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The purpose of this paper is to investigate the existence of standing waves for a generalized Davey-Stewartson system. By reducing
the system to a single Schrödinger equation problem, we are able to establish some existence results for the system by variational
methods.

1. Introduction and Main Results

In this paper, we are going to consider the existence of stan-
ding waves for a generalized Davey-Stewartson system in R3
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Here Δ is the Laplacian operator inR3 and 𝑖 is the imaginary
unit, 𝑎(𝑥), 𝑏(𝑥), and 𝑝 satisfy some additional assumptions.

TheDavey-Stewartson system is amodel for the evolution
of weakly nonlinear packets of water waves that travel
predominantly in one direction, but in which the amplitude
ofwaves ismodulated in two spatial directions.They are given
as
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where 𝑎, 𝑏
1
, 𝑏
2

∈ R, 𝜓(𝑡, 𝑥, 𝑦) is the complex amplitude of
the shortwave and 𝜑(𝑡, 𝑥, 𝑦) is the real longwave amplitude
[1]. The physical parameters 𝛿 and𝑚 play a determining role
in the classification of this system. Depending on their signs,
the system is elliptic-elliptic, elliptic-hyperbolic, hyperbolic-
elliptic, and hyperbolic-hyperbolic [2], although the last case
does not seem to occur in the context of water waves.

As we know, the system can be reduced to a single
Schrödinger equation by using Fourier transforms. Indeed,
let 𝐸
1
be the singular integral operator defined by
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Then the generalized Davey-Stewartson system can be
reduced to the following single nonlocal Schrödinger equa-
tion
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In this paper, we are interested in the existence of standing
waves for the above equation, that is, solutions in the form of

𝜓 (𝑡, 𝑥) = 𝑒
𝑖𝜔𝑡
𝜙 (𝑥) ,

𝜑 (𝑡, 𝑥) = 𝑣 (𝑥) ,
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where 𝜔 > 0, 𝜙, 𝑣 ∈ 𝐻
1
(R3). Then if (𝜓, 𝜑) is a solution of (1),

then we can see that 𝜙must satisfy the following Schrödinger
problem:
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We will consider the generalized Davey-Stewartson sys-
tem with perturbation. Under suitable assumptions on the
coefficients 𝑎(𝑥), 𝑏(𝑥), the problem can be viewed as the
perturbation of the generalized Davey-Stewartson system
considered in [2, 3]. Here we will not use the critical point
theory or the minimizing methods to establish the existence
results. Moreover, we will not use Lion’s Concentration-
compactness principle to overcome the difficulty of losing
compactness. Instead, we will apply the perturbation method
developed by Ambrosetti and Badiale in [4, 5] to show the
existence of solutions of (8) and (9). In [4, 5], Ambrosetti
and Badiale established an abstract theory to reduce a class of
perturbation problems to a finite dimensional one by some
careful observation on the unperturbed problems and the
Lyapunov-Schmit reduction procedure.Thismethod has also
been successfully applied to many different problems, see
[6] for examples. In this paper we are going to consider the
following two types of perturbed problems for generalized
Davey-Stewartson system. Consider
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The main results of the paper are the following theorems.
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different positive constants.
The paper is organized as follows. In Section 2, we outline

the abstract critical point theory for perturbed functionals
and give some properties for the singular operator 𝐸

1
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Section 3, we prove the main results by some lemmas.

2. The Abstract Theorem

To prove the main results, we need the following known
propositions.
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⊥.

In the following, we outline the abstract theorem of
a variational method to study critical points of perturbed
functionals. Let 𝐸 be a real Hilbert space, we will consider
the perturbed functional defined on it of the form
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(3) 𝐺(𝜀, 𝑢) and 𝐺
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Here 𝑃 is the orthogonal projection onto 𝑊. Under the
conditions above, the first equation in this system can be
solved by implicit function theorem, and then by using the
Taylor expansion, we obtain for 𝑢 = 𝑧 + 𝑤(𝜀, 𝑧)

𝐼
𝜀
(𝑢) = 𝐼

0
(𝑧) + 𝜀

𝛼
Γ (𝑧) + 𝑜 (𝜀

𝛼
) . (21)

In [4, 5] the following abstract theorem is proved.

Lemma5. Suppose assumptions (1)–(6) are satisfied, and there
exists 𝛿 > 0 and 𝑧

∗
∈ 𝑍 such that

𝑒𝑖𝑡ℎ𝑒𝑟 min
‖𝑧−𝑧
∗
‖=𝛿

Γ (𝑧) > Γ (𝑧
∗
) 𝑜𝑟 max

‖𝑧−𝑧
∗
‖=𝛿

Γ (𝑧) < Γ (𝑧
∗
) .

