦 ∈ 𝑋, ‖𝑥‖ = 1,




𝑦




= 𝜏} .

(8)

It is known that 𝑋 is uniformly smooth if and only if
lim
𝜏→0

𝜌(𝜏)/𝜏 = 0. Let 𝑞 be a fixed real number with 1 < 𝑞 ≤

2. Then a Banach space𝑋 is said to be 𝑞-uniformly smooth if
there exists a constant 𝑐 > 0 such that 𝜌(𝜏) ≤ 𝑐𝜏

𝑞 for all 𝜏 > 0.
As pointed out in [6], no Banach space is 𝑞-uniformly smooth
for 𝑞 > 2. In addition, it is also known that 𝐽 is single-valued
if and only if𝑋 is smooth, whereas if𝑋 is uniformly smooth,
then the mapping 𝐽 is norm-to-norm uniformly continuous
on bounded subsets of𝑋.

Let 𝐴 be an operator with domain 𝐷(𝐴) and range 𝑅(𝐴)

in 𝑋 is said to be accretive if for each 𝑥
𝑖

∈ 𝐷(𝐴) and 𝑦
𝑖

∈

𝐴𝑥
𝑖

(𝑖 = 1, 2) there exists 𝑗(𝑥
2

− 𝑥
1

) ∈ 𝐽(𝑥
2

− 𝑥
1

) such that

⟨𝑦
2

− 𝑦
1

, 𝑗 (𝑥
2

− 𝑥
1

)⟩ ≥ 0. (9)

An accretive operator 𝐴 is said to be 𝑚-accretive if 𝑅(𝐼 +

𝜆𝐴) = 𝑋 for all 𝜆 > 0. Denote by 𝐽
𝑟

the resolvent of𝐴; that is,
for each 𝑟 > 0,

𝐽
𝑟

= (𝐼 + 𝑟𝐴)
−1

. (10)

It is known that 𝐽
𝑟

is a nonexpansive mapping from 𝑋 to
𝐶 := 𝐷(𝐴)which will be assumed convex. In 2008, Chen and
Zhu [7] derived the following strong convergence theorems
for viscosity approximation methods for accretive operators
in a uniformly smooth Banach space𝑋.

Theorem CZ1. Let 𝑋 be a uniformly smooth Banach space.
Suppose that 𝐴 is an 𝑚-accretive operator in 𝑋 such that

𝐶 = 𝐷(𝐴) is convex and 𝑓 : 𝐶 → 𝐶 is a fixed contractive
map. For each 𝑡 ∈ (0, 1), {𝑥

𝑡,𝑛

} is defined by

𝑥
𝑡,𝑛

= 𝑡𝑓 (𝑥
𝑡,𝑛

) + (1 − 𝑡) 𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

. (11)

Then as 𝑡 → 0, {𝑥
𝑡,𝑛

} converges strongly to a zero of 𝐴.

Theorem CZ2. Let 𝑋 be a uniformly smooth Banach space.
Suppose that 𝐴 is an 𝑚-accretive operator in 𝑋 such that 𝐶 =

𝐷(𝐴) is convex and 𝑓 : 𝐶 → 𝐶 is a fixed contractive map.The
sequence {𝑥

𝑛

} is defined by

𝑥
𝑛+1

= 𝛼
𝑛

𝑓 (𝑥
𝑛

) + (1 − 𝛼
𝑛

) 𝐽
𝑟

𝑛

𝑥
𝑛

, ∀𝑛 ≥ 0, (12)

where {𝛼
𝑛

} and {𝑟
𝑛

} satisfy the following conditions:

(i) 𝛼
𝑛

→ 0, ∑∞
𝑛=0

𝛼
𝑛

= ∞, and ∑
∞

𝑛=0

|𝛼
𝑛+1

− 𝛼
𝑛

| < ∞,

(ii) 𝑟
𝑛

≥ 𝜀 for all 𝑛 and ∑
∞

𝑛=0

|𝑟
𝑛+1

− 𝑟
𝑛

| < ∞.

Then as 𝑛 → ∞, {𝑥
𝑛

} converges strongly to a zero of 𝐴.
In themeantime, Ceng et al. [8] derived some strong con-

vergence theorems of composite iterative schemes for zeros of
𝑚-accretive operators in uniformly smooth Banach spaces.
Furthermore, motivated by strong convergence results for
hybrid steepest-descent methods in [9, 10], Ceng et al. [11]
established some strong convergence theorems for hybrid
steepest-descent methods for nonexpansive and 𝑚-accretive
operators in a uniformly smooth Banach space 𝑋. Subse-
quently, Ceng et al. [12] introduced hybrid viscosity approx-
imation method for finding zeros of 𝑚-accretive operators,
which combine viscosity approximation method with hybrid
steepest-descent method, and obtained the following strong
convergence theorems.

Theorem CASY1. Let 𝑋 be a uniformly smooth Banach space,
let 𝐴 be an 𝑚-accretive operator in 𝑋 with 𝐴

−1

(0) ̸= 0, and
let 𝑓 : 𝑋 → 𝐶 (=𝐷(𝐴)) be a contractive map. Assume
that 𝐹 : 𝑋 → 𝑋 is 𝛿-strongly accretive and 𝜆-strictly
pseudocontractive with 𝛿 + 𝜆 > 1. For each 𝑡 ∈ (0, 1) and each
integer 𝑛 ≥ 0, let {𝑥

𝑡,𝑛

} be defined by

𝑥
𝑡,𝑛

= 𝑡𝑓 (𝑥
𝑡,𝑛

) + (1 − 𝑡) [𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

− 𝜃
𝑡

𝐹 (𝑥
𝑡,𝑛

)] , (13)

where {𝑟
𝑛

} ⊂ [𝜀,∞) for some 𝜀 > 0 and {𝜃
𝑡

: 𝑡 ∈ (0, 1)} ⊂ [0, 1)

with lim
𝑡→0

(𝜃
𝑡

/𝑡) = 0. Then as 𝑡 → 0, {𝑥
𝑡,𝑛

} converges
strongly to a zero 𝑝 of 𝐴, which is a unique solution of the
variational inequality problem (VIP)

⟨(I − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ 𝐴
−1

(0) . (14)

Theorem CASY2. Let 𝑋 be a uniformly smooth Banach
space, let 𝐴 be an 𝑚-accretive operator in 𝑋 with 𝐴

−1

(0) ̸= 0,
and let 𝑓 : 𝑋 → 𝐶 (= 𝐷(𝐴)) be a contractive map.
Assume that 𝐹 : 𝑋 → 𝑋 is 𝛿-strongly accretive and 𝜆-
strictly pseudocontractive with 𝛿 + 𝜆 > 1. Given sequences
{𝜆
𝑛

}
∞

𝑛=0

, {𝜇
𝑛

}
∞

𝑛=0

in [0, 1], {𝛼
𝑛

}
∞

𝑛=0

, {𝛽
𝑛

}
∞

𝑛=0

in (0, 1], and {𝑟
𝑛

}
∞

𝑛=0
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in [𝜀,∞) for some 𝜀 > 0, suppose that there hold the following
conditions:

(i) lim
𝑛→∞

𝛽
𝑛

= 0 and ∑
∞

𝑛=0

𝛽
𝑛

= ∞,
(ii) lim

𝑛→∞

(𝜆
𝑛

𝜇
𝑛

)/𝛽
𝑛

= 0,
(iii) {𝛼

𝑛

} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1),
(iv) ∑∞

𝑛=0

|𝛼
𝑛+1

− 𝛼
𝑛

| < ∞, ∑
∞

𝑛=0

|𝛽
𝑛+1

− 𝛽
𝑛

| < ∞,
∑
∞

𝑛=0

|𝜆
𝑛+1

− 𝜆
𝑛

| < ∞, ∑∞
𝑛=0

|𝜇
𝑛+1

− 𝜇
𝑛

| < ∞ and
∑
∞

𝑛=0

|𝑟
𝑛+1

− 𝑟
𝑛

| < ∞.

Then for any given point 𝑥
0

∈ 𝑋, the sequence {𝑥
𝑛

} generated
by

𝑦
𝑛

= 𝛼
𝑛

𝑥
𝑛

+ (1 − 𝛼
𝑛

) 𝐽
𝑟

𝑛

𝑥
𝑛

,

𝑥
𝑛+1

= 𝛽
𝑛

𝑓 (𝑥
𝑛

) + (1 − 𝛽
𝑛

) [𝐽
𝑟

𝑛

𝑦
𝑛

− 𝜆
𝑛

𝜇
𝑛

𝐹 (𝐽
𝑟

𝑛

𝑦
𝑛

)] ,

∀𝑛 ≥ 0,

(15)

converges strongly to a zero 𝑝 of 𝐴, which is a unique solution
of the VIP as above.

On the other hand, Cai and Bu [13] considered the
following general system of variational inequalities (GSVI)
in a real smooth Banach space 𝑋, which involves finding
(𝑥
∗

, 𝑦
∗

) ∈ 𝐶 × 𝐶 such that

⟨𝜇
1

𝐵
1

𝑦
∗

+ 𝑥
∗

− 𝑦
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜇
2

𝐵
2

𝑥
∗

+ 𝑦
∗

− 𝑥
∗

, 𝐽 (𝑥 − 𝑦
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(16)

where 𝐶 is a nonempty, closed and convex subset of
𝑋, 𝐵
1

, 𝐵
2

: 𝐶 → 𝑋 are two nonlinear mappings, and 𝜇
1

and 𝜇
2

are two positive constants. Here the set of solutions
of GSVI (16) is denoted by GSVI (𝐶, 𝐵

1

, 𝐵
2

). In particular, if
𝑋 = 𝐻, a real Hilbert space, then GSVI (16) reduces to the
following GSVI of finding (𝑥

∗

, 𝑦
∗

) ∈ 𝐶 × 𝐶 such that

⟨𝜇
1

𝐵
1

𝑦
∗

+ 𝑥
∗

− 𝑦
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜇
2

𝐵
2

𝑥
∗

+ 𝑦
∗

− 𝑥
∗

, 𝑥 − 𝑦
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(17)

where 𝜇
1

and 𝜇
2

are two positive constants. The set of
solutions of problem (17) is still denoted by GSVI (𝐶, 𝐵

1

, 𝐵
2

).
In particular, if 𝐵

1

= 𝐵
2

= 𝐴, then problem (17) reduces to
the new system of variational inequalities (NSVI), introduced
and studied by Verma [14]. Further, if 𝑥∗ = 𝑦

∗ additionally,
then the NSVI reduces to the classical variational inequality
problem (VIP) of finding 𝑥

∗

∈ 𝐶 such that

⟨𝐴𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (18)

The solution set of the VIP (18) is denoted by VI (𝐶, 𝐴).
Variational inequality theory has been studied quite exten-
sively and has emerged as an important tool in the study of
a wide class of obstacle, unilateral, free, moving, equilibrium
problems. It is now well known that the variational inequal-
ities are equivalent to the fixed point problems, the origin
of which can be traced back to Lions and Stampacchia [15].
This alternative formulation has been used to suggest and
analyze projection iterative method for solving variational

inequalities under the condition that the involved operator
must be strongly monotone and Lipschitz continuous.

Recently, Ceng et al. [16] transformed problem (17) into a
fixed point problem in the following way.

Lemma 1 (see [16]). For given 𝑥, 𝑦 ∈ 𝐶, (𝑥, 𝑦) is a solution
of problem (17) if and only if 𝑥 is a fixed point of the mapping
𝐺 : 𝐶 → 𝐶 defined by

𝐺 (𝑥) = 𝑃
𝐶

[𝑃
𝐶

(𝑥 − 𝜇
2

𝐵
2

𝑥) − 𝜇
1

𝐵
1

𝑃
𝐶

(𝑥 − 𝜇
2

𝐵
2

𝑥)] ,

∀𝑥 ∈ 𝐶,

(19)

where 𝑦 = 𝑃
𝐶

(𝑥−𝜇
2

𝐵
2

𝑥) and𝑃
𝐶

is the the projection of𝐻 onto
𝐶.

In particular, if the mapping 𝐵
𝑖

: 𝐶 → 𝐻 is 𝛽
𝑖

-
inverse strongly monotone for 𝑖 = 1, 2, then the mapping 𝐺 is
nonexpansive provided 𝜇

𝑖

∈ (0, 2𝛽
𝑖

) for 𝑖 = 1, 2.

In 1976, Korpelevič [17] proposed an iterative algorithm
for solving the VIP (18) in Euclidean space R𝑛:

𝑦
𝑛

= 𝑃
𝐶

(𝑥
𝑛

− 𝜏𝐴𝑥
𝑛

) , 𝑥
𝑛+1

= 𝑃
𝐶

(𝑥
𝑛

− 𝜏𝐴𝑦
𝑛

) ,

∀𝑛 ≥ 0,

(20)

with 𝜏 > 0 being a given number, which is known as
the extragradient method (see also [18]). The literature on
the VIP is vast, and Korpelevich’s extragradient method
has received great attention given by many authors, who
improved it in various ways; see, for example, [3, 13, 19–32]
and references therein, to name but a few.

In particular, whenever 𝑋 is still a real smooth Banach
space, 𝐵

1

= 𝐵
2

= 𝐴, and 𝑥
∗

= 𝑦
∗, then GSVI (16) reduces

to the variational inequality problem (VIP) of finding 𝑥
∗

∈ 𝐶

such that

⟨𝐴𝑥
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶, (21)

which was considered by Aoyama et al. [33]. Note that VIP
(21) is connected with the fixed point problem for nonlinear
mapping (see, e.g., [34]), the problem of finding a zero point
of a nonlinear operator (see, e.g., [35]), and so on. It is clear
that VIP (21) extends VIP (18) fromHilbert spaces to Banach
spaces.

In order to find a solution of VIP (21), Aoyama et al.
[33] introduced the following iterative scheme for an accretive
operator 𝐴:

𝑥
𝑛+1

= 𝛼
𝑛

𝑥
𝑛

+ (1 − 𝛼
𝑛

)Π
𝐶

(𝑥
𝑛

− 𝜆
𝑛

𝐴𝑥
𝑛

) , ∀𝑛 ≥ 1, (22)

whereΠ
𝐶

is a sunny nonexpansive retraction from𝑋 onto𝐶.
Then they proved a weak convergence theorem.

Beyond doubt, it is an interesting and valuable problem
of constructing some algorithms with strong convergence
for solving GSVI (16) which contains VIP (21) as a special
case. Very recently, Cai and Bu [13] constructed an iterative
algorithm for solving GSVI (16) and a common fixed point
problem of an infinite family of nonexpansive mappings in
a uniformly convex and 2-uniformly smooth Banach space.
They proved the strong convergence of the proposed algo-
rithm by virtue of the following inequality in a 2-uniformly
smooth Banach space𝑋.
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Lemma 2 (see [36]). Let 𝑋 be a 2-uniformly smooth Banach
space. Then




𝑥 + 𝑦






2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝐽 (𝑥)⟩ + 2




𝜅𝑦






2

, ∀𝑥, 𝑦 ∈ 𝑋, (23)

where 𝜅 is the 2-uniformly smooth constant of 𝑋 and 𝐽 is the
normalized duality mapping from 𝑋 into𝑋

∗.

Define the mapping 𝐺 : 𝐶 → 𝐶 as follows:

𝐺 (𝑥) := Π
𝐶

(𝐼 − 𝜇
1

𝐵
1

)Π
𝐶

(𝐼 − 𝜇
2

𝐵
2

) 𝑥, ∀𝑥 ∈ 𝐶. (24)

The fixed point set of 𝐺 is denoted by Ω. Then their strong
convergence theorem on the proposed method is stated as
follows.

Theorem CB (see [13, Theorem 3.1]). Let 𝐶 be a nonempty
closed convex subset of a uniformly convex and 2-uniformly
smooth Banach space 𝑋. Let Π

𝐶

be a sunny nonexpansive
retraction from 𝑋 onto 𝐶. Let the mapping 𝐵

𝑖

: 𝐶 → 𝑋 be
𝛼
𝑖

-inverse strongly accretive with 0 < 𝜇
𝑖

< 𝛼
𝑖

/𝜅
2 for 𝑖 = 1, 2.

Let 𝑓 be a contraction of 𝐶 into itself with coefficient 𝜌 ∈ (0, 1).
Let {𝑆

𝑛

}
∞

𝑛=1

be an infinite family of nonexpansive mappings of
𝐶 into itself such that Δ = ⋂

∞

𝑖=1

Fix(𝑆
𝑖

) ∩ Ω ̸= 0, whereΩ is the
fixed point set of the mapping 𝐺 defined by (24). For arbitrarily
given 𝑥

1

∈ 𝐶, let {𝑥
𝑛

} be the sequence generated by

𝑥
𝑛+1

= 𝛽
𝑛

𝑥
𝑛

+ (1 − 𝛽
𝑛

) 𝑆
𝑛

𝑦
𝑛

,

𝑦
𝑛

= 𝛼
𝑛

𝑓 (𝑥
𝑛

) + (1 − 𝛼
𝑛

) 𝑧
𝑛

,

𝑧
𝑛

= Π
𝐶

(𝑢
𝑛

− 𝜇
1

𝐵
1

𝑢
𝑛

) ,

𝑢
𝑛

= Π
𝐶

(𝑥
𝑛

− 𝜇
2

𝐵
2

𝑥
𝑛

) ,

∀𝑛 ≥ 1.

(25)

Suppose that {𝛼
𝑛

} and {𝛽
𝑛

} are two sequences in (0, 1) satisfying
the following conditions:

(i) lim
𝑛→∞

𝛼
𝑛

= 0 and ∑
∞

𝑛=1

𝛼
𝑛

= ∞,
(ii) 0 < lim inf

𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1.

