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We analyze the dynamics of the forced singularly perturbed differential equations of Duffing’s type with a potential that is bounded
from above. We explain the appearance of the large frequency nonlinear oscillations of the solutions. It is shown that the frequency
can be controlled by a small parameter at the highest derivative.

1. Introduction

Duffing’s equation is regarded as one of the most important
differential equations because it appears in various physical
and engineering problems. For example, the periodically
forced Duffing oscillator

𝑦

+ 𝛿𝑦

+ 𝛼𝑦 + 𝛽𝑦

3
= 𝛾 cos𝜔𝑡 (1)

exhibits a wide variety of interesting phenomena which are
fundamental to the behavior of nonlinear dynamical systems,
such as regular and chaotic motions (see, e.g., [1–5] and
the references therein; we also refer to the classical book
of Nayfeh and Mook [6]). In this context, usually two-well
potential of an unperturbed system was considered (𝛽 > 0;
see also [7–9]) by using analytical methods and numerical
simulations.

In this case, the undamped (𝛿 = 0) and unperturbed (𝛾 =

0) Duffing’s oscillator can basically exhibit two distinct types
of steady-state oscillations, namely,

(i) in-well, small orbit dynamics, where the system state
remains within the potential well centred at a stable
equilibrium point (center);

(ii) cross-well, large orbit dynamics, whose trajecto-
ries surround the three equilibrium points (saddle
between two centers).

In both cases, under periodic external excitation, a chaotic
motion can be observed when the control parameters are
changed.

On the contrary, in this paper we consider that 𝛽 < 0

and a potential tends to −∞ for |𝑦| → ∞, so the object
can escape to infinity because of the bounded from above
potential. There exist several atomic or subatomic situations
in quantum physics where the total energy governing the
particles contains an approximately square-well potential
which is bounded from above; see, for example, [10] and
discussion in [11]. For example, recently it has been found that
the meson spectroscopy is better described by “confining”
potential which is bounded from above; for details and
references, see [10].

This paper concentrates on the mathematical aspects
of systems with a potential that is bounded from above;
more concretely, we focus our attention on the existence
of nonlinear oscillations in the context of saddle-center
bifurcation in the dynamical system describing the singularly
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perturbed forced oscillator of Duffing’s type with a nonlinear
restoring and a nonperiodic external driving force

𝜖
2
(𝑎
2

(𝑡) 𝑦

)


+ 𝑓 (𝑦) = 𝑚 (𝑡) , 0 < 𝜖 ≪ 1 (2)

or rewriting to an equivalent set of the three first-order
autonomous equations:

𝜖𝑦

=

𝑤

𝑎 (𝑡)
,

𝜖𝑤

=

𝑚 (𝑡)

𝑎 (𝑡)
−

𝑓 (𝑦)

𝑎 (𝑡)
− 𝜖

𝑎

(𝑡)

𝑎 (𝑡)
𝑤,

𝑡

= 1

(3)

with potential with two-barrier structure. Here 𝑎 and 𝑚 are
the 𝐶
1 functions on the interval ⟨𝑡

𝐵
, 𝑡
𝐸
⟩, 𝑎 is positive and 𝑓

is a 𝐶
1 function on R.

We show that the singular perturbation parameter 𝜖

play role modeling tool for the frequency control of the
nonlinear oscillations arising in these systems (relationship
(33)). Finally we prove that under some assumptions the
solutions of (2) will rapidly oscillate, with the frequency of
the oscillations increasing unboundedly as 𝜖 → 0

+.
System (3) is an example of a singularly perturbed system,

because in the limit 𝜖 → 0
+, it does not reduce to a

differential equation of the same type, but to an algebraic-
differential reduced system:

0 =
𝑤

𝑎 (𝑡)
,

0 =
𝑚 (𝑡)

𝑎 (𝑡)
−

𝑓 (𝑦)

𝑎 (𝑡)
,

𝑡

= 1.

(4)

Another way to study the singular limit 𝜖 → 0
+ is by

introducing the new independent variable 𝜏 = 𝑡/𝜖 which
transforms (3) to the system

𝑑𝑦

𝑑𝜏
=

𝑤

𝑎 (𝑡)
,

𝑑𝑤

𝑑𝜏
=

𝑚 (𝑡)

𝑎 (𝑡)
−

𝑓 (𝑦)

𝑎 (𝑡)
− 𝜖

𝑎

(𝑡)

𝑎 (𝑡)
𝑤,

𝑑𝑡

𝑑𝜏
= 𝜖.