(22)

Then for any 𝜀 small, there exists 𝑢
𝜀
which is a critical point of

𝐼
𝜀
.

We give some facts about the singular integral 𝐸
1
in

Cipolatti [2].

Lemma 6. Let 𝐸
1
be the singular integral operator defined in

Fourier variable by

F {𝐸
1
(𝜓)} (𝜉) = 𝜎

1
(𝜉)F (𝜓) (𝜉) , (23)

where 𝜎
1
(𝜉) = 𝜉

2

1
/|𝜉|
2, 𝜉 ∈ R3, and F denotes the Fourier

transform:

F (𝜓) (𝜉) = (
1

2𝜋
)

3/2

∫ 𝑒
−𝑖𝜉𝑥

𝜓 (𝑥) 𝑑𝑥. (24)

For 1 < 𝑝 < ∞, 𝐸
1
satisfies the following properties:

(1) 𝐸
1
∈ L(𝐿

𝑝
, 𝐿
𝑝
).

(2) if 𝜓 ∈ 𝐻
1
(R3), then 𝐸

1
(𝜓) ∈ 𝐻

1
(R3).

(3) 𝐸
1
preserves the following operations:

translation: 𝐸
1
(𝜓(⋅ + 𝑦))(𝑥) = 𝐸

1
(𝜓)(𝑥 + 𝑦), 𝑦 ∈

R3.
dilation: 𝐸

1
(𝜓(𝜆⋅))(𝑥) = 𝐸

1
(𝜓)(𝜆𝑥), 𝜆 > 0.

conjugation: 𝐸
1
(𝜓) = 𝐸

1
(𝜓), 𝜓 is the complex

conjugate of 𝜓.

3. Proof of the Main Results

In this section, we would apply the abstract tools of the pre-
vious section to prove the main results. First let us consider
(8), the corresponding energy functional 𝐼

𝜀
: 𝐻
1
(R3) → R

can be defined as

𝐼
𝜀
(𝜙) =

1

2

𝜙


2

−
𝜀

4
∫ 𝑏 (𝑥) 𝐸

1
(𝑏 (𝑥)

𝜙


2
)
𝜙


2

−
1

𝑝
∫ (1 + 𝜀𝑎 (𝑥))

𝜙


𝑝
.

(25)

It is easy to see that 𝐼
𝜀
: 𝐻
1
(R3) → R is of 𝐶2, and thus 𝜙 is a

solution of (8) if and only if 𝜙 is a critical point of the action
functional 𝐼

𝜀
(𝜙).

Proof of Theorem 1. Set

𝐼
0
(𝜙) =

1

2

𝜙


2
−

1

𝑝
∫
𝜙


𝑝
,

𝐺 (𝜙) = −
1

𝑝
∫𝑎 (𝑥)

𝜙


𝑝
−
1

4
∫ 𝑏 (𝑥) 𝐸

1
(𝑏 (𝑥)

𝜙


2
)
𝜙


2
,

(26)

then 𝐼
𝜀
(𝑢) can be rewritten as

𝐼
𝜀
(𝜙) = 𝐼

0
(𝜙) + 𝜀𝐺 (𝜙) . (27)

Thus 𝐼
0
(𝜙) and 𝐺(𝜙) are both 𝐶

2 with respect to 𝜙. To apply
Lemma 5, by Proposition 4, we need only to check that

lim
|𝜃|→∞

Γ (𝜃) = 0,

Γ (𝜃) := 𝐺|𝑍 = −
1

𝑝
∫𝑎 (𝑥)

𝑧𝜃


𝑝

−
1

4
∫ 𝑏 (𝑥) 𝐸

1
(𝑏 (𝑥)

𝑧𝜃


2
)
𝑧𝜃



2
.

(28)



4 Abstract and Applied Analysis

From the fact that 𝑎 ∈ 𝐿
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Since 𝑈 exponentially decays at infinity, we know the right
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Since 𝑈 exponentially decays at infinity, the right side of the
inequality (32) goes to 0. Thus from (29) and (32) above we
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we know Γ(0) ̸= 0. Thus, the conclusion follows from
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𝐼
𝜀 (𝑢) =

1

2
‖𝑢‖
2
−

1

𝑝
∫𝑎(

𝑥

𝜀
) |𝑢|
𝑝

−
𝜀
2(4−𝑝)/(𝑝−2)

4

× ∫ 𝑏 (
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) |𝑢|
2
.