Assume that ∑∞
𝑛=1

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛

𝑥‖ < ∞ for any bounded
subset 𝐷 of 𝐶, let 𝑆 be a mapping of 𝐶 into 𝑋 defined by
𝑆𝑥 = lim

𝑛→∞

𝑆
𝑛

𝑥 for all 𝑥 ∈ 𝐶, and suppose that Fix(𝑆) =

⋂
∞

𝑛=1

Fix(𝑆
𝑛

). Then {𝑥
𝑛

} converges strongly to 𝑝 ∈ Δ, which
solves the VIP:

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ Δ. (26)

It is easy to see that the iterative scheme in Theorem CB is
essentially equivalent to the following two-step iterative scheme:

𝑦
𝑛

= 𝛼
𝑛

𝑓 (𝑥
𝑛

) + (1 − 𝛼
𝑛

) 𝐺𝑥
𝑛

,

𝑥
𝑛+1

= 𝛽
𝑛

𝑥
𝑛

+ (1 − 𝛽
𝑛

) 𝑆
𝑛

𝑦
𝑛

,

∀𝑛 ≥ 1.

(27)

For the convenience of implementing the argument tech-
niques in [16], the authors [13] have used the following
inequality in a real smooth and uniform convex Banach space
𝑋.

Proposition 3 (see [37]). Let𝑋 be a real smooth and uniform
convex Banach space and let 𝑟 > 0. Then there exists a strictly
increasing, continuous and convex function 𝑔 : [0, 2𝑟] → R,

𝑔(0) = 0, such that

𝑔 (




𝑥 − 𝑦





) ≤ ‖𝑥‖

2

− 2 ⟨𝑥, 𝐽 (𝑦)⟩ +




𝑦





2

, ∀𝑥, 𝑦 ∈ 𝐵
𝑟

,

(28)

where 𝐵
𝑟

= {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑟}.

Let 𝐶 be a nonempty closed convex subset of a real
uniformly convex and 2-uniformly smooth Banach space 𝑋.
Let Π

𝐶

be a sunny nonexpansive retraction from 𝑋 onto
𝐶 and let 𝑓 : 𝐶 → 𝐶 be a contraction with coefficient
𝜌 ∈ (0, 1). Motivated and inspired by the research going
on in this area, we introduce and analyze modified hybrid
steepest-descent methods for the GSVI (16), with solutions
being also zeros of an 𝑚-accretive operator 𝐴 in 𝑋. Here
the modified hybrid steepest-descent methods are based on
Korpelevich’s extragradient method, hybrid steepest-descent
method, and viscosity approximation method. We propose
and consider modified implicit and explicit hybrid steepest-
descent algorithms for finding a common element of the
solution set of the GSVI (16) and the set 𝐴−1(0) of zeros of
𝐴 in 𝑋. Under suitable assumptions, we derive some strong
convergence theorems. The results presented in this paper
improve, extend, supplement, and develop the corresponding
results announced in the earlier and very recent literature
[12, 13, 16, 32].

2. Preliminaries

We list some lemmas that will be used in the sequel. Lemma 4
can be found in [38]. Lemma 5 is an immediate consequence
of the subdifferential inequality of the function (1/2)‖ ⋅ ‖

2.

Lemma4. Let {𝑎
𝑛

} be a sequence of nonnegative real numbers
such that

𝑎
𝑛+1

≤ (1 − 𝑏
𝑛

) 𝑎
𝑛

+ 𝑏
𝑛

𝑐
𝑛

, ∀𝑛 ≥ 0, (29)

where {𝑏
𝑛

} and {𝑐
𝑛

} are sequences of real numbers satisfying the
following conditions:

(i) {𝑏
𝑛

} ⊂ [0, 1] and ∑
∞

𝑛=0

𝑏
𝑛

= ∞,

(ii) either lim sup
𝑛→∞

𝑐
𝑛

≤ 0 or ∑∞
𝑛=0

|𝑏
𝑛

𝑐
𝑛

| < ∞.

Then, lim
𝑛→∞

𝑎
𝑛

= 0.

Lemma 5. In a real smooth Banach space 𝑋, there holds the
inequality

‖𝑥‖
2

+ 2 ⟨𝑦, 𝐽 (𝑥)⟩ ≤




𝑥 + 𝑦






2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝐽 (𝑥 + 𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝑋,

(30)

where 𝐽 : 𝑋 → 𝑋
∗ is the normalized duality mapping.
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Let 𝐷 be a subset of 𝐶 and let Π be a mapping of 𝐶 into
𝐷. Then Π is said to be sunny if

Π [Π (𝑥) + 𝑡 (𝑥 − Π (𝑥))] = Π (𝑥) , (31)

whenever Π(𝑥) + 𝑡(𝑥 − Π(𝑥)) ∈ 𝐶 for 𝑥 ∈ 𝐶 and 𝑡 ≥ 0. A
mappingΠ of 𝐶 into itself is called a retraction ifΠ2 = Π. If a
mapping Π of 𝐶 into itself is a retraction, then Π(𝑧) = 𝑧 for
every 𝑧 ∈ 𝑅(Π), where 𝑅(Π) is the range of Π. A subset 𝐷 of
𝐶 is called a sunny nonexpansive retract of 𝐶 if there exists a
sunny nonexpansive retraction from𝐶 onto𝐷.The following
lemma concerns the sunny nonexpansive retraction.

Lemma6 (see [39]). Let𝐶 be a nonempty closed convex subset
of a real smooth Banach space 𝑋. Let 𝐷 be a nonempty subset
of 𝐶. Let Π be a retraction of 𝐶 onto 𝐷. Then the following are
equivalent:

(i) Π is sunny and nonexpansive,
(ii) ‖Π(𝑥) − Π(𝑦)‖

2

≤ ⟨𝑥−𝑦, 𝐽(Π(𝑥)−Π(𝑦))⟩, ∀𝑥, 𝑦 ∈ 𝐶,
(iii) ⟨𝑥 − Π(𝑥), 𝐽(𝑦 − Π(𝑥))⟩ ≤ 0, ∀𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷.

It is well known that if 𝑋 = 𝐻, a Hilbert space, then
a sunny nonexpansive retraction Π

𝐶

is coincident with the
metric projection from 𝑋 onto 𝐶; that is, Π

𝐶

= 𝑃
𝐶

. If 𝐶

is a nonempty closed convex subset of a strictly convex and
uniformly smooth Banach space 𝑋 and if 𝑇 : 𝐶 → 𝐶 is
a nonexpansive mapping with the fixed point set Fix(𝑇) ̸= 0,
then the set Fix(𝑇) is a sunny nonexpansive retract of 𝐶. The
following lemma follows easily from Lemma 6.

Lemma 7. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋. Let Π

𝐶

be a sunny nonexpansive
retraction from𝑋 onto𝐶 and let 𝐵

1

, 𝐵
2

: 𝐶 → 𝑋 be nonlinear
mappings. For given 𝑥

∗

, 𝑦
∗

∈ 𝐶, (𝑥
∗

, 𝑦
∗

) is a solution of GSVI
(16) if and only if 𝑥

∗

= Π
𝐶

(𝑦
∗

− 𝜇
1

𝐵
1

𝑦
∗

), where 𝑦
∗

=

Π
𝐶

(𝑥
∗

− 𝜇
2

𝐵
2

𝑥
∗

).

In terms of Lemma 7, we observe that

𝑥
∗

= Π
𝐶

[Π
𝐶

(𝑥
∗

− 𝜇
2

𝐵
2

𝑥
∗

) − 𝜇
1

𝐵
1

Π
𝐶

(𝑥
∗

− 𝜇
2

𝐵
2

𝑥
∗

)] ,

(32)

which implies that 𝑥
∗ is a fixed point of the mapping 𝐺.

Throughout this paper, the set of fixed points of the mapping
𝐺 is denoted by Ω.

Lemma 8 is the resolvent identity which can be found in
[40], and Lemma 9 can be found in [41].

Lemma 8. For 𝜆, 𝜇 > 0, there holds the identity

𝐽
𝜆

𝑥 = 𝐽
𝜇

(

𝜇

𝜆

𝑥 + (1 −

𝜇

𝜆

) 𝐽
𝜆

𝑥) , ∀𝑥 ∈ 𝑋. (33)

Lemma9. Assume that 𝑐
2

≥ 𝑐
1

> 0.Then ‖𝐽
𝑐

1

𝑥−𝑥‖ ≤ 2‖𝐽
𝑐

2

𝑥−

𝑥‖ for all 𝑥 ∈ 𝑋.

Lemma 10 (see [42]). Let 𝐶 be a nonempty closed convex
subset of a strictly convex Banach space 𝑋. Let {𝑇

𝑛

}
∞

𝑛=0

be
a sequence of nonexpansive mappings on 𝐶. Suppose that

⋂
∞

𝑛=0

Fix(𝑇
𝑛

) is nonempty. Let {𝜆
𝑛

} be a sequence of positive
numbers with ∑

∞

𝑛=0

𝜆
𝑛

= 1. Then a mapping 𝑆 on 𝐶 defined by
𝑆𝑥 = ∑

∞

𝑛=0

𝜆
𝑛

𝑇
𝑛

𝑥 for 𝑥 ∈ 𝐶 is defined well, nonexpansive, and
Fix(𝑆) = ⋂

∞

𝑛=0

Fix(𝑇
𝑛

) holds.

Let 𝜇 be a mean if 𝜇 is a continuous linear functional on
𝑙
∞ satisfying ‖𝜇‖ = 1 = 𝜇(1). Then we know that 𝜇 is a mean
on N if and only if

inf {𝑎
𝑛

: 𝑛 ∈ N} ≤ 𝜇 (𝑎) ≤ sup {𝑎
𝑛

: 𝑛 ∈ N} (34)

for every 𝑎 = (𝑎
1

, 𝑎
2

, . . .) ∈ 𝑙
∞. According to time and

circumstances, we use 𝜇
𝑛

(𝑎
𝑛

) instead of 𝜇(𝑎). A mean 𝜇 on
N is called a Banach limit if and only if

𝜇
𝑛

(𝑎
𝑛

) = 𝜇
𝑛

(𝑎
𝑛+1

) (35)

for every 𝑎 = (𝑎
1

, 𝑎
2

, . . .) ∈ 𝑙
∞. We know that if 𝜇 is a Banach

limit, then

lim inf
𝑛→∞

𝑎
𝑛

≤ 𝜇
𝑛

(𝑎
𝑛

) ≤ lim sup
𝑛→∞

𝑎
𝑛 (36)

for every 𝑎 = (𝑎
1

, 𝑎
2

, . . .) ∈ 𝑙
∞. So if 𝑎 = (𝑎

1

, 𝑎
2

, . . .), 𝑏 =

(𝑏
1

, 𝑏
2

, . . .) ∈ 𝑙
∞, and 𝑎

𝑛

→ 𝑐 (resp., 𝑎
𝑛

−𝑏
𝑛

→ 0), as 𝑛 → ∞,
we have

𝜇
𝑛

(𝑎
𝑛

) = 𝜇 (𝑎) = 𝑐 (resp., 𝜇
𝑛

(𝑎
𝑛

) = 𝜇
𝑛

(𝑏
𝑛

)) . (37)

Further, it is well known that there holds the following
result.

Lemma 11 (see [43]). Let 𝐶 be a nonempty closed convex
subset of a uniformly smooth Banach space 𝑋. Let {𝑥

𝑛

} be a
bounded sequence of 𝑋, let 𝜇 be a mean on N, and let 𝑧 ∈ 𝐶.
Then

𝜇
𝑛





𝑥
𝑛

− 𝑧





2

= min
𝑦∈𝐶

𝜇
𝑛





𝑥
𝑛

− 𝑦





2

(38)

if and only if

𝜇
𝑛

⟨𝑦 − 𝑧, 𝐽 (𝑥
𝑛

− 𝑧)⟩ ≤ 0, ∀𝑦 ∈ 𝐶, (39)

where 𝐽 is the normalized duality mapping of𝑋.

Let 𝐶 be a nonempty closed convex subset of a Banach
space𝑋 and let 𝑇 : 𝐶 → 𝐶 be a nonexpansive mapping with
Fix(𝑇) ̸= 0. Let Ξ

𝐶

be the set of all contractive self-mappings
on𝐶. For 𝑡 ∈ (0, 1) and 𝑓 ∈ Ξ

𝐶

, let 𝑥
𝑡

∈ 𝐶 be the unique fixed
point of the contraction 𝑥 → 𝑡𝑓(𝑥) + (1 − 𝑡)𝑇𝑥 on 𝐶; that is,

𝑥
𝑡

= 𝑡𝑓 (𝑥
𝑡

) + (1 − 𝑡) 𝑇𝑥
𝑡

. (40)

Lemma 12 (see [34]). Let 𝑋 be a uniformly smooth Banach
space. Let 𝐶 be a nonempty closed convex subset of 𝑋, let 𝑇 :

𝐶 → 𝐶 be a nonexpansive mapping with Fix(𝑇) ̸= 0, and let
𝑓 ∈ Ξ

𝐶

. Then the net {𝑥
𝑡

} defined by 𝑥
𝑡

= 𝑡𝑓(𝑥
𝑡

) + (1 − 𝑡)𝑇𝑥
𝑡

converges strongly to a point in Fix(𝑇). If one defines amapping
𝑄 : Ξ

𝐶

→ Fix(𝑇) by 𝑄(𝑓) := 𝑠 − lim
𝑡→0

𝑥
𝑡

, for all 𝑓 ∈ Ξ
𝐶

,
then 𝑄(𝑓) solves the VIP:

⟨(𝐼 − 𝑓)𝑄 (𝑓) , 𝐽 (𝑄 (𝑓) − 𝑢)⟩ ≤ 0,

∀𝑓 ∈ Ξ
𝐶

, 𝑢 ∈ Fix (𝑇) .

(41)
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The following proposition will be used frequently
throughout this paper.

Proposition 13 (see [11]). Let𝑋 be a real smooth Banach space
and let 𝐹 : 𝑋 → 𝑋 be a mapping.

(i) If 𝐹 is 𝜆-strictly pseudocontractive, then 𝐹 is Lips-
chitzian with constant 1 + 1/𝜆.

(ii) If𝐹 is 𝛿-strongly accretive and𝜆-strictly pseudocontrac-
tive with 𝛿 + 𝜆 > 1, then 𝐼 − 𝐹 is contractive with
constant√(1 − 𝛿)/𝜆.

(iii) If 𝐹 is 𝛿-strongly accretive and 𝜆-strictly pseudocon-
tractive with 𝛿 + 𝜆 > 1, then, for any fixed number
𝜏 ∈ (0, 1), 𝐼 − 𝜏𝐹 is contractive with constant 1 − 𝜏(1 −

√(1 − 𝛿)/𝜆).

3. Main Results

In this section, we introduce our modified hybrid steepest-
descent schemes and show the strong convergence theorems.
We will need the following useful lemmas in the sequel.

Lemma 14 (see [13, Lemma 2.8]). Let 𝐶 be a nonempty closed
convex subset of a real 2-uniformly smooth Banach space 𝑋.
Let the mapping 𝐵

𝑖

: 𝐶 → 𝑋 be 𝛼
𝑖

-inverse strongly accretive.
Then, one has





(𝐼 − 𝜇

𝑖

𝐵
𝑖

)𝑥 − (𝐼 − 𝜇
𝑖

𝐵
𝑖

)𝑦





2

≤




𝑥 − 𝑦






2

+ 2𝜇
𝑖

(𝜇
𝑖

𝜅
2

− 𝛼
𝑖

)




𝐵
𝑖

𝑥 − 𝐵
𝑖

𝑦





2

, ∀𝑥, 𝑦 ∈ 𝐶,

(42)

for 𝑖 = 1, 2, where 𝜇
𝑖

> 0. In particular, if 0 < 𝜇
𝑖

≤ 𝛼
𝑖

/𝜅
2, then

𝐼 − 𝜇
𝑖

𝐵
𝑖

is nonexpansive for 𝑖 = 1, 2.

Lemma 15 (see [13, Lemma 2.9]). Let 𝐶 be a nonempty closed
convex subset of a real 2-uniformly smooth Banach space 𝑋.
LetΠ
𝐶

be a sunny nonexpansive retraction from𝑋 onto 𝐶. Let
the mapping 𝐵

𝑖

: 𝐶 → 𝑋 be 𝛼
𝑖

-inverse strongly accretive for
𝑖 = 1, 2. Let 𝐺 : 𝐶 → 𝐶 be the mapping defined by

𝐺𝑥 = Π
𝐶

[Π
𝐶

(𝑥 − 𝜇
2

𝐵
2

𝑥) − 𝜇
1

𝐵
1

Π
𝐶

(𝑥 − 𝜇
2

𝐵
2

𝑥)] ,

∀𝑥 ∈ 𝐶.

(43)

If 0 < 𝜇
𝑖

≤ 𝛼
𝑖

/𝜅
2 for 𝑖 = 1, 2, then𝐺 : 𝐶 → 𝐶 is nonexpansive.

Let 𝑋 be a real smooth Banach space and let 𝐴 be an
𝑚-accretive operator in 𝑋 such that 𝐶 = 𝐷(𝐴) is convex.
Let Π

𝐶

be a sunny nonexpansive retraction from 𝑋 onto
𝐶. Let 𝐹 : 𝑋 → 𝑋 be 𝛿-strongly accretive and 𝜆-strictly
pseudocontractive with 𝛿 + 𝜆 > 1. Let the mapping 𝐵

𝑖

:

𝐶 → 𝑋 be 𝛼
𝑖

-inverse strongly accretive for 𝑖 = 1, 2 and let
𝑓 : 𝑋 → 𝑋 be a contractive map with coefficient 𝜌 ∈ (0, 1).
In this section, wewill consider the problemof finding a point
𝑝 ∈ Δ = 𝐴

−1

(0) ∩ Ω( ̸= 0), which is a unique solution of the
VIP:

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ Δ, (44)

where Ω is the fixed point set of the mapping 𝐺 = Π
𝐶

(𝐼 −

𝜇
1

𝐵
1

)Π
𝐶

(𝐼 − 𝜇
2

𝐵
2

) with 0 < 𝜇
𝑖

≤ 𝛼
𝑖

/𝜅
2 for 𝑖 = 1, 2.