(5)

Taking the limit 𝜖 → 0
+, we obtain the so-called associated

system ([12])

𝑑𝑦

𝑑𝜏
=

𝑤

𝑎 (𝑡)
, (6)

𝑑𝑤

𝑑𝜏
=

𝑚 (𝑡)

𝑎 (𝑡)
−

𝑓 (𝑦)

𝑎 (𝑡)
, (7)

𝑑𝑡

𝑑𝜏
= 0; that is, 𝑡 = 𝑡

∗
= constant, (8)

in which 𝑡 plays the role of a parameter.
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Figure 1: The critical manifold 𝑆.

Both scalings agree on the level of phase space structure
when 𝜖 ̸= 0 but offer very different perspectives since they
differ radically in the limit when 𝜖 = 0. The main goal
of singular perturbation theory is to use these limits to
understand structure in the full system when 𝜖 ̸= 0.

The critical manifold 𝑆 is defined as a solution of the
reduced system; that is,

𝑆 := {(𝑡, 𝑦, 𝑤) : 𝑡 ∈ ⟨𝑡
𝐵
, 𝑡
𝐸
⟩ , 𝑓 (𝑦) = 𝑚 (𝑡) , 𝑤 = 0} (9)

which corresponds to a set of equilibria for the associated
system (6), (7), and (8).

2. Saddle-Center Bifurcations of
Associated System

We assume the following.

(A1) The criticalmanifold is S-shaped curvewith two folds;
that is, it can be written in the form 𝑡 = 𝜑(𝑦), 𝑡 ∈

⟨𝑡
𝐵
, 𝑡
𝐸
⟩, and the function 𝜑 has precisely two critical

points, one nondegenerate minimum 𝑦SC1 and one
nondegenerate maximum 𝑦SC2; let 𝑦SC1 < 𝑦SC2. Thus,
the critical manifold can be broken up into three
pieces 𝑆

𝑏
, 𝑆
𝑚
, and 𝑆

𝑎
, separated by the minimum and

maximum (Figure 1). These three pieces are defined
as follows:

𝑆
𝑏
= {(𝑦, 𝜑 (𝑦) , 0) : 𝑦 < 𝑦SC1} ,

𝑆
𝑚

= {(𝑦, 𝜑 (𝑦) , 0) : 𝑦SC1 < 𝑦 < 𝑦SC2} ,

𝑆
𝑎
= {(𝑦, 𝜑 (𝑦) , 0) : 𝑦SC2 < 𝑦} .

(10)

(A2) Consider 𝜑(𝑦) ̸= 0 for 𝑦 ̸= 𝑦SC1, 𝑦SC2.
(A3) Consider (𝑑𝑓/𝑑𝑦)(𝑦) > 0 for every (𝑡, 𝑦, 0) ∈ 𝑆

𝑚
and

(𝑑𝑓/𝑑𝑦)(𝑦) < 0 for every (𝑡, 𝑦, 0) ∈ 𝑆
𝑎
∪ 𝑆
𝑏
.

Due to the assumption (A3), the situation considered
here substantially differs from the situation in [13], where
two pieces of critical manifold, namely, 𝑆

𝑎
and 𝑆

𝑏
, are not

normally hyperbolic, and large orbit oscillations that encircle
all the three pieces of critical manifold were studied (for the
definition of a normal hyperbolicity of critical manifold see,
e.g., [12]). In this paper, the pieces 𝑆

𝑎
and 𝑆

𝑏
of the critical
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manifold 𝑆 are normally hyperbolic, and thus the system
under consideration allows another type of nonlinear oscilla-
tions, namely, small orbit oscillations around themiddle piece
𝑆
𝑚
of critical manifold 𝑆. For comparison, see Figure 3(a) and

Figure 5.
Let 𝑡SC1 = 𝜑(𝑦SC1), 𝑡SC2 = 𝜑(𝑦SC2). Denote by

𝑢
1
(𝑡) = 𝜑

−1

(𝑡) : 𝑡 ∈ ⟨𝑡
𝐵
, 𝑡SC2⟩ , 𝑦SC2 ≤ 𝑢

1
(𝑡) ,

𝑢
2
(𝑡) = 𝜑

−1

(𝑡) : 𝑡 ∈ ⟨𝑡SC1, 𝑡SC2⟩ , 𝑦SC1 ≤ 𝑢
2
(𝑡) ≤ 𝑦SC2,

𝑢
3
(𝑡) = 𝜑

−1

(𝑡) : 𝑡 ∈ ⟨𝑡SC1, 𝑡𝐸⟩ , 𝑢
3
(𝑡) ≤ 𝑦SC1.