(37)

Set

𝐼
0
(𝑢) =

1

2
‖𝑢‖
2
−
𝐴

𝑝
∫ |𝑢|
𝑝
. (38)

Then 𝐼
𝜀
(𝑢) can be rewritten as

𝐼
𝜀 (𝑢) = 𝐼

0 (𝑢) +
1

𝑝
∫(𝐴 − 𝑎(

𝑥

𝜀
)) |𝑢|

𝑝

−
𝜀
2(4−𝑝)/(𝑝−2)

4

× ∫ 𝑏 (
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) |𝑢|
2
.

(39)

Define

𝐺 (𝜀, 𝑢) =
1

𝑝
∫(𝐴 − 𝑎(

𝑥

𝜀
)) |𝑢|

𝑝

−
𝜀
2(4−𝑝)/(𝑝−2)

4
∫ 𝑏 (

𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) |𝑢|
2

= 𝐺
1
(𝜀, 𝑢) + 𝐺

2
(𝜀, 𝑢)

(40)

and for 𝑖 = 1, 2

𝐺
𝑖
(𝜀, 𝑢) = {

𝐺
𝑖 (𝜀, 𝑢) , if 𝜀 ̸= 0,

0, if 𝜀 = 0.
(41)

Lemma 7. Under assumptions (𝑎
1
) and (𝑏

1
), 𝐺 = 𝐺

1
+ 𝐺
2
is

continuous in (𝜀, 𝑢).
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Proof. From the proof of Lemma 4.1 in [7], we know 𝐺
1
is

continuous in (𝜀, 𝑢) ∈ R × 𝐻
1
(R3), and hence we only need

to prove that 𝐺
2
is continuous in (𝜀, 𝑢).

If (𝜀, 𝑢) → (𝜀
0
, 𝑢
0
), with 𝜀

0
̸= 0.Thenwe can estimate that

4
𝐺2 (𝜀, 𝑢) − 𝐺

2
(𝜀
0
, 𝑢
0
)


=


𝜀
2(4−𝑝)/(𝑝−2)

∫𝑏(
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) |𝑢|
2

−𝜀
2(4−𝑝)/(𝑝−2)

0
∫𝑏(

𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
)
𝑢0



2


≤ |𝜀|
2(4−𝑝)/(𝑝−2)


∫ 𝑏 (

𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) |𝑢|
2

−∫ 𝑏(
𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
)
𝑢0



2


+

𝜀
2(4−𝑝)/(𝑝−2)

− 𝜀
2(4−𝑝)/(𝑝−2)

0



×



∫ 𝑏 (
𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
)
𝑢0



2


:= |𝜀|
2(4−𝑝)/(𝑝−2)

𝐼
1
+ 𝐼
2
.

(42)

It is obvious that 𝐼
2
→ 0, as 𝜀 → 𝜀

0
. At the same time, we

know

𝐼
1
≤



∫ [𝑏 (
𝑥

𝜀
) − 𝑏(

𝑥

𝜀
0

)]𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) |𝑢|
2



+



∫ 𝑏 (
𝑥

𝜀
0

)𝐸
1
([𝑏 (

𝑥

𝜀
) − 𝑏(

𝑥

𝜀
0

)] |𝑢|
2
) |𝑢|
2



+



∫ 𝑏 (
𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

) [|𝑢|
2
−
𝑢0



2
]) |𝑢|

2



+



∫ 𝑏 (
𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
) (|𝑢|

2
−
𝑢0



2
)



:= Π
1
+ Π
2
+ Π
3
+ Π
4
.

(43)

Estimating the first term Π
1
, by Hölder inequality, we know

Π
1
=



∫ [𝑏 (
𝑥

𝜀
) − 𝑏(

𝑥

𝜀
0

)]𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) |𝑢|
2



≤ (∫(



𝑏 (
𝑥

𝜀
) − 𝑏(

𝑥

𝜀
0

)



|𝑢|
2
)

2

)

1/2

× (∫


𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
)



2

)

1/2

.

(44)

Since 𝑏(𝑥) is bounded and continuous, the operator 𝐸
1

∈

L(𝐿
2
, 𝐿
2
), the dominated convergence theorem implies that

Π
1
→ 0, as 𝜀 → 𝜀

0
. (45)

Similarly, we can deduce thatΠ
2
, Π
3
, Π
4
vanishes, as (𝜀, 𝑢) →

(𝜀
0
, 𝑢
0
). Hence

𝐺2 (𝜀, 𝑢) − 𝐺
2
(𝜀
0
, 𝑢
0
)
 → 0 (46)

as (𝜀, 𝑢) → (𝜀
0
, 𝑢
0
).