For each 𝑡 ∈ (0, 1) and each integer 𝑛 ≥ 0, we choose a
number 𝜃

𝑡

∈ [0, 1) arbitrarily and then consider the following
mapping Γ

𝑡,𝑛

: 𝑋 → 𝑋 defined as

Γ
𝑡,𝑛

𝑥 = 𝑡𝑓 (𝑥) + (1 − 𝑡) [𝐺 (𝐽
𝑟

𝑛

𝑥) − 𝜃
𝑡

𝐹𝐺 (𝐽
𝑟

𝑛

𝑥)] , ∀𝑥 ∈ 𝑋.

(45)

Then, Γ
𝑡,𝑛

: 𝑋 → 𝑋 is a contractive map. Indeed, utilizing
Proposition 13(iii) and Lemma 15, we have for all 𝑥, 𝑦 ∈ 𝑋





Γ
𝑡,𝑛

𝑥 − Γ
𝑡,𝑛

𝑦





=






𝑡𝑓 (𝑥) + (1 − 𝑡) [𝐺 (𝐽

𝑟

𝑛

𝑥) − 𝜃
𝑡

𝐹𝐺 (𝐽
𝑟

𝑛

𝑥)]

− 𝑡𝑓 (𝑦) − (1 − 𝑡) [𝐺 (𝐽
𝑟

𝑛

𝑦) − 𝜃
𝑡

𝐹𝐺 (𝐽
𝑟

𝑛

𝑦)]







≤ 𝑡




𝑓 (𝑥) − 𝑓 (𝑦)






+ (1 − 𝑡)






(𝐼 − 𝜃

𝑡

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑥) − (𝐼 − 𝜃
𝑡

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑦)







≤ 𝑡𝜌




𝑥 − 𝑦





+ (1 − 𝑡)(1 − 𝜃

𝑡

(1 − √
1 − 𝛿

𝜆

))

×






𝐺 (𝐽
𝑟

𝑛

𝑥) − 𝐺 (𝐽
𝑟

𝑛

𝑦)







≤ 𝑡𝜌




𝑥 − 𝑦





+ (1 − 𝑡)(1 − 𝜃t (1 − √

1 − 𝛿

𝜆

))

×






𝐽
𝑟

𝑛

𝑥 − 𝐽
𝑟

𝑛

𝑦







≤ 𝑡𝜌




𝑥 − 𝑦





+ (1 − 𝑡)(1 − 𝜃

𝑡

(1 − √
1 − 𝛿

𝜆

))




𝑥 − 𝑦






≤ 𝑡𝜌




𝑥 − 𝑦





+ (1 − 𝑡)





𝑥 − 𝑦






= (1 − (1 − 𝜌) 𝑡)




𝑥 − 𝑦





,

(46)

and hence Γ
𝑡,𝑛

: 𝑋 → 𝑋 is contractive due to (1−𝜌)𝑡 ∈ (0, 1).
By Banach’s Contraction Mapping Principle, there exists a
unique fixed point 𝑥

𝑡,𝑛

of Γ
𝑡,𝑛

in𝑋; that is,

𝑥
𝑡,𝑛

= 𝑡𝑓 (𝑥
𝑡,𝑛

) + (1 − 𝑡) [𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − 𝜃
𝑡

𝐹𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)] .

(47)

Theorem 16. Let 𝑋 be a uniformly convex and 2-uniformly
smooth Banach space and let𝐴 be an𝑚-accretive operator in𝑋

such that𝐶 = 𝐷(𝐴) is convex. LetΠ
𝐶

be a sunny nonexpansive
retraction from𝑋 onto 𝐶. Let the mapping 𝐵

𝑖

: 𝐶 → 𝑋 be 𝛼
𝑖

-
inverse strongly accretive for 𝑖 = 1, 2, let 𝑓 : 𝑋 → 𝐶 be a
contractive map with coefficient 𝜌 ∈ (0, 1), and let 𝐹 : 𝑋 →

𝑋 be 𝛿-strongly accretive and 𝜆-strictly pseudocontractive with
𝛿 + 𝜆 > 1. Assume that Δ = 𝐴

−1

(0) ∩ Ω ̸= 0, where Ω is
the fixed point set of the mapping 𝐺 = Π

𝐶

(𝐼 − 𝜇
1

𝐵
1

)Π
𝐶

(𝐼 −

𝜇
2

𝐵
2

) with 0 < 𝜇
𝑖

< 𝛼
𝑖

/𝜅
2 for 𝑖 = 1, 2. For each 𝑡 ∈ (0, 1)
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and each integer 𝑛 ≥ 0, let {𝑥
𝑡,𝑛

} be defined by (47), where
{𝑟
𝑛

} ⊂ [𝜀,∞) for some 𝜀 > 0 and {𝜃
𝑡

: 𝑡 ∈ (0, 1)} ⊂ [0, 1) with
lim
𝑡→0

(𝜃
𝑡

/𝑡) = 0. Then as 𝑡 → 0, {𝑥
𝑡,𝑛

} converges strongly to
𝑝 ∈ Δ, which is a unique solution of the VIP (44).

Proof. First let us show that for some 𝑎 ∈ (0, 1), {𝑥
𝑡,𝑛

: 𝑡 ∈

(0, 𝑎], 𝑛 ≥ 0} is bounded. Indeed, since {𝜃
𝑡

: 𝑡 ∈ (0, 1)} ⊂

[0, 1) with lim
𝑡→0

(𝜃
𝑡

/𝑡) = 0, there exists some 𝑎 ∈ (0, 1) such
that 0 ≤ 𝜃

𝑡

/𝑡 < 1 for all 𝑡 ∈ (0, 𝑎].
Take 𝑝 ∈ Δ. Then utilizing Proposition 13, we have




𝑥
𝑡,𝑛

− 𝑝





≤ 𝑡




𝑓 (𝑥
𝑡,𝑛

) − 𝑝




+ (1 − 𝑡)

×






[𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − 𝜃
𝑡

𝐹G (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)] − 𝑝







≤ 𝑡𝜌




𝑥
𝑡,𝑛

− 𝑝




+ 𝑡





𝑓 (𝑝) − 𝑝





+ (1 − 𝑡)

× [






(𝐼 − 𝜃

𝑡

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − (𝐼 − 𝜃
𝑡

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑝)







+






(𝐼 − 𝜃

𝑡

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑝) − 𝑝






]

≤ 𝑡𝜌




𝑥
𝑡,𝑛

− 𝑝




+ 𝑡





𝑓 (𝑝) − 𝑝





+ (1 − 𝑡)

× (1 − 𝜃
𝑡

(1 − √
1 − 𝛿

𝜆

))






𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − 𝐺 (𝐽
𝑟

𝑛

𝑝)







+ (1 − 𝑡) 𝜃
𝑡





𝐹 (𝑝)






≤ 𝑡𝜌




𝑥
𝑡,𝑛

− 𝑝




+ 𝑡





𝑓 (𝑝) − 𝑝





+ (1 − 𝑡)

× (1 − 𝜃
𝑡

(1 − √
1 − 𝛿

𝜆

))






𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

− 𝐽
𝑟

𝑛

𝑝







+ 𝜃
𝑡





𝐹 (𝑝)






≤ 𝑡𝜌




𝑥
𝑡,𝑛

− 𝑝




+ 𝑡





𝑓 (𝑝) − 𝑝





+ (1 − 𝑡)

× (1 − 𝜃
𝑡

(1 − √
1 − 𝛿

𝜆

))




𝑥
𝑡,𝑛

− 𝑝




+ 𝜃
𝑡





𝐹 (𝑝)






≤ 𝑡𝜌




𝑥
𝑡,𝑛

− 𝑝




+ 𝑡





𝑓 (𝑝) − 𝑝





+ (1 − 𝑡)





𝑥
𝑡,𝑛

− 𝑝





+ 𝜃
𝑡





𝐹 (𝑝)





,

(48)

and, hence, for all 𝑡 ∈ (0, 𝑎]





𝑥
𝑡,𝑛

− 𝑝




≤

1

1 − 𝜌

(




𝑓 (𝑝) − 𝑝





+

𝜃
𝑡

𝑡





𝐹 (𝑝)





)

≤

1

1 − 𝜌

(




𝑓 (𝑝) − 𝑝





+




𝐹 (𝑝)





) .

(49)

Thus, this implies that {𝑥
𝑡,𝑛

: 𝑡 ∈ (0, 𝑎], 𝑛 ≥ 0} is bounded and
so are {𝑓(𝑥

𝑡,𝑛

) : 𝑡 ∈ (0, 𝑎], 𝑛 ≥ 0}, {𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

: 𝑡 ∈ (0, 𝑎], 𝑛 ≥ 0},
and {𝐺(𝐽

𝑟

𝑛

𝑥
𝑡,𝑛

) : 𝑡 ∈ (0, 𝑎], 𝑛 ≥ 0}.
Let us show that ‖𝐽

𝑟

𝑛

𝑥
𝑡,𝑛

− 𝐺(𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)‖ → 0 as 𝑡 → 0.
Indeed, for simplicity we put 𝑞 = Π

𝐶

(𝐼 − 𝜇
2

𝐵
2

)𝑝, 𝑥
𝑡,𝑛

=

𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

, 𝑢
𝑡,𝑛

= Π
𝐶

(𝐼 − 𝜇
2

𝐵
2

)𝑥
𝑡,𝑛

, and V
𝑡,𝑛

= Π
𝐶

(𝐼 − 𝜇
1

𝐵
1

)𝑢
𝑡,𝑛

.

Then it is clear that 𝑝 = Π
𝐶

(𝐼 − 𝜇
1

𝐵
1

)𝑞 and V
𝑡,𝑛

= 𝐺(𝑥
𝑡,𝑛

) =

𝐺(𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

). Taking into account 𝑥
𝑡,𝑛

−𝑝 = 𝑡(𝑓(𝑥
𝑡,𝑛

) − 𝑝) + (1 −

𝑡)[𝐺(𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − 𝜃
𝑡

𝐹𝐺(𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − 𝑝], we get





𝑥
𝑡,𝑛

− 𝑝





2

= 𝑡 ⟨𝑓 (𝑥
𝑡,𝑛

) − 𝑝, 𝐽 (𝑥
𝑡,𝑛

− 𝑝)⟩

+ (1 − 𝑡) ⟨𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − 𝑝, 𝐽 (𝑥
𝑡,𝑛

− 𝑝)⟩

− (1 − 𝑡) 𝜃
𝑡

⟨𝐹𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) , 𝐽 (𝑥
𝑡,𝑛

− 𝑝)⟩

≤ 𝑡 ⟨𝑓 (𝑥
𝑡,𝑛

) − 𝑓 (𝑝) , 𝐽 (𝑥
𝑡,𝑛

− 𝑝)⟩

+ 𝑡 ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑡,𝑛

− 𝑝)⟩

+ (1 − 𝑡)






𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − 𝑝











𝐽 (𝑥
𝑡,𝑛

− 𝑝)





+ (1 − 𝑡) 𝜃
𝑡






𝐹𝐺 (𝐽

𝑟

𝑛

𝑥
𝑡,𝑛

)











𝐽 (𝑥
𝑡,𝑛

− 𝑝)





≤ 𝜌𝑡




𝑥
𝑡,𝑛

− 𝑝





2

+ 𝑡




𝑓 (𝑝) − 𝑝










𝑥
𝑡,𝑛

− 𝑝





+ (1 − 𝑡)




V
𝑡,𝑛

− 𝑝









𝑥
𝑡,𝑛

− 𝑝





+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝




.

(50)

From Lemma 14 we have





𝑢
𝑡,𝑛

− 𝑞





2

=




Π
𝐶

(𝑥
𝑡,𝑛

− 𝜇
2

𝐵
2

𝑥
𝑡,𝑛

) − Π
𝐶

(𝑝 − 𝜇
2

𝐵
2

𝑝)





2

≤




𝑥
𝑡,𝑛

− 𝑝 − 𝜇
2

(𝐵
2

𝑥
𝑡,𝑛

− 𝐵
2

𝑝)





2

≤




𝑥
𝑡,𝑛

− 𝑝





2

− 2𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑡,𝑛

− 𝐵
2

𝑝





2

,





V
𝑡,𝑛

− 𝑝





2

=




Π
𝐶

(𝑢
𝑡,𝑛

− 𝜇
1

𝐵
1

𝑢
𝑡,𝑛

) − Π
𝐶

(𝑞 − 𝜇
1

𝐵
1

𝑞)





2

≤




𝑢
𝑡,𝑛

− 𝑞 − 𝜇
1

(𝐵
1

𝑢
𝑡,𝑛

− 𝐵
1

𝑞)





2

≤




𝑢
𝑡,𝑛

− 𝑞





2

− 2𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑡,𝑛

− 𝐵
1

𝑞





2

.

(51)

From the last two inequalities, we obtain





V
𝑡,𝑛

− 𝑝





2

≤




𝑥
𝑡,𝑛

− 𝑝





2

− 2𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑡,𝑛

− 𝐵
2

𝑝





2

− 2𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑡,𝑛

− 𝐵
1

𝑞





2

≤




𝑥
𝑡,𝑛

− 𝑝





2

− 2𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑡,𝑛

− 𝐵
2

𝑝





2

− 2𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑡,𝑛

− 𝐵
1

𝑞





2

,

(52)

which, together with (50), implies that





𝑥
𝑡,𝑛

− 𝑝





2

≤ 𝜌𝑡




𝑥
𝑡,𝑛

− 𝑝





2

+ 𝑡




𝑓 (𝑝) − 𝑝










𝑥
𝑡,𝑛

− 𝑝





+ (1 − 𝑡)




V
𝑡,𝑛

− 𝑝









𝑥
𝑡,𝑛

− 𝑝




+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝
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≤ 𝜌𝑡




𝑥
𝑡,𝑛

− 𝑝





2

+ 𝑡




𝑓 (𝑝) − 𝑝










𝑥
𝑡,𝑛

− 𝑝





+ (1 − 𝑡)

1

2

(




𝑥
𝑡,𝑛

− 𝑝





2

+




V
𝑡,𝑛

− 𝑝





2

)

+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝





≤ 𝜌𝑡




𝑥
𝑡,𝑛

− 𝑝





2

+ 𝑡




𝑓 (𝑝) − 𝑝










𝑥
𝑡,𝑛

− 𝑝





+ (1 − 𝑡)

1

2

{




𝑥
𝑡,𝑛

− 𝑝





2

+




𝑥
𝑡,𝑛

− 𝑝





2

− 2𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑡,𝑛

− 𝐵
2

𝑝





2

− 2𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑡,𝑛

− 𝐵
1

𝑞





2

}

+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝





= (1 − 𝑡 (1 − 𝜌))




𝑥
𝑡,𝑛

− 𝑝





2

+ 𝑡




𝑓 (𝑝) − 𝑝










𝑥
𝑡,𝑛

− 𝑝





− (1 − 𝑡) [𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑡,𝑛

− 𝐵
2

𝑝





2

+ 𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑡,𝑛

− 𝐵
1

𝑞





2

]

+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝





≤




𝑥
𝑡,𝑛

− 𝑝





2

+ 𝑡




𝑓 (𝑝) − 𝑝










𝑥
𝑡,𝑛

− 𝑝





− (1 − 𝑡) [𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑡,𝑛

− 𝐵
2

𝑝





2

+ 𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑡,𝑛

− 𝐵
1

𝑞





2

]

+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝




.

(53)

So it immediately follows that

(1 − 𝑡) [𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑡,𝑛

− 𝐵
2

𝑝





2

+ 𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑡,𝑛

− 𝐵
1

𝑞





2

]

≤ 𝑡




𝑓 (𝑝) − 𝑝










𝑥
𝑡,𝑛

− 𝑝




+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝




.

(54)

Since 0 < 𝜇
𝑖

< 𝛼
𝑖

/𝜅
2 for 𝑖 = 1, 2, we have

lim
𝑡→0





𝐵
2

𝑥
𝑡,𝑛

− 𝐵
2

𝑝




= 0,

lim
𝑡→0





𝐵
1

𝑢
𝑡,𝑛

− 𝐵
1

𝑞




= 0.

(55)

Utilizing Proposition 3 and Lemma 6, we have





𝑢
𝑡,𝑛

− 𝑞





2

=




Π
𝐶

(𝑥
𝑡,𝑛

− 𝜇
2

𝐵
2

𝑥
𝑡,𝑛

) − Π
𝐶

(𝑝 − 𝜇
2

𝐵
2

𝑝)





2

≤ ⟨𝑥
𝑡,𝑛

− 𝜇
2

𝐵
2

𝑥
𝑡,𝑛

− (𝑝 − 𝜇
2

𝐵
2

𝑝) , 𝐽 (𝑢
𝑡,𝑛

− 𝑞)⟩

= ⟨𝑥
𝑡,𝑛

− 𝑝, 𝐽 (𝑢
𝑡,𝑛

− 𝑞)⟩

+ 𝜇
2

⟨𝐵
2

𝑝 − 𝐵
2

𝑥
𝑡,𝑛

, 𝐽 (𝑢
𝑡,𝑛

− 𝑞)⟩

≤

1

2

[




𝑥
𝑡,𝑛

− 𝑝





2

+




𝑢
𝑡,𝑛

− 𝑞





2

− 𝑔
1

(




𝑥
𝑡,𝑛

− 𝑢
𝑡,𝑛

− (𝑝 − 𝑞)




)]

+ 𝜇
2





𝐵
2

𝑝 − 𝐵
2

𝑥
𝑡,𝑛










𝑢
𝑡,𝑛

− 𝑞




,

(56)

which implies that





𝑢
𝑡,𝑛

− 𝑞





2

≤




𝑥
𝑡,𝑛

− 𝑝





2

− 𝑔
1

(




𝑥
𝑡,𝑛

− 𝑢
𝑡,𝑛

− (𝑝 − 𝑞)




)

+ 2𝜇
2





𝐵
2

𝑝 − 𝐵
2

𝑥
𝑡,𝑛










𝑢
𝑡,𝑛

− 𝑞




.