(11)

The equations

𝑓 (𝑦) = 𝑚 (𝑡) , 𝑤 = 0 (12)

have three solutions for 𝑦, 𝑤 if 𝑡
∗

∈ (𝑡SC1, 𝑡SC2) and one if
𝑡
∗

∈ ⟨𝑡
𝐵
, 𝑡SC1) and 𝑡

∗
∈ (𝑡SC2, 𝑡𝐸⟩. Thus the associated system

(6), (7), 𝑡 = 𝑡
∗

= constant has three equilibria (two saddles,
one center) for 𝑡

∗
∈ ⟨𝑡
𝐵
, 𝑡SC1) and one equilibrium (saddle)

for 𝑡
∗

∈ ⟨𝑡
𝐵
, 𝑡SC1) and 𝑡

∗
∈ (𝑡SC2, 𝑡𝐸⟩; the eigenvalues of the

jacobian are

𝜆
1,2

(𝑡
∗
, 𝑦, 𝑤) = ± 𝑎

−1
(𝑡
∗
)√−

𝑑𝑓

𝑑𝑦
(𝑦). (13)

Thus, the pieces 𝑆
𝑎
and 𝑆

𝑏
of critical manifold 𝑆 are the

normally hyperbolic manifolds. The points (𝑡SC1, 𝑦SC1, 0) and
(𝑡SC2, 𝑦SC2, 0) of 𝑆 are the cusps of the codimension two ([14,
15]), and the corresponding bifurcation is known as saddle-
center bifurcation ([16]) (Figure 2).

More precisely, at the point 𝑡
∗

= 𝑡SC1, the birth of
the saddle and the center occurs. At 𝑡

∗
= 𝑡SC2, the left

side center and the saddle coalesce. There is a unique 𝑡
∗

0
∈

(𝑡SC1, 𝑡SC2), such that between hyperbolic points (saddles)
there is a heteroclinic connection. The homoclinic loop of
one hyperbolic point surrounds the corresponding elliptic
(center) one for every 𝑡

∗
∈ (𝑡SC1, 𝑡SC2), 𝑡

∗
̸= 𝑡
∗

0
.

Weuse the level surfaces𝐻𝜖(𝑡, 𝑦, 𝑤) = 𝐻
𝜖
(𝑡) of the energy

function 𝐻
𝜖,

𝐻
𝜖
(𝑡, 𝑦, 𝑤) =

1

2
𝑤
2
+ 𝑉 (𝑡, 𝑦) ,

𝑉 (𝑡, 𝑦) = ∫

𝑦

0

𝑓 (𝑠) 𝑑𝑠 − 𝑚 (𝑡) 𝑦,

(14)

to characterize the trajectories of (3). These surfaces in
(𝑡, 𝑦, 𝑤)-space are defined by

𝑤 = ± (2 (𝐻
𝜖

(𝑡) − 𝑉 (𝑡, 𝑦)))
1/2 (15)

extending it as long as 𝑤 remains real. On the intervals
⟨𝑡
𝐵
, 𝑡SC1) and (𝑡SC2, 𝑡𝐸⟩, there is a motion across a single

potential barrier, and on the interval (𝑡SC1, 𝑡SC2), there is
double barrier with a well in between.

The derivative of 𝐻𝜖(𝑡) along any solution path of (3) is

𝐻
𝜖


(𝑡) = 𝑤
𝜖
𝑤
𝜖


+ 𝑓 (𝑦
𝜖
) 𝑦
𝜖


− [𝑚 (𝑡) 𝑦
𝜖
]


= 𝑤
𝜖
[−

𝑓 (𝑦
𝜖
)

𝜖𝑎
+

𝑚 (𝑡)

𝜖𝑎
−

𝑎


𝑎
𝑤
𝜖
]

+ 𝑓 (𝑦
𝜖
) 𝑦
𝜖


− [𝑚 (𝑡) 𝑦
𝜖
]


= −
𝑎

(𝑡)

𝑎 (𝑡)
(𝑤
𝜖
)
2

− 𝑚


(𝑡) 𝑦
𝜖
.

(16)

The main objective of this paper is to prove the strongly
nonlinear oscillations on the interval (𝑡SC1, 𝑡SC2) as possible
scenario of behavior of the solutions for problem (2). For this
reason, we rewrite the differential equation (2) in the system
form

𝑦

=

𝑤

𝜖𝑎 (𝑡)
,

(𝑎 (𝑡) 𝑤)

=

𝑚 (𝑡)

𝜖
−

𝑓 (𝑦)

𝜖
.