If (𝜀, 𝑢) → (0, 𝑢
0
), by definition, 𝐺

2
(0, 𝑢) = 0. Since

𝑏(𝑥) ∈ 𝐿
2
(R3) is also bounded, we know 𝑏(𝑥) ∈ 𝐿

6
(R3),

applying Parseval identity and Hölder inequality, we get

4
𝐺2 (𝜀, 𝑢)

 ≤ |𝜀|
2(4−𝑝)/(𝑝−2)

∫


𝑏 (

𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) |𝑢|
2


≤ |𝜀|
2(4−𝑝)/(𝑝−2)

∫


𝑏 (

𝑥

𝜀
)



2

|𝑢 (𝑥)|
4

≤ |𝜀|
2(4−𝑝)/(𝑝−2)

(∫


𝑏 (

𝑥

𝜀
)



6

)

1/3

(∫ |𝑢|
6
)

2/3

,

(47)

therefore 𝐺
2
(𝜀, 𝑢) → 0, as (𝜀, 𝑢) → (0, 𝑢). Hence 𝐺 = 𝐺

1
+

𝐺
2
is continuous and the lemma is proved.

Lemma 8. Under assumptions (𝑎
1
) and (𝑏

1
), 𝐺 and 𝐺

 are
continuous in (𝜀, 𝑢).

Proof. 𝐺
1
and 𝐺



1
are continuous in (𝜀, 𝑢), see [7, Lemma

4.2] for the details. Here we only prove that 𝐺
2
and 𝐺



2
are

continuous in (𝜀, 𝑢).
If (𝜀, 𝑢) → (𝜀

0
, 𝑢
0
) with 𝜀

0
̸= 0, then


𝐺


2
(𝜀, 𝑢) − 𝐺



2
(𝜀
0
, 𝑢
0
)


= sup
‖𝑣‖=1

{𝜀
2(4−𝑝)/(𝑝−2)

× ∫ 𝑏 (
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) 𝑢𝑣

− 𝜀
2(4−𝑝)/(𝑝−2)

0

×∫ 𝑏(
𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
)𝑢
0
𝑣}

≤ sup
‖𝑣‖=1

{|𝜀|
2(4−𝑝)/(𝑝−2)

× ∫(𝑏 (
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) 𝑢𝑣

−𝑏(
𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
)𝑢
0
𝑣)

+

𝜀
2(4−𝑝)/(𝑝−2)

− 𝜀
2(4−𝑝)/(𝑝−2)

0



×



∫ 𝑏 (
𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
)𝑢
0
𝑣



}

:= |𝜀|
2(4−𝑝)/(𝑝−2) sup

‖𝑣‖=1

𝐼
1
+ sup
‖𝑣‖=1

𝐼
2
.

(48)

Estimating the second term, since 𝐸
1
∈ L(𝐿

2
, 𝐿
2
), by Hölder

inequality, we know

sup
‖𝑣‖=1

𝐼
2
= sup
‖𝑣‖=1


𝜀
2(4−𝑝)/(𝑝−2)

− 𝜀
2(4−𝑝)/(𝑝−2)

0



×



∫ 𝑏 (
𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
)𝑢
0
𝑣
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≤ sup
‖𝑣‖=1

𝐶
0


𝜀
2(4−𝑝)/(𝑝−2)

− 𝜀
2(4−𝑝)/(𝑝−2)

0



× (∫



𝑏 (
𝑥

𝜀
0

)
𝑢0



2


2

)

1/2

(∫



𝑏 (
𝑥

𝜀
0

)𝑢
0
𝑣



2

)

1/2

≤ 𝐶
1


𝜀
2(4−𝑝)/(𝑝−2)

− 𝜀
2(4−𝑝)/(𝑝−2)

0


(∫

𝑢0


6
)

1/2

.