(57)

In the same way, we derive





V
𝑡,𝑛

− 𝑝





2

=




Π
𝐶

(𝑢
𝑡,𝑛

− 𝜇
1

𝐵
1

𝑢
𝑡,𝑛

) − Π
𝐶

(𝑞 − 𝜇
1

𝐵
1

𝑞)





2

≤ ⟨𝑢
𝑡,𝑛

− 𝜇
1

𝐵
1

𝑢
𝑡,𝑛

− (𝑞 − 𝜇
1

𝐵
1

𝑞) , 𝐽 (V
𝑡,𝑛

− 𝑝)⟩

= ⟨𝑢
𝑡,𝑛

− 𝑞, 𝐽 (V
𝑡,𝑛

− 𝑝)⟩ + 𝜇
1

⟨𝐵
1

𝑞 − 𝐵
1

𝑢
𝑡,𝑛

, 𝐽 (V
𝑡,𝑛

− 𝑝)⟩

≤

1

2

[




𝑢
𝑡,𝑛

− 𝑞





2

+




V
𝑡,𝑛

− 𝑝





2

− 𝑔
2

(




𝑢
𝑡,𝑛

− V
𝑡,𝑛

+ (𝑝 − 𝑞)




)]

+ 𝜇
1





𝐵
1

𝑞 − 𝐵
1

𝑢
𝑡,𝑛










V
𝑡,𝑛

− 𝑝




,

(58)

which implies that





V
𝑡,𝑛

− 𝑝





2

≤




𝑢
𝑡,𝑛

− 𝑞





2

− 𝑔
2

(




𝑢
𝑡,𝑛

− V
𝑡,𝑛

+ (𝑝 − 𝑞)




)

+ 2𝜇
1





𝐵
1

𝑞 − 𝐵
1

𝑢
𝑡,𝑛










V
𝑡,𝑛

− 𝑝




.

(59)

Substituting (57) for (59), we get





V
𝑡,𝑛

− 𝑝





2

≤




𝑥
𝑡,𝑛

− 𝑝





2

− 𝑔
1

(




𝑥
𝑡,𝑛

− 𝑢
𝑡,𝑛

− (𝑝 − 𝑞)




)

− 𝑔
2

(




𝑢
𝑡,𝑛

− V
𝑡,𝑛

+ (𝑝 − 𝑞)




)

+ 2𝜇
2





𝐵
2

𝑝 − 𝐵
2

𝑥
𝑡,𝑛










𝑢
𝑡,𝑛

− 𝑞





+ 2𝜇
1





𝐵
1

𝑞 − 𝐵
1

𝑢
𝑡,𝑛










V
𝑡,𝑛

− 𝑝





≤




𝑥
𝑡,𝑛

− 𝑝





2

− 𝑔
1

(




𝑥
𝑡,𝑛

− 𝑢
𝑡,𝑛

− (𝑝 − 𝑞)




)

− 𝑔
2

(




𝑢
𝑡,𝑛

− V
𝑡,𝑛

+ (𝑝 − 𝑞)




)

+ 2𝜇
2





𝐵
2

𝑝 − 𝐵
2

𝑥
𝑡,𝑛










𝑢
𝑡,𝑛

− 𝑞





+ 2𝜇
1





𝐵
1

𝑞 − 𝐵
1

𝑢
𝑡,𝑛










V
𝑡,𝑛

− 𝑝




,

(60)
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which, together with (50), implies that





𝑥
𝑡,𝑛

− 𝑝





2

≤ 𝜌𝑡




𝑥
𝑡,𝑛

− 𝑝





2

+ 𝑡




𝑓 (𝑝) − 𝑝










𝑥t,𝑛 − 𝑝






+ (1 − 𝑡)

1

2

(




𝑥
𝑡,𝑛

− 𝑝





2

+




V
𝑡,𝑛

− 𝑝





2

)

+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝





≤ 𝜌𝑡




𝑥
𝑡,𝑛

− 𝑝





2

+ 𝑡




𝑓 (𝑝) − 𝑝










𝑥
𝑡,𝑛

− 𝑝





+ (1 − 𝑡)

1

2

{




𝑥
𝑡,𝑛

− 𝑝





2

+




𝑥
𝑡,𝑛

− 𝑝





2

− 𝑔
1

(




𝑥
𝑡,𝑛

− 𝑢
𝑡,𝑛

− (𝑝 − 𝑞)




)

− 𝑔
2

(




𝑢
𝑡,𝑛

− V
𝑡,𝑛

+ (𝑝 − 𝑞)




)

+ 2𝜇
2





𝐵
2

𝑝 − 𝐵
2

𝑥
𝑡,𝑛










𝑢
𝑡,𝑛

− 𝑞





+ 2𝜇
1





𝐵
1

𝑞 − 𝐵
1

𝑢
𝑡,𝑛










V
𝑡,𝑛

− 𝑝




}

+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝





= (1 − 𝑡 (1 − 𝜌))




𝑥
𝑡,𝑛

− 𝑝





2

+ 𝑡




𝑓 (𝑝) − 𝑝










𝑥
𝑡,𝑛

− 𝑝





− (1 − 𝑡)

1

2

[𝑔
1

(




𝑥
𝑡,𝑛

− 𝑢
𝑡,𝑛

− (𝑝 − 𝑞)




)

+ 𝑔
2

(




𝑢
𝑡,𝑛

− V
𝑡,𝑛

+ (𝑝 − 𝑞)




)]

+ (1 − 𝑡) [𝜇
2





𝐵
2

𝑝 − 𝐵
2

𝑥
𝑡,𝑛










𝑢
𝑡,𝑛

− 𝑞





+ 𝜇
1





𝐵
1

𝑞 − 𝐵
1

𝑢
𝑡,𝑛










V
𝑡,𝑛

− 𝑝




]

+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝





≤




𝑥
𝑡,𝑛

− 𝑝





2

+ 𝑡




𝑓 (𝑝) − 𝑝










𝑥
𝑡,𝑛

− 𝑝





− (1 − 𝑡)

1

2

[𝑔
1

(




𝑥
𝑡,𝑛

− 𝑢
𝑡,𝑛

− (𝑝 − 𝑞)




)

+ 𝑔
2

(




𝑢
𝑡,𝑛

− V
𝑡,𝑛

+ (𝑝 − 𝑞)




)]

+ 𝜇
2





𝐵
2

𝑝 − 𝐵
2

𝑥
𝑡,𝑛










𝑢
𝑡,𝑛

− 𝑞





+ 𝜇
1





𝐵
1

𝑞 − 𝐵
1

𝑢
𝑡,𝑛










V
𝑡,𝑛

− 𝑝





+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝




.

(61)

So it immediately follows that

(1 − 𝑡)

1

2

[𝑔
1

(




𝑥
𝑡,𝑛

− 𝑢
𝑡,𝑛

− (𝑝 − 𝑞)




)

+ 𝑔
2

(




𝑢
𝑡,𝑛

− V
𝑡,𝑛

+ (𝑝 − 𝑞)




)]

≤ 𝑡




𝑓 (𝑝) − 𝑝










𝑥
𝑡,𝑛

− 𝑝





+ 𝜇
2





𝐵
2

𝑝 − 𝐵
2

𝑥
𝑡,𝑛










𝑢
𝑡,𝑛

− 𝑞





+ 𝜇
1





𝐵
1

𝑞 − 𝐵
1

𝑢
𝑡,𝑛










V
𝑡,𝑛

− 𝑝





+ 𝜃
𝑡





𝐹V
𝑡,𝑛










𝑥
𝑡,𝑛

− 𝑝




.

(62)

Hence, from (55) we conclude that

lim
𝑡→0

𝑔
1

(




𝑥
𝑡,𝑛

− 𝑢
𝑡,𝑛

− (𝑝 − 𝑞)




) = 0,

lim
𝑡→0

𝑔
2

(




𝑢
𝑡,𝑛

− V
𝑡,𝑛

+ (𝑝 − 𝑞)




) = 0.

(63)

Utilizing the properties of 𝑔
1

and 𝑔
2

, we get

lim
𝑡→0





𝑥
𝑡,𝑛

− 𝑢
𝑡,𝑛

− (𝑝 − 𝑞)




= 0,

lim
𝑡→0





𝑢
𝑡,𝑛

− V
𝑡,𝑛

+ (𝑝 − 𝑞)




= 0,

(64)

which leads to




𝑥
𝑡,𝑛

− V
𝑡,𝑛






≤




𝑥
𝑡,𝑛

− 𝑢
𝑡,𝑛

− (𝑝 − 𝑞)





+




𝑢
𝑡,𝑛

− V
𝑡,𝑛

+ (𝑝 − 𝑞)




→ 0 as 𝑡 → 0.

(65)

That is,

lim
𝑡→0






𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)






= lim
𝑡→0





𝑥
𝑡,𝑛

− V
𝑡,𝑛





= 0. (66)

Note that Fix(𝐽
𝑟

𝑛

) = 𝐴
−1

(0) for all 𝑛 ≥ 0 and that {𝑥
𝑡,𝑛

: 𝑡 ∈

(0, 𝑎], 𝑛 ≥ 0} is bounded and so are {𝑓(𝑥
𝑡,𝑛

) : 𝑡 ∈ (0, 𝑎], 𝑛 ≥

0}, {𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

: 𝑡 ∈ (0, 𝑎], 𝑛 ≥ 0}, and {𝐺(𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) : 𝑡 ∈ (0, 𝑎], 𝑛 ≥

0}. Hence, we have





𝑥
𝑡,𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)







= 𝑡










𝑓 (𝑥
𝑡,𝑛

) − 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − (1 − 𝑡)

𝜃
𝑡

𝑡

𝐹𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)










→ 0,

(67)

as 𝑡 → 0. Also, observe that





𝑥
𝑡,𝑛

− 𝐽
𝑟

𝑛

𝑥
𝑡,𝑛






≤






𝑥
𝑡,𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)






+






𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − 𝐽
𝑟

𝑛

𝑥
𝑡,𝑛






.

(68)

This, together with (66) and (67), implies that

lim
𝑡→0






𝑥
𝑡,𝑛

− 𝐽
𝑟

𝑛

𝑥
𝑡,𝑛






= 0. (69)

Utilizing the nonexpansivity of 𝐺, we obtain from (67) and
(69) that





𝑥
𝑡,𝑛

− 𝐺𝑥
𝑡,𝑛





≤






𝑥
𝑡,𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)







+






𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − 𝐺𝑥
𝑡,𝑛







≤






𝑥
𝑡,𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)







+






𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

− 𝑥
𝑡,𝑛






→ 0, as 𝑡 → 0.

(70)



10 Abstract and Applied Analysis

Since 𝑟
𝑛

≥ 𝜀 for all 𝑛, utilizing Lemma 9 we have





𝑥
𝑡,𝑛

− 𝐽
𝜀

𝑥
𝑡,𝑛





≤ 2






𝑥
𝑡,𝑛

− 𝐽
𝑟

𝑛

𝑥
𝑡,𝑛






→ 0, as 𝑡 → 0. (71)

For any integer 𝑛 ≥ 0, for simplicity put 𝑤
𝑡

= 𝑥
𝑡,𝑛

for all
𝑡 ∈ (0, 𝑎]. Now let {𝑡

𝑘

} be a sequence in (0, 𝑎] that converges
to 0 as 𝑘 → ∞ and define a function 𝑔 on 𝐶 by

𝑔 (𝑤) = 𝜇
𝑘

1

2






𝑤
𝑡

𝑘

− 𝑤







2

, ∀𝑤 ∈ 𝐶, (72)

where 𝜇 is a Banach limit. Define the set

𝐾 := {𝑤 ∈ 𝐶 : 𝑔 (𝑤) = min {𝑔 (𝑦) : 𝑦 ∈ 𝐶}} (73)

and the mapping

𝑊𝑥 = (1 − 𝜃) 𝐽
𝜀

𝑥 + 𝜃𝐺𝑥, ∀𝑥 ∈ 𝐶, (74)

where 𝜃 is a constant in (0, 1). Then by Lemma 10, we know
that Fix(𝑊) = Fix(𝐽

𝜀

) ∩ Fix(𝐺) = Δ. We observe that





𝑤
𝑡

− 𝑊𝑤
𝑡





=





(1 − 𝜃) (𝑤

𝑡

− 𝐽
𝜀

𝑤
𝑡

) + 𝜃 (𝑤
𝑡

− 𝐺𝑤
𝑡

)





≤ (1 − 𝜃)




𝑤
𝑡

− 𝐽
𝜀

𝑤
𝑡





+ 𝜃





𝑤
𝑡

− 𝐺𝑤
𝑡





.

(75)

So from (70) and (71) we obtain

lim
𝑛→∞





𝑤
𝑡

− 𝑊𝑤
𝑡





= 0. (76)

Since𝑋 is a uniformly smooth Banach space,𝐾 is a nonempty
bounded closed convex subset of𝐶; for more details, see [43].
We claim that 𝐾 is also invariant under the nonexpansive
mapping𝑊. Indeed, noticing (76), we have for 𝑤 ∈ 𝐾

𝑔 (𝑊𝑤) = 𝜇
𝑘

1

2






𝑤
𝑡

𝑘

− 𝑊𝑤







2

= 𝜇
𝑘

1

2






𝑊𝑤
𝑡

𝑘

− 𝑊𝑤







2

≤ 𝜇
𝑘

1

2






𝑤
𝑡

𝑘

− 𝑤







2

= 𝑔 (𝑤) .

(77)

Since every nonempty closed bounded convex subset of
uniformly smooth Banach space 𝑋 has the fixed point prop-
erty for nonexpansive mappings and 𝑊 is a nonexpansive
mapping of 𝐾, 𝑊 has a fixed point in 𝐾, say 𝑝. Utilizing
Lemma 11, we get

𝜇
𝑘

⟨𝑥 − 𝑝, 𝐽 (𝑤
𝑡

𝑘

− 𝑝)⟩ ≤ 0, ∀𝑥 ∈ 𝐶. (78)

Putting 𝑥 = 𝑓(𝑝) we have

𝜇
𝑘

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑤
𝑡

𝑘

− 𝑝)⟩ ≤ 0, ∀𝑥 ∈ 𝐶. (79)

Since 𝑤
𝑡

𝑘

− 𝑝 = 𝑡
𝑘

(𝑓(𝑤
𝑡

𝑘

) − 𝑝) + (1 − 𝑡
𝑘

)[𝐺(𝐽
𝑟

𝑛

𝑤
𝑡

𝑘

) −

𝜃
𝑡

𝑘

𝐹𝐺(𝐽
𝑟

𝑛

𝑤
𝑡

𝑘

) − 𝑝], we get






𝑤
𝑡

𝑘

− 𝑝







2

= 𝑡
𝑘

⟨𝑓 (𝑤
𝑡

𝑘

) − 𝑝, 𝐽 (𝑤
𝑡

𝑘

− 𝑝)⟩

+ (1 − 𝑡
𝑘

) ⟨𝐺 (𝐽
𝑟

𝑛

𝑤
𝑡

𝑘

) − 𝑝, 𝐽 (𝑤
𝑡

𝑘

− 𝑝)⟩

− (1 − 𝑡
𝑘

) 𝜃
𝑡

𝑘

⟨𝐹𝐺 (𝐽
𝑟

𝑛

𝑤
𝑡

𝑘

) , 𝐽 (𝑤
𝑡

𝑘

− 𝑝)⟩

≤ 𝑡
𝑘

⟨𝑓 (𝑤
𝑡

𝑘

) − 𝑓 (𝑝) , 𝐽 (𝑤
𝑡

𝑘

− 𝑝)⟩

+ 𝑡
𝑘

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑤
𝑡

𝑘

− 𝑝)⟩

+ (1 − 𝑡
𝑘

)






𝐺 (𝐽
𝑟

𝑛

𝑤
𝑡

𝑘

) − 𝑝












𝐽 (𝑤
𝑡

𝑘

− 𝑝)







+ (1 − 𝑡
𝑘

) 𝜃
𝑡

𝑘






𝐹𝐺 (𝐽

𝑟

𝑛

𝑤
𝑡

𝑘

)












𝐽 (𝑤
𝑡

𝑘

− 𝑝)







≤ 𝜌𝑡
𝑘






𝑤
𝑡

𝑘

− 𝑝







2

+ 𝑡
𝑘

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑤
𝑡

𝑘

− 𝑝)⟩

+ (1 − 𝑡
𝑘

)






𝑤
𝑡

𝑘

− 𝑝







2

+ 𝜃
𝑡

𝑘






𝐹𝐺 (𝐽

𝑟

𝑛

𝑤
𝑡

𝑘

)












𝑤
𝑡

𝑘

− 𝑝






.

(80)

It follows that






𝑤
𝑡

𝑘

− 𝑝







2

≤

1

1 − 𝜌

[ ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑤
𝑡

𝑘

− 𝑝)⟩

+

𝜃
𝑡

𝑘

𝑡
𝑘






𝐹𝐺 (𝐽

𝑟

𝑛

𝑤
𝑡

𝑘

)












𝑤
𝑡

𝑘

− 𝑝






] .

(81)

Since lim
𝑘→∞

(𝜃
𝑡

𝑘

/𝑡
𝑘

) = 0, from (79) and the boundedness of
sequences {𝐹𝐺(𝐽

𝑟

𝑛

𝑤
𝑡

𝑘

)}, {𝑤
𝑡

𝑘

}, it follows that

𝜇
𝑘






𝑤
𝑡

𝑘

− 𝑝







2

≤

1

1 − 𝜌

𝜇
𝑘

[⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑤
𝑡

𝑘

− 𝑝)⟩

+

𝜃
𝑡

𝑘

𝑡
𝑘






𝐹𝐺 (𝐽

𝑟

𝑛

𝑤
𝑡

𝑘

)












𝑤
𝑡

𝑘

− 𝑝






]

=

1

1 − 𝜌

[𝜇
𝑘

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑤
𝑡

𝑘

− 𝑝)⟩

+ 𝜇
𝑘

(

𝜃
𝑡

𝑘

𝑡
𝑘






𝐹𝐺 (𝐽

𝑟

𝑛

𝑤
𝑡

𝑘

)












𝑤
𝑡

𝑘

− 𝑝






)] ≤ 0.