(49)

Thus sup
‖𝑣‖=1

𝐼
2
→ 0 as 𝜀 → 𝜀

0
. Estimating the first term 𝐼

1
,

we know

sup
‖𝑣‖=1

𝐼
1
= sup
‖𝑣‖=1

{∫(𝑏 (
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) 𝑢𝑣

−𝑏(
𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
)𝑢
0
𝑣)}

≤ sup
‖𝑣‖=1

{



∫ [𝑏 (
𝑥

𝜀
) − 𝑏(

𝑥

𝜀
0

)]𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) 𝑢𝑣



+



∫ 𝑏 (
𝑥

𝜀
0

)𝐸
1

×([𝑏 (
𝑥

𝜀
) − 𝑏(

𝑥

𝜀
0

)] |𝑢|
2
)𝑢𝑣



+



∫ 𝑏 (
𝑥

𝜀
0

)𝐸
1

×(𝑏(
𝑥

𝜀
0

) [|𝑢|
2
−
𝑢0



2
]) 𝑢𝑣



+



∫ 𝑏 (
𝑥

𝜀
0

)𝐸
1

×(𝑏(
𝑥

𝜀
0

)
𝑢0



2
) (𝑢𝑣 − 𝑢

0
𝑣)



}

:= 𝐴
1
+ 𝐴
2
+ 𝐴
3
+ 𝐴
4
.

(50)

As in Lemma 7, by Hölder inequality again, we can prove
that 𝐴

𝑖
→ 0, as (𝜀, 𝑢) → (𝜀

0
, 𝑢
0
), 𝑖 = 1, 2, 3, 4. Therefore

‖𝐺


2
(𝜀, 𝑢) − 𝐺



2
(𝜀
0
, 𝑢
0
)‖ → 0 as (𝜀, 𝑢) → (𝜀

0
, 𝑢
0
).

If 𝜀
0
= 0, from the definition of𝐺

2
, we know ‖𝐺



2
(0, 𝑢
0
)‖ =

0. Hence

𝐺


2
(𝜀, 𝑢)



= sup
‖𝑣‖=1


𝜀
2(4−𝑝)/(𝑝−2)

∫𝑏(
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
) 𝑢𝑣



≤ sup
‖𝑣‖=1

{|𝜀|
2(4−𝑝)/(𝑝−2)

(∫


𝑏 (

𝑥

𝜀
)



6

)

1/3

×(∫ |𝑢|
6
)

1/2

(∫ |𝑣|
6
)

1/6

} .

(51)

And we know ||𝐺


2
(𝜀, 𝑢)|| → 0, as 𝜀 → 0. From the above

arguments, we know 𝐺

= 𝐺


1
+ 𝐺


2
is continuous in (𝜀, 𝑢).

In the following we prove that 𝐺 is continuous in (𝜀, 𝑢).
As we know

𝐺


2
(𝜀, 𝑢) [𝑤, 𝑣] = 𝜀

2(4−𝑝)/(𝑝−2)

× ∫(𝑏 (
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
)𝑤𝑣

+2𝑏 (
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
)𝑤𝑢) 𝑢𝑣) .

(52)

If (𝜀, 𝑢) → (𝜀
0
, 𝑢
0
) with 𝜀

0
̸= 0, then


𝐺


2
(𝜀, 𝑢) − 𝐺



2
(𝜀
0
, 𝑢
0
)


= sup
‖𝑤‖=‖𝑣‖=1


𝐺


2
(𝜀, 𝑢) [𝑤, 𝑣] − 𝐺



2
(𝜀
0
, 𝑢
0
) [𝑤, 𝑣]



≤ sup
‖𝑤‖=‖𝑣‖=1

{𝐼
1
+ 𝐼
2
} ,

(53)

where

𝐼
1
:=


𝜀
2(4−𝑝)/(𝑝−2)

∫𝑏(
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
)𝑤𝑣

−𝜀
2(4−𝑝)/(𝑝−2)

0
∫𝑏(

𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
)𝑤𝑣



,

𝐼
2
:= 2


𝜀
2(4−𝑝)/(𝑝−2)

∫𝑏(
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) 𝑢𝑤)𝑢𝑣

−𝜀
2(4−𝑝)/(𝑝−2)

0
∫𝑏(

𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)𝑢
0
𝑤)𝑢
0
𝑣



.

(54)

We estimate 𝐼
1
only, and 𝐼

2
can be estimated in a similar way,

indeed

𝐼
1
≤


𝜀
2(4−𝑝)/(𝑝−2)

− 𝜀
2(4−𝑝)/(𝑝−2)

0



×


∫ 𝑏 (

𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
)𝑤𝑣

−∫ 𝑏(
𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
)𝑤𝑣



+
𝜀0



2(4−𝑝)/(𝑝−2)

∫ 𝑏 (

𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
)𝑤𝑣

−∫ 𝑏(
𝑥

𝜀
0

)𝐸
1
(𝑏(

𝑥

𝜀
0

)
𝑢0



2
)𝑤𝑣



.

(55)

Similar to the proof in Lemma 7, we know 𝐼
1
→ 0 as 𝜀 → 𝜀

0

and 𝑢 → 𝑢
0
. Thus we know ‖𝐺



2
(𝜀, 𝑢) − 𝐺



2
(𝜀
0
, 𝑢
0
)‖ → 0 as

(𝜀, 𝑢) → (𝜀
0
, 𝑢
0
).
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If (𝜀, 𝑢) → (0, 𝑢
0
), then from the definition of 𝐺

2
, we

know

𝐺


2
(𝜀, 𝑢)



= sup
‖𝑤‖=‖𝑣‖=1


𝐺


2
(𝜀, 𝑢) [𝑤, 𝑣]



≤ sup
‖𝑤‖=‖𝑣‖=1

{𝜀
2(4−𝑝)/(𝑝−2)

× ∫(𝑏 (
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
) |𝑢|
2
)𝑤𝑣

+2𝑏 (
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
)𝑤𝑢) 𝑢𝑣)}

:= sup
‖𝑤‖=‖𝑣‖=1

{𝐼
3
+ 𝐼
4
} .

(56)

Using Hölder inequality, we know

𝐼
3
≤ 𝐶
0|𝜀|
2(4−𝑝)/(𝑝−2)

(∫


𝑏 (

𝑥

𝜀
)



2

|𝑤𝑣|
2
)

1/2

× (∫


𝑏 (

𝑥

𝜀
)



2

|𝑢|
4
)

1/2

≤ 𝐶
0|𝜀|
2(4−𝑝)/(𝑝−2)

(∫


𝑏 (

𝑥

𝜀
)



6

)

1/3

(∫ |𝑢|
6
)

1/3

× (∫ |𝑤|
6
)

1/6

(∫ |𝑣|
6
)

1/6

,

𝐼
4
≤ 𝐶
1|𝜀|
2(4−𝑝)/(𝑝−2)

(∫


𝑏 (

𝑥

𝜀
)



6

)

1/3

(∫ |𝑢|
6
)

1/3

× (∫ |𝑤|
6
)

1/6

(∫ |𝑣|
6
)

1/6

.

(57)

Therefore

𝐺


2
(𝜀, 𝑢)


→ 0 as 𝜀 → 0. (58)

From the above arguments, we know 𝐺
 is continuous in

(𝜀, 𝑢) and the proof is complete.

Lemma 9. Assume (𝑎
1
) and (𝑏

1
) are satisfied. Define

Γ (𝜃) = −
1

𝑝
𝑈
𝑝
(𝜃) ∫ (𝑎 (𝑥) − 𝐴) . (59)

Then

lim
𝜀→0

𝐺 (𝜀, 𝑧
𝜃
)

𝜀3
= Γ (𝜃) ,

𝐺

(𝜀, 𝑧
𝜃
) = 𝑜 (𝜀

3/2
) .

(60)

Proof. By changing of variable, we know

𝐺
1
(𝜀, 𝑧
𝜃
) = −

1

𝑝
∫(𝑎 (

𝑥

𝜀
) − 𝐴)𝑈

𝑝
(𝑥 + 𝜃)

= −
𝜀
3

𝑝
∫ (𝑎 (𝑥) − 𝐴)𝑈

𝑝
(𝜀𝑥 + 𝜃) .

(61)

Since 𝑎(𝑥) is continuous and bounded, the dominated con-
vergence theorem implies that

lim
𝜀→0

𝐺
1
(𝜀, 𝑧
𝜃
)

𝜀3
= Γ (𝜃) . (62)

On the other hand, since 𝑧
𝜃
is bounded and 𝑏(𝑥) ∈ 𝐿

2
(R3),

then, changing of variable, we know


𝐺
2
(𝜀, 𝑧
𝜃
)

𝜀3



=



𝜀
2(4−𝑝)/(𝑝−2)−3

4

×∫ 𝑏 (
𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
)
𝑧𝜃



2
)
𝑧𝜃



2



≤ |𝜀|
2(4−𝑝)/(𝑝−2)−3

(∫


𝑏 (

𝑥

𝜀
)



2
𝑧𝜃



4
)

≤ 𝐶
1|𝜀|
2(4−𝑝)/(𝑝−2)−3

∫


𝑏 (

𝑥

𝜀
)



2

= 𝐶
1|𝜀|
2(4−𝑝)/(𝑝−2)