(82)

Therefore, it is known that for any sequence {𝑤
𝑡

𝑘

} in {𝑤
𝑡

:

𝑡 ∈ (0, 𝑎]} there exists a subsequence which is still denoted
by {𝑤

𝑡

𝑘

} that converges strongly to some fixed point 𝑝 of 𝑊.
To prove that the net {𝑤

𝑡

: 𝑡 ∈ (0, 𝑎]} converges strongly to
𝑝 as 𝑡 → 0, suppose that there exists another subsequence
{𝑤
𝑠

𝑘

} ⊂ {𝑤
𝑡

} such that 𝑤
𝑠

𝑘

→ 𝑞 as 𝑠
𝑘

→ 0, and then we also
have 𝑞 ∈ Fix(𝑊) = 𝐴

−1

(0) ∩ Ω =: Δ due to (76).
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Since the sets {𝑤
𝑡

− 𝑢 : 𝑡 ∈ (0, 𝑎]} and {𝑤
𝑡

− 𝑓(𝑤
𝑡

) :

𝑡 ∈ (0, 𝑎]} are bounded and the duality map 𝐽 is single-valued
and norm-to-normuniformly continuous on bounded sets of
uniformly smooth Banach space𝑋, for any 𝑢 ∈ Δ = 𝐴

−1

(0) ∩

Ω, from 𝑤
𝑠

𝑘

→ 𝑞 (𝑠
𝑘

→ 0) we obtain






(𝐼 − 𝑓)𝑤

𝑠

𝑘

− (𝐼 − 𝑓) 𝑞






→ 0 (𝑠

𝑘

→ 0) ,






⟨𝑤
𝑠

𝑘

− 𝑓 (𝑤
𝑠

𝑘

) , 𝐽 (𝑤
𝑠

𝑘

− 𝑢)⟩ − ⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑞 − 𝑢)⟩







=






⟨(𝐼 − 𝑓)𝑤

𝑠

𝑘

− (𝐼 − 𝑓) 𝑞, 𝐽 (𝑤
𝑠

𝑘

− 𝑢)⟩

+ ⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑤
𝑠

𝑘

− 𝑢) − 𝐽 (𝑞 − 𝑢)⟩







≤






(𝐼 − 𝑓)𝑤

𝑠

𝑘

− (𝐼 − 𝑓) 𝑞












𝑤
𝑠

𝑘

− 𝑢







+






⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑤

𝑠

𝑘

− 𝑢) − 𝐽 (𝑞 − 𝑢)⟩






→ 0,

(83)

as 𝑠
𝑘

→ 0. Therefore,

⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑞 − 𝑢)⟩ = lim
𝑠

𝑘
→0

⟨𝑤
𝑠

𝑘

− 𝑓 (𝑤
𝑠

𝑘

) , J (𝑤
𝑠

𝑘

− 𝑢)⟩ .

(84)

Since 𝑢 ∈ Δ = 𝐴
−1

(0) ∩ Ω,





𝑥
𝑡,𝑛

− [(1 − 𝑡)𝑢 + 𝑡𝑓(𝑥
𝑡,𝑛

)]





2

=






(1 − 𝑡) 𝐺 (𝐽

𝑟

𝑛

𝑥
𝑡,𝑛

) + 𝑡𝑓 (𝑥
𝑡,𝑛

) − (1 − 𝑡) 𝑢 − 𝑡𝑓 (𝑥
𝑡,𝑛

)

−(1 − 𝑡)𝜃
𝑡

𝐹𝐺(𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)







2

≤ [(1 − 𝑡)






𝐺 (𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

) − 𝑢






+ (1 − 𝑡) 𝜃

𝑡






𝐹𝐺 (𝐽

𝑟

𝑛

𝑥
𝑡,𝑛

)






]

2

≤ [(1 − 𝑡)




𝑥
𝑡,𝑛

− 𝑢




+ (1 − 𝑡) 𝜃

𝑡






𝐹𝐺 (𝐽

𝑟

𝑛

𝑥
𝑡,𝑛

)






]

2

= (1 − 𝑡)
2




𝑥
𝑡,𝑛

− 𝑢





2

+ 2(1 − 𝑡)
2

𝜃
𝑡





𝑥
𝑡,𝑛

− 𝑢










𝐹𝐺 (𝐽

𝑟

𝑛

𝑥
𝑡,𝑛

)







+ (1 − 𝑡)
2

𝜃
2

𝑡






𝐹𝐺(𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)







2

.

(85)

Utilizing Lemma 5, we have





𝑥
𝑡,𝑛

− [(1 − 𝑡)𝑢 + 𝑡𝑓(𝑥
𝑡,𝑛

)]





2

=




(1 − 𝑡)(𝑥

𝑡,𝑛

− 𝑢) + 𝑡(𝑥
𝑡,𝑛

− 𝑓(𝑥
𝑡,𝑛

))





2

≥ (1 − 𝑡)
2




𝑥
𝑡,𝑛

− 𝑢





2

+ 2𝑡 (1 − 𝑡) ⟨𝑥
𝑡,𝑛

− 𝑓 (𝑥
𝑡,𝑛

) , 𝐽 (𝑥
𝑡,𝑛

− 𝑢)⟩ .

(86)

Consequently, from the last two inequalities we deduce that

2𝑡 (1 − 𝑡) ⟨𝑥
𝑡,𝑛

− 𝑓 (𝑥
𝑡,𝑛

) , 𝐽 (𝑥
𝑡,𝑛

− 𝑢)⟩

≤ 2(1 − 𝑡)
2

𝜃
𝑡





𝑥
𝑡,𝑛

− 𝑢










𝐹𝐺 (𝐽

𝑟

𝑛

𝑥
𝑡,𝑛

)







+ (1 − 𝑡)
2

𝜃
2

𝑡






𝐹𝐺(𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)







2

,

(87)

and hence

⟨𝑥
𝑡,𝑛

− 𝑓 (𝑥
𝑡,𝑛

) , 𝐽 (𝑥
𝑡,𝑛

− 𝑢)⟩

≤ (1 − 𝑡)

𝜃
𝑡

𝑡





𝑥
𝑡,𝑛

− 𝑢










𝐹𝐺 (𝐽

𝑟

𝑛

𝑥
𝑡,𝑛

)







+ (1 − 𝑡)

𝜃
2

𝑡

2𝑡






𝐹𝐺(𝐽
𝑟

𝑛

𝑥
𝑡,𝑛

)







2

.

(88)

Noticing (84), from lim
𝑡→0

(𝜃
𝑡

/𝑡) = 0 and the bounded-
ness of sequences {𝐹𝐺(𝐽

𝑟

𝑛

𝑥
𝑡,𝑛

)}, {𝑥
𝑡,𝑛

}, we conclude that

⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑞 − 𝑢)⟩ ≤ 0. (89)

Interchanging 𝑝 and 𝑢 leads to

⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑞 − 𝑝)⟩ ≤ 0. (90)

Interchanging 𝑞 and 𝑝 leads to

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑞)⟩ ≤ 0. (91)

This implies that

⟨(𝑞 − 𝑝) − (𝑓 (𝑞) − 𝑓 (𝑝)) , 𝐽 (𝑝 − 𝑞)⟩ ≤ 0, (92)

and hence




𝑞 − 𝑝






2

≤ 𝜌




𝑞 − 𝑝






2

. (93)

Taking into account 𝜌 ∈ (0, 1), we obtain𝑝 = 𝑞. Furthermore,
by the careful analysis of the above proof, we can readily see
that 𝑝 is also a unique solution of the VIP:

⟨(𝐼 − 𝑓) 𝑝, 𝐽 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ Δ. (94)

This completes the proof.

Remark 17. In the assertion of Theorem 16, “as 𝑡 → 0, {𝑥
𝑡,𝑛

}

converges strongly to 𝑝 ∈ Δ;” this 𝑝 does not depend on 𝑛.
Indeed, it is known that there holds the condition that {𝑟

𝑛

} ⊂

[𝜀,∞) for some 𝜀 > 0. Moreover, in the proof of Theorem 16
it can be readily seen that 𝑝 is first found out as a fixed point
of the nonexpansive self-mapping𝑊 of𝐾. This shows that 𝑝
depends on neither 𝑛 nor 𝑡.

Theorem 18. Let 𝑋 be a uniformly convex and 2-uniformly
smooth Banach space and let𝐴 be an𝑚-accretive operator in𝑋

such that𝐶 = 𝐷(𝐴) is convex. LetΠ
𝐶

be a sunny nonexpansive
retraction from 𝑋 onto 𝐶. Let the mapping 𝐵

𝑖

: 𝐶 → 𝑋 be
𝛼
𝑖

-inverse strongly accretive for 𝑖 = 1, 2, 𝑓 : 𝑋 → 𝐶 be a
contractive map with coefficient 𝜌 ∈ (0, 1), and let 𝐹 : 𝑋 →

𝑋 be 𝛿-strongly accretive and 𝜆-strictly pseudocontractive with
𝛿+𝜆 > 1. Assume thatΔ = 𝐴

−1

(0)∩Ω ̸= 0, whereΩ is the fixed
point set of the mapping 𝐺 = Π

𝐶

(𝐼 − 𝜇
1

𝐵
1

)Π
𝐶

(𝐼 − 𝜇
2

𝐵
2

) with
0 < 𝜇
𝑖

< 𝛼
𝑖

/𝜅
2 for 𝑖 = 1, 2. Given sequences {𝜆

𝑛

}
∞

𝑛=0

, {𝜇
𝑛

}
∞

𝑛=0

in
[0, 1], {𝛼

𝑛

}
∞

𝑛=0

, {𝛽
𝑛

}
∞

𝑛=0

in (0, 1], and {𝑟
𝑛

}
∞

𝑛=0

in [𝜀,∞) for some
𝜀 > 0, suppose that there hold the following conditions:

(i) lim
𝑛→∞

𝛽
𝑛

= 0 and ∑
∞

𝑛=0

𝛽
𝑛

= ∞,
(ii) lim

𝑛→∞

(𝜆
𝑛

𝜇
𝑛

)/𝛽
𝑛

= 0,
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(iii) {𝛼
𝑛

} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1),

(iv) ∑∞
𝑛=0

|𝛼
𝑛+1

− 𝛼
𝑛

| < ∞, ∑
∞

𝑛=0

|𝛽
𝑛+1

− 𝛽
𝑛

| < ∞,
∑
∞

𝑛=0

|𝜆
𝑛+1

− 𝜆
𝑛

| < ∞, ∑∞
𝑛=0

|𝜇
𝑛+1

− 𝜇
𝑛

| < ∞ and
∑
∞

𝑛=0

|𝑟
𝑛+1

− 𝑟
𝑛

| < ∞.

Then for any given point 𝑥
0

∈ 𝑋, the sequence {𝑥
𝑛

} generated
by

𝑦
𝑛

= 𝛼
𝑛

𝑥
𝑛

+ (1 − 𝛼
𝑛

) 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

) ,

𝑥
𝑛+1

= 𝛽
𝑛

𝑓 (𝑥
𝑛

) + (1 − 𝛽
𝑛

) [𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝜆
𝑛

𝜇
𝑛

𝐹𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

)] ,

∀𝑛 ≥ 0,

(95)

converges strongly to 𝑝 ∈ Δ, which is a unique solution of the
VIP (44).

Proof. First, let us show that {𝑥
𝑛

} is bounded. Indeed, taking
a fixed 𝑢 ∈ Δ arbitrarily, we have





𝑦
𝑛

− 𝑢




=






𝛼
𝑛

𝑥
𝑛

+ (1 − 𝛼
𝑛

) 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

) − 𝑢







≤ 𝛼
𝑛





𝑥
𝑛

− 𝑢




+ (1 − 𝛼

𝑛

)






𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

) − 𝑢







≤ 𝛼
𝑛





𝑥
𝑛

− 𝑢




+ (1 − 𝛼

𝑛

)






𝐽
𝑟

𝑛

𝑥
𝑛

− 𝑢







≤ 𝛼
𝑛





𝑥
𝑛

− 𝑢




+ (1 − 𝛼

𝑛

)




𝑥
𝑛

− 𝑢





=




𝑥
𝑛

− 𝑢




.

(96)

So ‖𝑦
𝑛

− 𝑢‖ ≤ ‖𝑥
𝑛

− 𝑢‖ for all 𝑛 ≥ 0. Thus, by Proposition 13
(iii), we have





𝑥
𝑛+1

− 𝑢





=






𝛽
𝑛

𝑓 (𝑥
𝑛

) + (1 − 𝛽
𝑛

) [𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝜆
𝑛

𝜇
𝑛

𝐹𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

)] − 𝑢







≤ 𝛽
𝑛





𝑓 (𝑥
𝑛

) − 𝑢




+ (1 − 𝛽

𝑛

)

×






𝜆
𝑛

(𝐼 − 𝜇
𝑛

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) + (1 − 𝜆
𝑛

) 𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑢







≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑢




+ 𝛽
𝑛





𝑓 (𝑢) − 𝑢






+ (1 − 𝛽
𝑛

) [𝜆
𝑛






(𝐼 − 𝜇

𝑛

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑢







+ (1 − 𝜆
𝑛

)






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑢






]

≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑢




+ 𝛽
𝑛





𝑓 (𝑢) − 𝑢






+ (1 − 𝛽
𝑛

) [𝜆
𝑛






(𝐼 − 𝜇

𝑛

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − (𝐼 − 𝜇
𝑛

𝐹) 𝑢







+ 𝜆
𝑛





(𝐼 − 𝜇

𝑛

𝐹) 𝑢 − 𝑢





+ (1 − 𝜆
𝑛

)






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑢






]

≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑢




+ 𝛽
𝑛





𝑓 (𝑢) − 𝑢






+ (1 − 𝛽
𝑛

)
[

[

𝜆
𝑛

(1 − 𝜇
𝑛

(1 − √
1 − 𝛿

𝜆

))






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑢







+ 𝜆
𝑛

𝜇
𝑛

‖𝐹𝑢‖ + (1 − 𝜆
𝑛

)






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑢







]

]

= 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑢




+ 𝛽
𝑛





𝑓 (𝑢) − 𝑢






+ (1 − 𝛽
𝑛

)
[

[

(1 − 𝜆
𝑛

𝜇
𝑛

(1 − √
1 − 𝛿

𝜆

))






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑢







+ 𝜆
𝑛

𝜇
𝑛

‖𝐹𝑢‖
]

]

= 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑢




+ 𝛽
𝑛





𝑓 (𝑢) − 𝑢






+ (1 − 𝛽
𝑛

)
[

[

(1 − 𝜆
𝑛

𝜇
𝑛

(1 − √
1 − 𝛿

𝜆

))






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑢







+ 𝜆
𝑛

𝜇
𝑛

(1 − √
1 − 𝛿

𝜆

)(1 − √
1 − 𝛿

𝜆

)

−1

‖𝐹𝑢‖
]

]

≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑢




+ 𝛽
𝑛





𝑓 (𝑢) − 𝑢






+ (1 − 𝛽
𝑛

)max
{

{

{






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑢






, (1 − √

1 − 𝛿

𝜆

)

−1

‖𝐹𝑢‖

}

}

}

≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑢




+ 𝛽
𝑛





𝑓 (𝑢) − 𝑢






+ (1 − 𝛽
𝑛

)max
{

{

{





𝑦
𝑛

− 𝑢




, (1 − √

1 − 𝛿

𝜆

)

−1

‖𝐹𝑢‖

}

}

}

≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑢




+ 𝛽
𝑛





𝑓 (𝑢) − 𝑢






+ (1 − 𝛽
𝑛

)max
{

{

{





𝑥
𝑛

− 𝑢




,(1 − √

1 − 𝛿

𝜆

)

−1

‖𝐹𝑢‖

}

}

}

≤ 𝛽
𝑛





𝑓 (𝑢) − 𝑢





+ (1 − (1 − 𝜌) 𝛽

𝑛

)

×max
{

{

{





𝑥
𝑛

− 𝑢




,(1 − √

1 − 𝛿

𝜆

)

−1

‖𝐹𝑢‖

}

}

}

= (1 − 𝜌) 𝛽
𝑛





𝑓 (𝑢) − 𝑢






1 − 𝜌

+ (1 − (1 − 𝜌) 𝛽
𝑛

)

×max
{

{

{





𝑥
𝑛

− 𝑢




,(1 − √

1 − 𝛿

𝜆

)

−1

‖𝐹𝑢‖

}

}

}

≤ max
{

{

{





𝑥
𝑛

− 𝑢




,





𝑓 (𝑢) − 𝑢






1 − 𝜌

,(1 − √
1 − 𝛿

𝜆

)

−1

‖𝐹𝑢‖

}

}

}

.

(97)
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By induction,




𝑥
𝑛

− 𝑢





≤ max
{

{

{





𝑥
0

− 𝑢




,





𝑓 (𝑢) − 𝑢






1 − 𝜌

,(1 − √
1 − 𝛿

𝜆

)

−1

‖𝐹𝑢‖

}

}

}

,

∀𝑛 ≥ 0.

(98)

Thus, {𝑥
𝑛

} is bounded and so is {𝑦
𝑛

}. Because 𝐺 and 𝐽
𝑟

𝑛

are nonexpansive for all 𝑛 ≥ 0, 𝑓 is contractive, and 𝐹 is
Lipschitzian, {𝐽

𝑟

𝑛

𝑥
𝑛

}, {𝐽
𝑟

𝑛

𝑦
𝑛

}, {𝐺(𝐽
𝑟

𝑛

𝑥
𝑛

)}, {𝐺(𝐽
𝑟

𝑛

𝑦
𝑛

)}, {𝑓(𝑥
𝑛

)},
and {𝐹𝐺(𝐽

𝑟

𝑛

𝑦
𝑛

)} are bounded. From conditions (i), (ii) we
have





𝑥
𝑛+1

− 𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

)







≤ 𝛽
𝑛






𝑓 (𝑥
𝑛

) − 𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

)







+ (1 − 𝛽
𝑛

)






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝜆
𝑛

𝜇
𝑛

𝐹𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

)







= 𝛽
𝑛






𝑓 (𝑥
𝑛

) − 𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

)







+ (1 − 𝛽
𝑛

) 𝜆
𝑛

𝜇
𝑛






𝐹𝐺 (𝐽

𝑟

𝑛

𝑦
𝑛

)






→ 0 as 𝑛 → ∞.