∫ |𝑏 (𝑥)|
2
→ 0, as 𝜀 → 0,

(63)

since 4 > 𝑝 > 2. Thus we obtain

lim
𝜀→0

𝐺 (𝜀, 𝑧
𝜃
)

𝜀3
= Γ (𝜃) . (64)

Now we are ready to prove

𝐺

(𝜀, 𝑧
𝜃
) = 𝑜 (𝜀

3/2
) . (65)

From the proof of [7], we first know

𝐺


1
(𝜀, 𝑧
𝜃
) = 𝑜 (𝜀

3/2
) . (66)

Also, since 𝑧 is bounded, it is easy to check that

𝐺


2
(𝜀, 𝑧
𝜃
)


|𝜀|
3/2

= |𝜀|
−3/2 sup
‖𝑣‖=1


(𝐺


2
(𝜀, 𝑧
𝜃
) , 𝑣)



= |𝜀|
2(4−𝑝)/(𝑝−2)−3/2

× sup
‖𝑣‖=1


∫ 𝑏 (

𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
)
𝑧𝜃



2
) 𝑧
𝜃
𝑣



≤ 𝐶
0|𝜀|
2(4−𝑝)/(𝑝−2)−3/2

× sup
‖𝑣‖=1

{(∫


𝑏 (

𝑥

𝜀
)



2
𝑧𝜃



4
)

1/2

×(∫


𝑏 (

𝑥

𝜀
)



2
𝑧𝜃



2

|𝑣|
2
)

1/2

}

≤ 𝐶
1|𝜀|
2(4−𝑝)/(𝑝−2)−3/2

× sup
‖𝑣‖=1



(∫


𝑏 (

𝑥

𝜀
)



2

)

1/2

(∫


𝑏 (

𝑥

𝜀
) 𝑣



2

)

1/2

.

(67)
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Moreover, recall that 𝑏(𝑥) ∈ 𝐿
2 is bounded and use Hölder

inequality, we get

𝐺


2
(𝜀, 𝑧
𝜃
)


|𝜀|
3/2

≤ 𝐶
1|𝜀|
2(4−𝑝)/(𝑝−2)

, (68)

since 4 > 𝑝, we have

lim
𝜀→0

𝐺


2
(𝜀, 𝑧
𝜃
)

𝜀3/2
= 0. (69)

From the above arguments, we know

lim
𝜀→0

𝐺

(𝜀, 𝑧
𝜃
)

𝜀3/2
= 0, (70)

and the proof is completed.

Proof of Theorem 2. By the exponential decay property of
proposition 𝑈, it is easy to check that 𝐼



0
is a compact

perturbation of the identity map, and so it is an index-
0 Fredholm operator. By Proposition 4, we know that 𝑍

is a nondegenerate 3-dimensional critical manifold. From
Lemmas 7 to 9, we know all the assumptions of Lemma 5 are
satisfied. Since𝑈has a strict (global)maximumat𝑥 = 0, Γhas
a strict (global) maximum or minimum at 𝜃 = 0 depending
on the sign of ∫(𝑎(𝑥) −𝐴). By the abstract theorem, we know
the existence of family solutions {(𝜀, 𝑢

𝜀
)} ⊂ R × 𝐻

1
(R3). If

2 < 𝑝 < 2+4/3, it is easy to check that𝜓
𝜀
→ 0 as 𝜀 → 0.

Remark 10. The hypothesis ∫(𝑎(𝑥) − 𝐴) ̸= 0 is used to apply
Lemma 5 and has been already used in [4, 7]. If ∫(𝑎(𝑥)−𝐴) is
identically zero, we can not conclude that there exist critical
points of 𝐼

𝜀
.

In the following we prove Theorem 3.

Lemma 11. Assume (𝑎
2
) and (𝑏

1
) are satisfied.Then𝐺,𝐺, and

𝐺
 are continuous in (𝜀, 𝑢).

Proof . Keeping the exponentially decay property of 𝑈 in
mind, the continuity of𝐺

1
,𝐺
1
, and𝐺

1
in (𝜀, 𝑢) can be proved

similarly as in [7].We can also repeat the proof in Lemma 7 to
know the continuity of𝐺

2
.Thus the lemma is concluded.

Lemma 12. Assume (𝑎
2
) and (𝑏

1
) are satisfied. Define

Γ (𝜃) = −
𝐿

𝑝 + 1
∫ |𝑥|
−𝛾
𝑈
𝑝+1

(𝑥 + 𝜃) . (71)

Then for all 𝜃 ∈ 𝑅
3, we have

lim
𝜀→0

𝐺 (𝜀, 𝑧
𝜃
)

𝜀𝛾
= Γ (𝜃) , lim

|𝜃|→∞

Γ (𝜃) = 0,

lim
𝜀→0

𝐺

(𝜀, 𝑧
𝜃
)

𝜀𝛾/2
= 0.

(72)

Proof. As we know

𝐺
1
(𝜀, 𝑧
𝜃
) = −

𝜀
𝛾

𝑝 + 1
∫(𝑎 (

𝑥

𝜀
) − 𝐴)

|𝑥|
𝛾

𝜀𝛾

𝑈
𝑝+1

(𝑥 + 𝜃)

|𝑥|
𝛾

.

(73)

By assumption (𝑎
2
) and the decay property of 𝑈,

lim
𝜀→0

𝐺
1
(𝜀, 𝑧
𝜃
)

𝜀𝛾
= Γ (𝜃) . (74)

Moreover, by the boundedness of 𝑧
𝜃
, we know

𝐺2 (𝜀, 𝑧𝜃)
 =

𝜀
2(4−𝑝)/(𝑝−2)

4

× ∫ 𝑏 (𝑥) 𝐸
1
(𝑏 (𝑥)

𝑧𝜃


2
)
𝑧𝜃



2

≤
𝜀
2(4−𝑝)/(𝑝−2)

4
(∫


𝑏 (

𝑥

𝜀
)
𝑧𝜃



2


2

)

≤ 𝐶
0|𝜀|
2(4−𝑝)/(𝑝−2)+3

.

(75)

Since 3 > 𝛾 we obtain

lim
𝜀→0

𝐺 (𝜀, 𝑧
𝜃
)

𝜀𝛾
= Γ (𝜃) . (76)

To study the property of 𝐺(𝜀, 𝑧
𝜃
), since 𝛾 < 3 and 𝑈

exponentially decays at infinity, from the proof in [7], we
know

lim
𝜀→0

𝐺


1
(𝜀, 𝑧
𝜃
)

𝜀𝛾/2
= 0. (77)

On the other hand, from the boundedness of𝑍
𝜃
and 𝑏(𝑥), we

have

𝐺


2
(𝜀, 𝑧
𝜃
)

= |𝜀|
2(4−𝑝)/(𝑝−2)

× sup
‖𝑣‖=1


∫ 𝑏 (

𝑥

𝜀
)𝐸
1
(𝑏 (

𝑥

𝜀
)
𝑧𝜃



2
) 𝑧
𝜃
𝑣



≤ 𝐶
0|𝜀|
2(4−𝑝)/(𝑝−2)

× sup
‖𝑣‖=1

{(∫


𝑏 (

𝑥

𝜀
)



2
𝑧𝜃



4
)

1/2

×(∫


𝑏 (

𝑥

𝜀
)



2
𝑧𝜃



2

|𝑣|
2
)

1/2

}

≤ 𝐶
1|𝜀|
2(4−𝑝)/(𝑝−2)

× sup
‖𝑣‖=1



(∫


𝑏 (

𝑥

𝜀
)



2

)

1/2

(∫ |𝑣|
2
)

1/2


≤ 𝐶
2|𝜀|
2(4−𝑝)/(𝑝−2)+3/2

.

(78)

Since 𝛾 < 3, we get

lim
𝜀→0

𝐺


2
(𝜀, 𝑧
𝜃
)

𝜀𝛾/2
= 0. (79)

From the above arguments, we know

lim
𝜀→0

𝐺

(𝜀, 𝑧
𝜃
)

𝜀𝛾/2
= 0. (80)
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Proof of Theorem 3. From Lemmas 11 and 12, we know
that all the assumptions of Lemma 5 are satisfied. Since
lim
|𝜃|→∞

Γ(𝜃) = 0 and Γ(0) ̸= 0, we know that there is 𝑅 > 0

such that either

min
|𝜃|=𝑅

Γ (𝜃) > Γ (0) or max
|𝜃|=𝑅

Γ (𝜃) < Γ (0) . (81)

By the abstract Theorem 2, we know the existence of family
solutions {(𝜀, 𝑢

𝜀
)} ⊂ R ×𝐻

1
(R3). If 2 < 𝑝 < 2 + 4/3, it is easy

to check that (𝜙
𝜀
, 𝜓
𝜀
) → 0 as 𝜀 → 0.
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