(99)

Now, we claim that




𝑥
𝑛+1

− 𝑥
𝑛





→ 0 as 𝑛 → ∞. (100)

In order to prove (100), we estimate ‖𝑥
𝑛+1

− 𝑥
𝑛

‖ first. From
(95) we have

𝑦
𝑛

= 𝛼
𝑛

𝑥
𝑛

+ (1 − 𝛼
𝑛

) 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

) ,

𝑦
𝑛−1

= 𝛼
𝑛−1

𝑥
𝑛−1

+ (1 − 𝛼
𝑛−1

) 𝐺 (𝐽
𝑟

𝑛−1

𝑥
𝑛−1

) .

(101)

Simple calculations show that

𝑦
𝑛

− 𝑦
𝑛−1

= (1 − 𝛼
𝑛

) (𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

) − 𝐺 (𝐽
𝑟

𝑛−1

𝑥
𝑛−1

))

+ 𝛼
𝑛

(𝑥
𝑛

− 𝑥
𝑛−1

)

+ (𝑥
𝑛−1

− 𝐺 (𝐽
𝑟

𝑛−1

𝑥
𝑛−1

)) (𝛼
𝑛

− 𝛼
𝑛−1

) .

(102)

It follows that




𝑦
𝑛

− 𝑦
𝑛−1





≤ (1 − 𝛼

𝑛

)






𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

) − 𝐺 (𝐽
𝑟

𝑛−1

𝑥
𝑛−1

)







+ 𝛼
𝑛





𝑥
𝑛

− 𝑥
𝑛−1






+






𝑥
𝑛−1

− 𝐺 (𝐽
𝑟

𝑛−1

𝑥
𝑛−1

)











𝛼
𝑛

− 𝛼
𝑛−1






≤ (1 − 𝛼
𝑛

)






𝐽
𝑟

𝑛

𝑥
𝑛

− 𝐽
𝑟

𝑛−1

𝑥
𝑛−1







+ 𝛼
𝑛





𝑥
𝑛

− 𝑥
𝑛−1






+






𝑥
𝑛−1

− 𝐺 (𝐽
𝑟

𝑛−1

𝑥
𝑛−1

)











𝛼
𝑛

− 𝛼
𝑛−1





.

(103)

On the other hand, if 𝑟
𝑛−1

≤ 𝑟
𝑛

, using the resolvent
identity in Lemma 8

𝐽
𝑟

𝑛

𝑥
𝑛

= 𝐽
𝑟

𝑛−1

(

𝑟
𝑛−1

𝑟
𝑛

𝑥
𝑛

+ (1 −

𝑟
𝑛−1

𝑟
𝑛

) 𝐽
𝑟

𝑛

𝑥
𝑛

) , (104)

we get





𝐽
𝑟

𝑛

𝑥
𝑛

− 𝐽
𝑟

𝑛−1

𝐺
𝑛−1







=










𝐽
𝑟

𝑛−1

(

𝑟
𝑛−1

𝑟
𝑛

𝑥
𝑛

+ (1 −

𝑟
𝑛−1

𝑟
𝑛

) 𝐽
𝑟

𝑛

𝑥
𝑛

) − 𝐽
𝑟

𝑛−1

𝑥
𝑛−1










≤

𝑟
𝑛−1

𝑟
𝑛





𝑥
𝑛

− 𝑥
𝑛−1





+ (1 −

𝑟
𝑛−1

𝑟
𝑛

)






𝐽
𝑟

𝑛

𝑥
𝑛

− 𝑥
𝑛−1







≤




𝑥
𝑛

− 𝑥
𝑛−1





+

𝑟
𝑛

− 𝑟
𝑛−1

𝑟
𝑛






𝐽
𝑟

𝑛

𝑥
𝑛

− 𝑥
𝑛−1







≤




𝑥
𝑛

− 𝑥
𝑛−1





+

1

𝜀





𝑟
𝑛

− 𝑟
𝑛−1











𝐽
𝑟

𝑛

𝑥
𝑛

− 𝑥
𝑛−1






.

(105)

If 𝑟
𝑛

≤ 𝑟
𝑛−1

, it is easy to see that





𝐽
𝑟

𝑛

𝑥
𝑛

− 𝐽
𝑟

𝑛−1

𝑥
𝑛−1







≤




𝑥
𝑛−1

− 𝑥
𝑛





+

1

𝜀





𝑟
𝑛−1

− 𝑟
𝑛











𝐽
𝑟

𝑛−1

𝑥
𝑛−1

− 𝑥
𝑛






.

(106)

So combining the above cases we obtain





𝐽
𝑟

𝑛

𝑥
𝑛

− 𝐽
𝑟

𝑛−1

𝑥
𝑛−1







≤




𝑥
𝑛−1

− 𝑥
𝑛





+





𝑟
𝑛−1

− 𝑟
𝑛






𝜀

× sup
𝑛≥1

{






𝐽
𝑟

𝑛

𝑥
𝑛

− 𝑥
𝑛−1






+






𝐽
𝑟

𝑛−1

𝑥
𝑛−1

− 𝑥
𝑛






} ,

∀𝑛 ≥ 1.

(107)

In the similar way we can derive





𝐽
𝑟

𝑛

𝑦
𝑛

− 𝐽
𝑟

𝑛−1

𝑦
𝑛−1







≤




𝑦
𝑛−1

− 𝑦
𝑛





+





𝑟
𝑛−1

− 𝑟
𝑛






𝜀

× sup
𝑛≥1

{






𝐽
𝑟

𝑛

𝑦
𝑛

− 𝑦
𝑛−1






+






𝐽
𝑟

𝑛−1

𝑦
𝑛−1

− 𝑦
𝑛






} ,

∀𝑛 ≥ 1.

(108)

Therefore, we have





𝐽
𝑟

𝑛

𝑥n − 𝐽
𝑟

𝑛−1

𝑥
𝑛−1






≤





𝑥
𝑛−1

− 𝑥
𝑛





+




𝑟
𝑛−1

− 𝑟
𝑛





𝑀
0

,






𝐽
𝑟

𝑛

𝑦
𝑛

− 𝐽
𝑟

𝑛−1

𝑦
𝑛−1






≤





𝑦
𝑛−1

− 𝑦
𝑛





+




𝑟
𝑛−1

− 𝑟
𝑛





𝑀
0

,

(109)

for all 𝑛 ≥ 1, where sup
𝑛≥1

{(1/𝜀)(‖𝐽
𝑟

𝑛

𝑥
𝑛

− 𝑥
𝑛−1

‖ + ‖𝐽
𝑟

𝑛−1

𝑥
𝑛−1

−

𝑥
𝑛

‖)} ≤ 𝑀
0

and sup
𝑛≥1

{(1/𝜀)(‖𝐽
𝑟

𝑛

𝑦
𝑛

− 𝑦
𝑛−1

‖ + ‖𝐽
𝑟

𝑛−1

𝑦
𝑛−1

−

𝑦
𝑛

‖)} ≤ M
0

for some𝑀
0

> 0.
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Substituting (109) for (103), we obtain





𝑦
𝑛

− 𝑦
𝑛−1





≤ (1 − 𝛼

𝑛

)






𝐽
𝑟

𝑛

𝑥
𝑛

− 𝐽
𝑟

𝑛−1

𝑥
𝑛−1







+ 𝛼
𝑛





𝑥
𝑛

− 𝑥
𝑛−1






+






𝑥
𝑛−1

− 𝐺 (𝐽
𝑟

𝑛−1

𝑥
𝑛−1

)











𝛼
𝑛

− 𝛼
𝑛−1






≤ (1 − 𝛼
𝑛

) (




𝑥
𝑛

− 𝑥
𝑛−1





+




𝑟
𝑛

− 𝑟
𝑛−1





𝑀
0

)

+ 𝛼
𝑛





𝑥
𝑛

− 𝑥
𝑛−1






+






𝑥
𝑛−1

− 𝐺 (𝐽
𝑟

𝑛−1

𝑥
𝑛−1

)











𝛼
𝑛

− 𝛼
𝑛−1






≤




𝑥
𝑛

− 𝑥
𝑛−1






+ 𝑀
1

(




𝑟
𝑛

− 𝑟
𝑛−1





+




𝛼
𝑛

− 𝛼
𝑛−1





) ,

(110)

where sup
𝑛≥0

{𝑀
0

, ‖𝑥
𝑛

− 𝐺(𝐽
𝑟

𝑛

𝑥
𝑛

)‖} ≤ 𝑀
1

for some constant
𝑀
1

> 0.
In the meantime, it follows from (95) that

𝑥
𝑛+1

= 𝛽
𝑛

𝑓 (𝑥
𝑛

) + (1 − 𝛽
𝑛

) [𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝜆
𝑛

𝜇
𝑛

𝐹𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

)] ,

𝑥
𝑛

= 𝛽
𝑛−1

𝑓 (𝑥
𝑛−1

) + (1 − 𝛽
𝑛−1

)

× [𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

) − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)] .

(111)

Simple calculations show that

𝑥
𝑛+1

− 𝑥
𝑛

= (𝛽
𝑛

− 𝛽
𝑛−1

) 𝑓 (𝑥
𝑛−1

) + 𝛽
𝑛

(𝑓 (𝑥
𝑛

) − 𝑓 (𝑥
𝑛−1

))

+ (𝛽
𝑛−1

− 𝛽
𝑛

) (𝐼 − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)

+ (1 − 𝛽
𝑛

) [(𝐼 − 𝜆
𝑛

𝜇
𝑛

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

)

− (𝐼 − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)]

= (𝛽
𝑛

− 𝛽
𝑛−1

) 𝑓 (𝑥
𝑛−1

) + 𝛽
𝑛

(𝑓 (𝑥
𝑛

) − 𝑓 (𝑥
𝑛−1

))

+ (𝛽
𝑛−1

− 𝛽
𝑛

) (𝐼 − 𝜆
𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)

+ (1 − 𝛽
𝑛

) [(𝐼 − 𝜆
𝑛

𝜇
𝑛

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

)

− (𝐼 − 𝜆
𝑛

𝜇
𝑛

𝐹)𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)

+ (𝜆
𝑛−1

𝜇
𝑛−1

− 𝜆
𝑛

𝜇
𝑛

) 𝐹𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)] .

(112)

It follows from Proposition 13(iii) and (109) that





𝑥
𝑛+1

− 𝑥
𝑛






≤




𝛽
𝑛

− 𝛽
𝑛−1










𝑓 (𝑥
𝑛−1

)




+ 𝛽
𝑛





𝑓 (𝑥
𝑛

) − 𝑓 (𝑥
𝑛−1

)





+




𝛽
𝑛−1

− 𝛽
𝑛











(𝐼 − 𝜆

𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)






+ (1 − 𝛽

𝑛

)

× [






(𝐼 − 𝜆

𝑛

𝜇
𝑛

𝐹)𝐺 (𝐽
𝑟n
𝑦
𝑛

) − (𝐼 − 𝜆
𝑛

𝜇
𝑛

𝐹)𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)







+




𝜆
𝑛−1

𝜇
𝑛−1

− 𝜆
𝑛

𝜇
𝑛











𝐹𝐺 (𝐽

𝑟

𝑛−1

𝑦
𝑛−1

)






]

≤




𝛽
𝑛

− 𝛽
𝑛−1










𝑓 (𝑥
𝑛−1

)




+ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑥
𝑛−1






+




𝛽
𝑛−1

− 𝛽
𝑛











(𝐼 − 𝜆

𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)







+ (1 − 𝛽
𝑛

)
[

[

(1 − 𝜆
𝑛

𝜇
𝑛

(1 − √
1 − 𝛿

𝜆

))

×






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)







+




𝜆
𝑛

𝜇
𝑛

− 𝜆
𝑛−1

𝜇
𝑛−1











𝐹𝐺 (𝐽

𝑟

𝑛−1

𝑦
𝑛−1

)







]

]

≤




𝛽
𝑛

− 𝛽
𝑛−1










𝑓 (𝑥
𝑛−1

)




+ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑥
𝑛−1






+




𝛽
𝑛−1

− 𝛽
𝑛











(𝐼 − 𝜆

𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)







+ (1 − 𝛽
𝑛

)
[

[

(1 − 𝜆
𝑛

𝜇
𝑛

(1 − √
1 − 𝛿

𝜆

))

×






𝐽
𝑟

𝑛

𝑦
𝑛

− 𝐽
𝑟

𝑛−1

𝑦
𝑛−1







+




𝜆
𝑛

𝜇
𝑛

− 𝜆
𝑛−1

𝜇
𝑛−1











𝐹𝐺 (𝐽

𝑟

𝑛−1

𝑦
𝑛−1

)







]

]

≤




𝛽
𝑛

− 𝛽
𝑛−1










𝑓 (𝑥
𝑛−1

)




+ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑥
𝑛−1






+




𝛽
𝑛−1

− 𝛽
𝑛











(𝐼 − 𝜆

𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)







+ (1 − 𝛽
𝑛

)
[

[

(1 − 𝜆
𝑛

𝜇
𝑛

(1 − √
1 − 𝛿

𝜆

))

× (




𝑦
𝑛−1

− 𝑦
𝑛





+




𝑟
𝑛−1

− 𝑟
𝑛





𝑀
0

)

+




𝜆
𝑛

𝜇
𝑛

− 𝜆
𝑛−1

𝜇
𝑛−1











𝐹𝐺 (𝐽

𝑟

𝑛−1

𝑦
𝑛−1

)







]

]

≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑥
𝑛−1





+




𝛽
𝑛

− 𝛽
𝑛−1






× (




𝑓 (𝑥
𝑛−1

)




+






(𝐼 − 𝜆

𝑛−1

𝜇
𝑛−1

𝐹)𝐺 (𝐽
𝑟

𝑛−1

𝑦
𝑛−1

)






)

+ (1 − 𝛽
𝑛

)




𝑦
𝑛−1

− 𝑦
𝑛





+




𝑟
𝑛−1

− 𝑟
𝑛





𝑀
0

+




𝜆
𝑛

𝜇
𝑛

− 𝜆
𝑛−1

𝜇
𝑛−1











𝐹𝐺 (𝐽

𝑟

𝑛−1

𝑦
𝑛−1

)
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≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑥
𝑛−1





+




𝛽
𝑛

− 𝛽
𝑛−1





𝑀
2

+ (1 − 𝛽
𝑛

)




𝑦
𝑛−1

− 𝑦
𝑛





+




𝑟
𝑛−1

− 𝑟
𝑛





𝑀
2

+




𝜆
𝑛

𝜇
𝑛

− 𝜆
𝑛−1

𝜇
𝑛−1





𝑀
2

= 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑥
𝑛−1





+ (1 − 𝛽

𝑛

)




𝑦
𝑛

− 𝑦
𝑛−1






+ 𝑀
2

(




𝛽
𝑛

− 𝛽
𝑛−1





+




𝜆
𝑛

𝜇
𝑛

− 𝜆
𝑛−1

𝜇
𝑛−1






+




𝑟
𝑛

− 𝑟
𝑛−1





) ,

(113)

where sup
𝑛≥0

{‖𝑓(𝑥
𝑛

)‖ + ‖(𝐼 − 𝜆
𝑛

𝜇
𝑛

𝐹)𝐺(𝐽
𝑟

𝑛

𝑦
𝑛

)‖, ‖𝐹𝐺(𝐽
𝑟

𝑛

𝑦
𝑛

)‖,
𝑀
0

,𝑀
1

} ≤ 𝑀
2

for some𝑀
2

> 0.
Substituting (110) for (113), we get





𝑥
𝑛+1

− 𝑥
𝑛






≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑥
𝑛−1





+ (1 − 𝛽

𝑛

)




𝑦
𝑛

− 𝑦
𝑛−1






+ 𝑀
2

(




𝛽
𝑛

− 𝛽
𝑛−1





+




𝜆
𝑛

𝜇
𝑛

− 𝜆
𝑛−1

𝜇
𝑛−1






+




𝑟
𝑛

− 𝑟
𝑛−1





)

≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑥
𝑛−1





+ (1 − 𝛽

𝑛

)

× [




𝑥
𝑛

− 𝑥
𝑛−1





+ 𝑀
1

(




𝑟
𝑛

− 𝑟
𝑛−1





+




𝛼
𝑛

− 𝛼
𝑛−1





)]

+ 𝑀
2

(




𝛽
𝑛

− 𝛽
𝑛−1





+




𝜆
𝑛

𝜇
𝑛

− 𝜆
𝑛−1

𝜇
𝑛−1





+




𝑟
𝑛

− 𝑟
𝑛−1





)

≤ (1 − (1 − 𝜌) 𝛽
𝑛

)




𝑥
𝑛

− 𝑥
𝑛−1






+ 2𝑀
2

[




𝛼
𝑛

− 𝛼
𝑛−1





+




𝛽
𝑛

− 𝛽
𝑛−1






+




𝜆
𝑛

− 𝜆
𝑛−1





+




𝜇
𝑛

− 𝜇
𝑛−1





+




𝑟
𝑛

− 𝑟
𝑛−1





] .

(114)

Since it follows from conditions (i) and (iv) that ∑
∞

𝑛=0

(1 −

𝜌)𝛽
𝑛

= ∞ and
∞

∑

𝑛=0

2𝑀
2

[




𝛼
𝑛

− 𝛼
𝑛−1





+




𝛽
𝑛

− 𝛽
𝑛−1





+




𝜆
𝑛

− 𝜆
𝑛−1






+




𝜇
𝑛

− 𝜇
𝑛−1





+




𝑟
𝑛

− 𝑟
𝑛−1





] < ∞,

(115)

Lemma 4 is applicable to (114) and we obtain

lim
𝑛→∞





𝑥
𝑛+1

− 𝑥
𝑛





= 0. (116)

By condition (iii) and (95), we have




𝑦
𝑛

− 𝑥
𝑛






= (1 − 𝛼
𝑛

)






𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

) − 𝑥
𝑛







≤ (1 − 𝑎) (






𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

) − 𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

)







+






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑥
𝑛+1






+




𝑥
𝑛+1

− 𝑥
𝑛





)

≤ (1 − 𝑎) (




𝑥
𝑛

− 𝑦
𝑛

)




+






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑥
𝑛+1







+




𝑥
𝑛+1

− 𝑥
𝑛





) ,

(117)

which implies that





𝑦
𝑛

− 𝑥
𝑛





≤

1 − 𝑎

𝑎

(






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑥
𝑛+1






+




𝑥
𝑛+1

− 𝑥
𝑛





) .

(118)

This together with (99)-(100) implies that

lim
𝑛→∞





𝑥
𝑛

− 𝑦
𝑛





= 0. (119)

So we obtain





𝑥
𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

)






≤





𝑥
𝑛

− 𝑦
𝑛





+






𝑦
𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

)







≤




𝑥
𝑛

− 𝑦
𝑛





+ 𝛼
𝑛






𝑥
𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

)







≤




𝑥
𝑛

− 𝑦
𝑛





+ 𝑏






𝑥
𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

)






,

(120)

which implies that





𝑥
𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

)






≤

1

1 − 𝑏





𝑥
𝑛

− 𝑦
𝑛





, (121)

and hence
lim
𝑛→∞






𝑥
𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

)






= 0. (122)

Next let us show that lim
𝑛→∞

‖𝑥
𝑛

− 𝐽
𝑟

𝑛

𝑥
𝑛

‖ = 0 and
lim
𝑛→∞

‖𝑥
𝑛

− 𝐺𝑥
𝑛

‖ = 0.
Indeed, for simplicity, put V = Π

𝐶

(𝑢 − 𝜇
2

𝐵
2

𝑢), 𝑥
𝑛

= 𝐽
𝑟

𝑛

𝑥
𝑛

,
𝑢
𝑛

= Π
𝐶

(𝑥
𝑛

− 𝜇
2

𝐵
2

𝑥
𝑛

) and V
𝑛

= Π
𝐶

(𝑢
𝑛

− 𝜇
1

𝐵
1

𝑢
𝑛

). Then 𝑢 =

Π
𝐶

(V − 𝜇
1

𝐵
1

V), and V
𝑛

= 𝐺𝑥
𝑛

= 𝐺(𝐽
𝑟

𝑛

𝑥
𝑛

) for all 𝑛 ≥ 0. It is
clear from (95) that





𝑦
𝑛

− 𝑢





2

≤ 𝛼
𝑛





𝑥
𝑛

− 𝑢





2

+ (1 − 𝛼
𝑛

)






𝐺(𝐽
𝑟

𝑛

𝑥
𝑛

) − 𝑢







2

= 𝛼
𝑛





𝑥
𝑛

− 𝑢





2

+ (1 − 𝛼
𝑛

)




V
𝑛

− 𝑢





2

.

(123)

Utilizing Lemma 14, we have




𝑢
𝑛

− V


2

=




Π
𝐶

(𝑥
𝑛

− 𝜇
2

𝐵
2

𝑥
𝑛

) − Π
𝐶

(𝑢 − 𝜇
2

𝐵
2

𝑢)





2

≤




𝑥
𝑛

− 𝑢 − 𝜇
2

(𝐵
2

𝑥
𝑛

− 𝐵
2

𝑢)





2

≤




𝑥
𝑛

− 𝑢





2

− 2𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑛

− 𝐵
2

𝑢





2

,

(124)





V
𝑛

− 𝑢





2

=




Π
𝐶

(𝑢
𝑛

− 𝜇
1

𝐵
1

𝑢
𝑛

) − Π
𝐶

(V − 𝜇
1

𝐵
1

V)


2

≤




𝑢
𝑛

− V − 𝜇
1

(𝐵
1

𝑢
𝑛

− 𝐵
1

V)


2

≤




𝑢
𝑛

− V


2

− 2𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑛

− 𝐵
1

V


2

.

(125)

Substituting (124) for (125), we obtain




V
𝑛

− 𝑢





2

≤




𝑥
𝑛

− 𝑢





2

− 2𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑛

− 𝐵
2

𝑢





2

− 2𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑛

− 𝐵
1

V


2

≤




𝑥
𝑛

− 𝑢





2

− 2𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑛

− 𝐵
2

𝑢





2

− 2𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑛

− 𝐵
1

V


2

,

(126)
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which, together with (123), implies that





𝑦
𝑛

− 𝑢





2

≤ 𝛼
𝑛





𝑥
𝑛

− 𝑢





2

+ (1 − 𝛼
𝑛

)




V
𝑛

− 𝑢





2

≤ 𝛼
𝑛





𝑥
𝑛

− 𝑢





2

+ (1 − 𝛼
𝑛

)

× [




𝑥
𝑛

− 𝑢





2

− 2𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑛

− 𝐵
2

𝑢





2

− 2𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑛

− 𝐵
1

V


2

]

=




𝑥
𝑛

− 𝑢





2

− 2 (1 − 𝛼
𝑛

)

× [𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑛

− 𝐵
2

𝑢





2

+ 𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑛

− 𝐵
1

V


2

] .

(127)

It immediately follows that

2 (1 − 𝛼
𝑛

) [𝜇
2

(𝛼
2

− 𝜅
2

𝜇
2

)




𝐵
2

𝑥
𝑛

− 𝐵
2

𝑢





2

+ 𝜇
1

(𝛼
1

− 𝜅
2

𝜇
1

)




𝐵
1

𝑢
𝑛

− 𝐵
1

V


2

]

≤




𝑥
𝑛

− 𝑢





2

−




𝑦
𝑛

− 𝑢





2

≤ (




𝑥
𝑛

− 𝑢




+




𝑦
𝑛

− 𝑢




)




𝑥
𝑛

− 𝑦
𝑛





.

(128)

Since {𝑥
𝑛

} and {𝑦
𝑛

} are bounded and 0 < 𝜇
𝑖

< 𝛼
𝑖

/𝜅
2 for 𝑖 =

1, 2, we deduce from (119) and condition (iii) that

lim
𝑛→∞





𝐵
2

𝑥
𝑛

− 𝐵
2

𝑢




= 0,

lim
𝑛→∞





𝐵
1

𝑢
𝑛

− 𝐵
1

V

= 0.

(129)

Utilizing Proposition 3 and Lemma 6, we have





𝑢
𝑛

− V


2

=




Π
𝐶

(𝑥
𝑛

− 𝜇
2

𝐵
2

𝑥
𝑛

) − Π
𝐶

(𝑢 − 𝜇
2

𝐵
2

𝑢)





2

≤ ⟨𝑥
𝑛

− 𝜇
2

𝐵
2

𝑥
𝑛

− (𝑢 − 𝜇
2

𝐵
2

𝑢) , 𝐽 (𝑢
𝑛

− V)⟩

= ⟨𝑥
𝑛

− 𝑢, 𝐽 (𝑢
𝑛

− V)⟩ + 𝜇
2

⟨𝐵
2

𝑝 − 𝐵
2

𝑥
𝑛

, 𝐽 (𝑢
𝑛

− V)⟩

≤

1

2

[




𝑥
𝑛

− 𝑢





2

+




𝑢
𝑛

− V


2

− 𝑔
1

(




𝑥
𝑛

− 𝑢
𝑛

− (𝑢 − V)

)]

+ 𝜇
2





𝐵
2

𝑢 − 𝐵
2

𝑥
𝑛










𝑢
𝑛

− V

,

(130)

which implies that





𝑢
𝑛

− V


2

≤




𝑥
𝑛

− 𝑢





2

− 𝑔
1

(




𝑥
𝑛

− 𝑢
𝑛

− (𝑢 − V)

)

+ 2𝜇
2





𝐵
2

𝑢 − 𝐵
2

𝑥
𝑛










𝑢
𝑛

− V

.

(131)

In the same way, we derive




V
𝑛

− 𝑢





2

=




Π
𝐶

(𝑢
𝑛

− 𝜇
1

𝐵
1

𝑢
𝑛

) − Π
𝐶

(V − 𝜇
1

𝐵
1

V)


2

≤ ⟨𝑢
𝑛

− 𝜇
1

𝐵
1

𝑢
𝑛

− (V − 𝜇
1

𝐵
1

V) , 𝐽 (V
𝑛

− 𝑢)⟩

= ⟨𝑢
𝑛

− V, 𝐽 (V
𝑛

− 𝑢)⟩ + 𝜇
1

⟨𝐵
1

V − 𝐵
1

𝑢
𝑛

, 𝐽 (V
𝑛

− 𝑢)⟩

≤

1

2

[




𝑢
𝑛

− V


2

+




V
𝑛

− 𝑢





2

− 𝑔
2

(




𝑢
𝑛

− V
𝑛

+ (𝑢 − V)

)]

+ 𝜇
1





𝐵
1

V − 𝐵
1

𝑢
𝑛










V
𝑛

− 𝑢




,

(132)

which implies that




V
𝑛

− 𝑢





2

≤




𝑢
𝑛

− V


2

− 𝑔
2

(




𝑢
𝑛

− V
𝑛

+ (𝑢 − V)

)

+ 2𝜇
1





𝐵
1

V − 𝐵
1

𝑢
𝑛










V
𝑛

− 𝑢




.

(133)

Substituting (131) for (133), we get




V
𝑛

− 𝑢





2

≤




𝑥
𝑛

− 𝑢





2

− 𝑔
1

(




𝑥
𝑛

− 𝑢
𝑛

− (𝑢 − V)

)

− 𝑔
2

(




𝑢
𝑛

− V
𝑛

+ (𝑢 − V)

)

+ 2𝜇
2





𝐵
2

𝑢 − 𝐵
2

𝑥
𝑛










𝑢
𝑛

− V


+ 2𝜇
1





𝐵
1

V − 𝐵
1

𝑢
𝑛










V
𝑛

− 𝑢





≤




𝑥
𝑛

− 𝑢





2

− 𝑔
1

(




𝑥
𝑛

− 𝑢
𝑛

− (𝑢 − V)

)

− 𝑔
2

(




𝑢
𝑛

− V
𝑛

+ (𝑢 − V)

)

+ 2𝜇
2





𝐵
2

𝑢 − 𝐵
2

𝑥
𝑛










𝑢
𝑛

− V


+ 2𝜇
1





𝐵
1

V − 𝐵
1

𝑢
𝑛










V
𝑛

− 𝑢




,

(134)

which, together with (123), implies that




𝑦
𝑛

− 𝑢





2

≤ 𝛼
𝑛





𝑥
𝑛

− 𝑢





2

+ (1 − 𝛼
𝑛

)




V
𝑛

− 𝑢





2

≤ 𝛼
𝑛





𝑥
𝑛

− 𝑢





2

+ (1 − 𝛼
𝑛

)

× [




𝑥
𝑛

− 𝑢





2

− 𝑔
1

(




𝑥
𝑛

− 𝑢
𝑛

− (𝑢 − V)

)

− 𝑔
2

(




𝑢
𝑛

− V
𝑛

+ (𝑢 − V)

)

+ 2𝜇
2





𝐵
2

𝑢 − 𝐵
2

𝑥
𝑛










𝑢
𝑛

− V


+ 2𝜇
1





𝐵
1

V − 𝐵
1

𝑢
𝑛










V
𝑛

− 𝑢




]

=




𝑥
𝑛

− 𝑢





2

− (1 − 𝛼
𝑛

)

× [𝑔
1

(




𝑥
𝑛

− 𝑢
𝑛

− (𝑢 − V)

)

+ 𝑔
2

(




𝑢
𝑛

− V
𝑛

+ (𝑢 − V)

)]

+ 2 (1 − 𝛼
𝑛

) (𝜇
2





𝐵
2

𝑢 − 𝐵
2

𝑥
𝑛










𝑢
𝑛

− V


+ 𝜇
1





𝐵
1

V − 𝐵
1

𝑢
𝑛










V
𝑛

− 𝑢




) .

(135)
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It immediately follows that

(1 − 𝛼
𝑛

) [𝑔
1

(




𝑥
𝑛

− 𝑢
𝑛

− (𝑢 − V)

)

+ 𝑔
2

(




𝑢
𝑛

− V
𝑛

+ (𝑢 − V)

)]

≤




𝑥
𝑛

− 𝑢





2

−




𝑦
𝑛

− 𝑢





2

+ 2 (1 − 𝛼
𝑛

) (𝜇
2





𝐵
2

𝑢 − 𝐵
2

𝑥
𝑛










𝑢
𝑛

− V


+ 𝜇
1





𝐵
1

V − 𝐵
1

𝑢
𝑛










V
𝑛

− 𝑢




)

≤ (




𝑥
𝑛

− 𝑢




+




𝑦
𝑛

− 𝑢




)




𝑥
𝑛

− 𝑦
𝑛






+ 2𝜇
2





𝐵
2

𝑢 − 𝐵
2

𝑥
𝑛










𝑢
𝑛

− V


+ 2𝜇
1





𝐵
1

V − 𝐵
1

𝑢
𝑛










V
𝑛

− 𝑢




.

(136)

Since {𝑥
𝑛

}, {𝑦
𝑛

}, {𝑢
𝑛

}, and {V
𝑛

} are bounded, we deduce from
(119), (129), and condition (iii) that

lim
𝑛→∞

𝑔
1

(




𝑥
𝑛

− 𝑢
𝑛

− (𝑢 − V)

) = 0,

lim
𝑛→∞

𝑔
2

(




𝑢
𝑛

− V
𝑛

+ (𝑢 − V)

) = 0.

(137)

Utilizing the properties of 𝑔
1

and 𝑔
2

, we get

lim
𝑛→∞





𝑥
𝑛

− 𝑢
𝑛

− (𝑢 − V)

= 0,

lim
𝑛→∞





𝑢
𝑛

− V
𝑛

+ (𝑢 − V)

= 0,

(138)

which hence yields




𝑥
𝑛

− V
𝑛





≤





𝑥
𝑛

− 𝑢
𝑛

− (𝑢 − V)


+




𝑢
𝑛

− V
𝑛

+ (𝑢 − V)

→ 0 as 𝑛 → ∞.

(139)

That is,

lim
𝑛→∞






𝐽
𝑟

𝑛

𝑥
𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

)






= lim
𝑛→∞





𝑥
𝑛

− V
𝑛





= 0. (140)

Note that





𝑥
𝑛

− 𝐽
𝑟

𝑛

𝑥
𝑛






≤






𝑥
𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

)






+






𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

) − 𝐽
𝑟

𝑛

𝑥
𝑛






.

(141)

So from (122) and (140) we have

lim
𝑛→∞






𝑥
𝑛

− 𝐽
𝑟

𝑛

𝑥
𝑛






= 0, (142)

which, together with (122), leads to




𝑥
𝑛

− 𝐺𝑥
𝑛





≤






𝑥
𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

)






+






𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

) − 𝐺𝑥
𝑛







≤






𝑥
𝑛

− 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

)







+






𝐽
𝑟

𝑛

𝑥
𝑛

− 𝑥
𝑛






→ 0 as 𝑛 → ∞.

(143)

That is,

lim
𝑛→∞





𝑥
𝑛

− 𝐺𝑥
𝑛





= 0. (144)

In addition, utilizing Lemma 9 we obtain from {𝑟
𝑛

} ⊂ [𝜀,∞)

that




𝑥
𝑛

− 𝐽
𝜀

𝑥
𝑛





≤ 2






𝑥
𝑛

− 𝐽
𝑟

𝑛

𝑥
𝑛






, (145)

which, together with (142), implies that

lim
𝑛→∞





𝑥
𝑛

− 𝐽
𝜀

𝑥
𝑛





= 0. (146)

Define a mapping

𝑊𝑥 = (1 − 𝜃) 𝐽
𝜀

𝑥 + 𝜃𝐺𝑥, ∀𝑥 ∈ 𝐶, (147)

where 𝜃 is a constant in (0, 1). Then by Lemma 10, we know
that Fix(𝑊) = Fix(𝐽

𝜀

) ∩ Fix(𝐺) = Δ. We observe that




𝑥
𝑛

− 𝑊𝑥
𝑛





=





(1 − 𝜃) (𝑥

𝑛

− 𝐽
𝜀

𝑥
𝑛

) + 𝜃 (𝑥
𝑛

− 𝐺𝑥
𝑛

)





≤ (1 − 𝜃)




𝑥
𝑛

− 𝐽
𝜀

𝑥
𝑛





+ 𝜃





𝑥
𝑛

− 𝐺𝑥
𝑛





.

(148)

So from (144) and (146) we obtain

lim
𝑛→∞





𝑥
𝑛

− 𝑊𝑥
𝑛





= 0. (149)

Now, we claim that

lim sup
𝑛→∞

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩ ≤ 0, (150)

where 𝑝 = 𝑠 − lim
𝑡→0

𝑥
𝑡

, with 𝑥
𝑡

being the fixed point of
the contraction 𝑥 → 𝑡𝑓(𝑥) + (1 − 𝑡)𝑊𝑥 of 𝐶 into itself
(due to Lemma 12). Then 𝑥

𝑡

solves the fixed point equation
𝑥
𝑡

= 𝑡𝑓(𝑥
𝑡

) + (1 − 𝑡)𝑊𝑥
𝑡

. Thus we have




𝑥
𝑡

− 𝑥
𝑛





=





(1 − 𝑡) (𝑊𝑥

𝑡

− 𝑥
𝑛

) + 𝑡 (𝑓 (𝑥
𝑡

) − 𝑥
𝑛

)




. (151)

By Lemma 5 we conclude that




𝑥
𝑡

− 𝑥
𝑛






2

=




(1 − 𝑡)(𝑊𝑥

𝑡

− 𝑥
𝑛

) + 𝑡(𝑓(𝑥
𝑡

) − 𝑥
𝑛

)





2

≤ (1 − 𝑡)
2




𝑊𝑥
𝑡

− 𝑥
𝑛






2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡

) − 𝑥
𝑛

, 𝐽 (𝑥
𝑡

− 𝑥
𝑛

)⟩

≤ (1 − 𝑡)
2

(




𝑊𝑥
𝑡

− 𝑊𝑥
𝑛





+




𝑊𝑥
𝑛

− 𝑥
𝑛





)
2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡

) − 𝑥
𝑛

, 𝐽 (𝑥
𝑡

− 𝑥
𝑛

)⟩

≤ (1 − 𝑡)
2

(




𝑥
𝑡

− 𝑥
𝑛





+




𝑊𝑥
𝑛

− 𝑥
𝑛





)
2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡

) − 𝑥
𝑛

, 𝐽 (𝑥
𝑡

− 𝑥
𝑛

)⟩

= (1 − 𝑡)
2

[




𝑥
𝑡

− 𝑥
𝑛






2

+ 2




𝑥
𝑡

− 𝑥
𝑛










𝑊𝑥
𝑛

− 𝑥
𝑛






+




𝑊𝑥
𝑛

− 𝑥
𝑛






2

]

+ 2𝑡 ⟨𝑓 (𝑥
𝑡

) − 𝑥
𝑡

, 𝐽 (𝑥
𝑡

− 𝑥
𝑛

)⟩

+ 2𝑡 ⟨𝑥
𝑡

− 𝑥
𝑛

, 𝐽 (𝑥t − 𝑥
𝑛

)⟩

= (1 − 2𝑡 + 𝑡
2

)




𝑥
𝑡

− 𝑥
𝑛






2

+ 𝑓
𝑛

(𝑡)

+ 2𝑡 ⟨𝑓 (𝑥
𝑡

) − 𝑥
𝑡

, 𝐽 (𝑥
𝑡

− 𝑥
𝑛

)⟩ + 2𝑡




𝑥
𝑡

− 𝑥
𝑛






2

,

(152)
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where

𝑓
𝑛

(𝑡) = (1 − 𝑡)
2

(2




𝑥
𝑡

− 𝑥
𝑛





+




𝑥
𝑛

− 𝑊𝑥
𝑛





)

×




𝑥
𝑛

− 𝑊𝑥
𝑛





→ 0, as 𝑛 → ∞.

(153)

It follows from (152) that

⟨𝑥
𝑡

− 𝑓 (𝑥
𝑡

) , 𝐽 (𝑥
𝑡

− 𝑥
𝑛

)⟩ ≤

𝑡

2





𝑥
𝑡

− 𝑥
𝑛






2

+

1

2𝑡

𝑓
𝑛

(𝑡) . (154)

Letting 𝑛 → ∞ in (154) and noticing (153), we derive

lim sup
𝑛→∞

⟨𝑥
𝑡

− 𝑓 (𝑥
𝑡

) , 𝐽 (𝑥
𝑡

− 𝑥
𝑛

)⟩ ≤

𝑡

2

𝑀
3

, (155)

where 𝑀
3

> 0 is a constant such that ‖𝑥
𝑡

− 𝑥
𝑛

‖
2

≤ 𝑀
3

for all
𝑡 ∈ (0, 1) and 𝑛 ≥ 0. Taking 𝑡 → 0 in (155), we have

lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑥
𝑡

− 𝑓 (𝑥
𝑡

) , 𝐽 (𝑥
𝑡

− 𝑥
𝑛

)⟩ ≤ 0. (156)

On the other hand, we have

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩

= ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩ − ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩

+ ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩ − ⟨𝑓 (𝑝) − 𝑥
𝑡

, 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩

+ ⟨𝑓 (𝑝) − 𝑥
𝑡

, 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩ − ⟨𝑓 (𝑥
𝑡

) − 𝑥
𝑡

, 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩

+ ⟨𝑓 (𝑥
𝑡

) − 𝑥
𝑡

, 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩

= ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝) − 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩

+ ⟨𝑥
𝑡

− 𝑝, 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩ + ⟨𝑓 (𝑝) − 𝑓 (𝑥
𝑡

) , 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩

+ ⟨𝑓 (𝑥
𝑡

) − 𝑥
𝑡

, 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩ .

(157)

It follows that

lim sup
𝑛→∞

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩

≤ lim sup
𝑛→∞

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝) − 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩

+




𝑥
𝑡

− 𝑝




lim sup
𝑛→∞





𝑥
𝑛

− 𝑥
𝑡






+ 𝜌




𝑝 − 𝑥
𝑡





lim sup
𝑛→∞





𝑥
𝑛

− 𝑥
𝑡






+ lim sup
𝑛→∞

⟨𝑓 (𝑥
𝑡

) − 𝑥
𝑡

, 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩ .

(158)

Taking into account that 𝑥
𝑡

→ 𝑝 as 𝑡 → 0, we have from
(156)

lim sup
𝑛→∞

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩

= lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩

≤ lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝) − 𝐽 (𝑥
𝑛

− 𝑥
𝑡

)⟩ .

(159)

Since 𝑋 has a uniformly Frechet differentiable norm, the
duality mapping 𝐽 is norm-to-norm uniformly continuous
on bounded subsets of 𝑋. Consequently, the two limits are
interchangeable and hence (150) holds. It is clear from (150)
that

lim sup
𝑛→∞

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩ ≤ 0. (160)

Finally, let us show that 𝑥
𝑛

→ 𝑝 as 𝑛 → ∞. We observe
that





𝑦
𝑛

− 𝑝





2

≤ 𝛼
𝑛





𝑥
𝑛

− 𝑝





2

+ (1 − 𝛼
𝑛

)






𝐺(𝐽
𝑟

𝑛

𝑥
𝑛

) − 𝑝







2

≤ 𝛼
𝑛





𝑥
𝑛

− 𝑝





2

+ (1 − 𝛼
𝑛

)




𝑥
𝑛

− 𝑝





2

=




𝑥
𝑛

− 𝑝





2

,

(161)

and hence





𝑥
𝑛+1

− 𝑝





2

=




𝛽
𝑛

(𝑓 (𝑥
𝑛

) − 𝑓 (𝑝))

+ (1 − 𝛽
𝑛

) [𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝜆
𝑛

𝜇
𝑛

𝐹𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑝]

+𝛽
𝑛

(𝑓 (𝑝) − 𝑝)





2

≤






𝛽
𝑛

(𝑓 (𝑥
𝑛

) − 𝑓 (𝑝))

+ (1 − 𝛽
𝑛

) [𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝜆
𝑛

𝜇
𝑛

𝐹𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑝]







2

+ 2𝛽
𝑛

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

≤ 𝛽
𝑛





𝑓(𝑥
𝑛

) − 𝑓(𝑝)





2

+ (1 − 𝛽
𝑛

)






𝐺(𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝜆
𝑛

𝜇
𝑛

𝐹𝐺(𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑝







2

+ 2𝛽
𝑛

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

= 𝛽
𝑛





𝑓(𝑥
𝑛

) − 𝑓(𝑝)





2

+ (1 − 𝛽
𝑛

)






(𝐼 − 𝜆

𝑛

𝜇
𝑛

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

)

−(𝐼 − 𝜆
𝑛

𝜇
𝑛

𝐹)𝑝 − 𝜆
𝑛

𝜇
𝑛

𝐹𝑝







2

+ 2𝛽
𝑛

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑝





2

+ (1 − 𝛽
𝑛

) [






(𝐼 − 𝜆

𝑛

𝜇
𝑛

𝐹)𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − (𝐼 − 𝜆
𝑛

𝜇
𝑛

𝐹) 𝑝







+𝜆
𝑛

𝜇
𝑛





𝐹𝑝





]

2

+ 2𝛽
𝑛

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩
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≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑝





2

+ (1 − 𝛽
𝑛

)

×
[

[

(1 − 𝜆
𝑛

𝜇
𝑛

(1 − √
1 − 𝛿

𝜆

))






𝐺 (𝐽
𝑟

𝑛

𝑦
𝑛

) − 𝑝







+ 𝜆
𝑛

𝜇
𝑛





𝐹𝑝





]

]

2

+ 2𝛽
𝑛

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑝





2

+ (1 − 𝛽
𝑛

) (




𝑦
𝑛

− 𝑝




+ 𝜆
𝑛

𝜇
𝑛





𝐹𝑝





)
2

+ 2𝛽
𝑛

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

≤ 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑝





2

+ (1 − 𝛽
𝑛

) (




𝑥
𝑛

− 𝑝




+ 𝜆
𝑛

𝜇
𝑛





𝐹𝑝





)
2

+ 2𝛽
𝑛

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

= 𝛽
𝑛

𝜌




𝑥
𝑛

− 𝑝





2

+ (1 − 𝛽
𝑛

) [




𝑥
𝑛

− 𝑝





2

+ 𝜆
𝑛

𝜇
𝑛





𝐹𝑝






× (2




𝑥
𝑛

− 𝑝




+ 𝜆
𝑛

𝜇
𝑛





𝐹𝑝





)]

+ 2𝛽
𝑛

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

≤ (1 − (1 − 𝜌) 𝛽
𝑛

)




𝑥
𝑛

− 𝑝





2

+ 𝜆
𝑛

𝜇
𝑛





𝐹𝑝





(2





𝑥
𝑛

− 𝑝




+ 𝜆
𝑛

𝜇
𝑛





𝐹𝑝





)

+ 2𝛽
𝑛

⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

= (1 − (1 − 𝜌) 𝛽
𝑛

)




𝑥
𝑛

− 𝑝





2

+ (1 − 𝜌) 𝛽
𝑛

{

𝜆
𝑛

𝜇
𝑛

𝛽
𝑛





𝐹𝑝





(2





𝑥
𝑛

− 𝑝




+ 𝜆
𝑛

𝜇
𝑛





𝐹𝑝





)

1 − 𝜌

+

2 ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

1 − 𝜌

} .

(162)

Taking into account (160) and conditions (i), (ii), we obtain
that ∑∞

𝑛=0

(1 − 𝜌)𝛽
𝑛

= ∞ and

lim sup
𝑛→∞

{

𝜆
𝑛

𝜇
𝑛

𝛽
𝑛





𝐹𝑝





(2





𝑥
𝑛

− 𝑝




+ 𝜆
𝑛

𝜇
𝑛





𝐹𝑝





)

1 − 𝜌

+

2 ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥
𝑛+1

− 𝑝)⟩

1 − 𝜌

} ≤ 0.

(163)

Therefore, applying Lemma 4 to (162), we infer that

lim
𝑛→∞





𝑥
𝑛

− 𝑝




= 0. (164)

This completes the proof.

Remark 19. As pointed out in [12, Remark 3.2], the sequences
{𝜆
𝑛

}, {𝜇
𝑛

}, and {𝛽
𝑛

} can be taken, which satisfy the conditions
inTheorem 18. As a matter of fact, put 𝜆

𝑛

= (1 + 𝑛)
−5/6, 𝜇

𝑛

=

1, and 𝛽
𝑛

= (1 + 𝑛)
−2/3 for all 𝑛 ≥ 0. Then there hold the

following statements:

(i) lim
𝑛→∞

𝛽
𝑛

= 0 and ∑
∞

𝑛=0

𝛽
𝑛

= ∞,
(ii) lim

𝑛→∞

(𝜆
𝑛

𝜇
𝑛

)/𝛽
𝑛

= 0,
(iii) ∑∞

𝑛=0

|𝛽
𝑛+1

− 𝛽
𝑛

| < ∞, ∑
∞

𝑛=0

|𝜆
𝑛+1

− 𝜆
𝑛

| < ∞,
and ∑

∞

𝑛=0

|𝜇
𝑛+1

− 𝜇
𝑛

| < ∞.

By the careful analysis of the proof ofTheorem 18, we can
obtain the following result. Because its proof is much simpler
than that of Theorem 18, we omit its proof.

Theorem 20. Let 𝑋 be a uniformly convex and 2-uniformly
smooth Banach space and let𝐴 be an𝑚-accretive operator in𝑋

such that𝐶 = 𝐷(𝐴) is convex. LetΠ
𝐶

be a sunny nonexpansive
retraction from𝑋 onto 𝐶. Let the mapping 𝐵

𝑖

: 𝐶 → 𝑋 be 𝛼
𝑖

-
inverse strongly accretive for 𝑖 = 1, 2, let 𝑓 : 𝑋 → 𝐶 be a
contractive map with coefficient 𝜌 ∈ (0, 1), and let 𝐹 : 𝑋 →

𝑋 be 𝛿-strongly accretive and 𝜆-strictly pseudocontractive with
𝛿 + 𝜆 > 1. Assume that Δ = 𝐴

−1

(0) ∩ Ω ̸= 0, where Ω is the
fixed point set of the mapping 𝐺 = Π

𝐶

(𝐼 − 𝜇
1

𝐵
1

)Π
𝐶

(𝐼 − 𝜇
2

𝐵
2

)

with 0 < 𝜇
𝑖

< 𝛼
𝑖

/𝜅
2 for 𝑖 = 1, 2. Given sequences {𝜆

𝑛

}
∞

𝑛=0

in
[0, 1], {𝛼

𝑛

}
∞

𝑛=0

, {𝛽
𝑛

}
∞

𝑛=0

in (0, 1], and {𝑟
𝑛

}
∞

𝑛=0

in [𝜀,∞) for some
𝜀 > 0, suppose that there hold the following conditions:

(i) lim
𝑛→∞

𝛽
𝑛

= 0 and ∑
∞

𝑛=0

𝛽
𝑛

= ∞,
(ii) lim

𝑛→∞

𝜆
𝑛

/𝛽
𝑛

= 0 and ∑
∞

𝑛=0

|𝜆
𝑛+1

− 𝜆
𝑛

| < ∞,
(iii) {𝛼

𝑛

} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1),
(iv) ∑∞

𝑛=0

|𝛼
𝑛+1

− 𝛼
𝑛

| < ∞, ∑∞
𝑛=0

|𝛽
𝑛+1

− 𝛽
𝑛

| < ∞, and
∑
∞

𝑛=0

|𝑟
𝑛+1

− 𝑟
𝑛

| < ∞.

Then for any given point 𝑥
0

∈ 𝑋, the sequence {𝑥
𝑛

} generated
by

𝑦
𝑛

= 𝛼
𝑛

𝑥
𝑛

+ (1 − 𝛼
𝑛

) 𝐺 (𝐽
𝑟

𝑛

𝑥
𝑛

) ,

𝑥
𝑛+1

= 𝛽
𝑛

𝑓 (𝑥
𝑛

) + (1 − 𝛽
𝑛

) [𝑦
𝑛

− 𝜆
𝑛

𝐹 (𝑦
𝑛

)] ,

∀𝑛 ≥ 0,

(165)

converges strongly to 𝑝 ∈ Δ, which is a unique solution of the
VIP (44).

Remark 21. Our Theorems 16–20 improve, extend, supple-
ment, and develop Cai and Bu [13, Theorem 3.1] and Ceng
et al. [12, Theorems 3.1–3.3] in the following aspects.

(i) The problem of finding a point 𝑝 ∈ 𝐴
−1

(0) ∩ Ω in
ourTheorems 16–20 is very different from everyone of
both the problemof finding a point𝑝 ∈ ⋂

𝑛

Fix(𝑆
𝑛

)∩Ω

in Cai and Bu [13, Theorem 3.1] and the problem
of finding a point 𝑝 ∈ 𝐴

−1

(0) in Ceng et al. [12,
Theorems 3.1–3.3].There is no doubt that our problem
of finding a point 𝑝 ∈ 𝐴

−1

(0) ∩ Ω is more general
than the problem of finding a point 𝑝 ∈ 𝐴

−1

(0) in [12,
Theorems 3.1–3.3].
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(ii) Compared with the choice of iterative parameters
in [12, Theorems 3.1–3.3], the choice of iterative
parameters in ourTheorems 16–20 is the same as that
in [12, Theorems 3.1–3.3].

(iii) The iterative schemes in [12, Theorems 3.1–3.3] are
extended to develop the iterative schemes in our
Theorems 16–20 by virtue of the iterative scheme
of [13, Theorems 3.1]. The iterative schemes in our
Theorems 16–20 are more advantageous and more
flexible than the iterative schemes of [12, Theorems
3.1–3.3] because they involve solving two problems:
the GSVI (16) and the problem of finding zeros of an
𝑚-accretive operator.

(iv) The iterative schemes in our Theorems 16–20 are
very different from everyone in both [13, Theorem
3.1] and [12, Theorems 3.1–3.3] because the iterative
scheme in ourTheorem 16 is implicit and because the
mapping 𝐺 in [13, Theorem 3.1] and the mapping 𝐽

𝑟

𝑛

in [12, Theorems 3.1–3.3] are replaced by the same
composite mapping 𝐺 ∘ 𝐽

𝑟

𝑛

in the iterative schemes of
our Theorems 16–20.

(v) Cai and Bu’s proof in [13, Theorem 3.1] depends on
the argument techniques in [16], the inequality in 2-
uniformly smooth Banach spaces (see Lemma 2), and
the inequality in smooth and uniform convex Banach
spaces (see Proposition 3). Because the composite
mapping 𝐺 ∘ 𝐽

𝑟

𝑛

appears in the iterative schemes in
our Theorems 16–20, the proof of our Theorems 16–
20 depends on the argument techniques in [16], the
inequality in 2-uniformly smooth Banach spaces (see
Lemma 2), the inequality in smooth and uniform
convex Banach spaces (see Proposition 3), and the
properties of the resolvent of an 𝑚-accretive oper-
ator (see Lemmas 8 and 9), the Banach limit (see
Lemma 11) and the strongly accretive and strictly
pseudocontractive mapping (see Proposition 13).
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