(17)

Then, we make a change of variables from rectangular
coordinates (𝑦, 𝑤) to the dynamic polar coordinates (𝑟, 𝛾)

centered at (𝑢
2
(𝑡), 0) defined by the equations

𝑦 = 𝑢
2
(𝑡) + 𝑟 cos 𝛾, 𝑎 (𝑡) 𝑤 = −𝑟 sin 𝛾, (18)

and let us consider the system (17) on the interval (𝑡SC1, 𝑡SC2)
in these new coordinates.The function 𝑢

2
(𝑡) acting in the first

polar transform equation corresponds to the middle piece
𝑆
𝑚
of critical manifold 𝑆. At first, we derive the differential

equation for polar angle 𝛾, which is crucial for an analysis of
nonlinear oscillations in this system. Dividing formally the
second transform equation by the first, we get

tan 𝛾 = −
𝑎𝑤

𝑦 − 𝑢
2

. (19)

Differentiating this equation with respect to 𝑡, we consecu-
tively have

1

cos2𝛾
𝛾

= −[

𝑎𝑤

𝑦 − 𝑢
2

]



=
𝑎𝑤𝑦


(𝑦 − 𝑢
2
)
2
−

(𝑎𝑤)


𝑦 − 𝑢
2

−
𝑎𝑤𝑢


2

(𝑦 − 𝑢
2
)
2
.

(20)

Finally, using (17) and (18), we obtain the following differ-
ential equation for 𝛾:

𝛾

=

1

𝜖
[

1

𝑎2 (𝑡)
sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 +

𝜖𝑢


2
(𝑡)

𝑟𝜖 (𝑡)
sin 𝛾] , (21)

where the radius is as follows:

𝑟
𝜖

(𝑡) = √(𝑦 − 𝑢
2
)
2

+ (𝑎 (𝑡) 𝑤)
2
,

𝑓 (𝑡, 𝑦) =
𝑓 (𝑦) − 𝑚 (𝑡)

𝑦 − 𝑢
2
(𝑡)

,

𝑓 (𝑡, 𝑢
2
(𝑡))

def
= lim
𝑦→𝑢

2

𝑓 (𝑦) − 𝑚 (𝑡)

𝑦 − 𝑢
2
(𝑡)

=
𝑑𝑓

𝑑𝑦
(𝑢
2
(𝑡)) .

(22)
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(a) (b)

Figure 2: Creation and extinction (inmirrormode) of a separatrix loop in the saddle-center bifurcation at 𝑡∗ = 𝑡SC1 and 𝑡
∗
= 𝑡SC2, respectively.
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Figure 3: Solution of (27), (28), 𝜖2 = 0.0224 on ⟨−2.45, 2.1⟩ (a); solution of (27), (28), 𝜖2 = 0.0225 on ⟨−2.45, −1.25⟩ (b).

Now let 𝐾 be a compact subset of (𝑡SC1, 𝑡SC2). On the
periodic orbits (for fixed 𝑡), we define the minimal radius:

𝑟
𝜖

min (𝐾)
def
= min
𝑡∈𝐾

𝑟
𝜖

(𝑡)

= min
𝑡∈𝐾

{𝑢
2
(𝑡) − 𝑦

𝜖

𝐿
(𝑡) , 𝑦
𝜖

𝑅
(𝑡) − 𝑢

2
(𝑡) ,

√2𝑎 (𝑡)√𝐻𝜖 (𝑡) − 𝑉 (𝑡, 𝑢
2
(𝑡))} ,

(23)

where 𝑦
𝜖

𝐿
(𝑡) and 𝑦

𝜖

𝑅
(𝑡) (𝑦𝜖

𝐿
< 𝑦
𝜖

𝑅
) are the solutions of the

equation

𝐻
𝜖

(𝑡) − 𝑉 (𝑡, 𝑦) = 0, 𝑡 ∈ (𝑡SC1, 𝑡SC2) (24)

lying on the periodic orbit.
Obviously, 𝑦𝜖

𝑖
(𝑡) → 𝑢

2
(𝑡SC1) for 𝑡 → 𝑡

+

SC1 and 𝑦
𝜖

𝑖
(𝑡) →

𝑢
2
(𝑡SC2) for 𝑡 → 𝑡

−

SC2, 𝑖 = 𝐿, 𝑅.
Let 𝛿(𝑡) be a positive function such that

𝛿 (𝑡) + 𝑉 (𝑡, 𝑢
2
(𝑡)) < min {𝑉 (𝑡, 𝑢

1
(𝑡)) , 𝑉 (𝑡, 𝑢

3
(𝑡))} (25)

on 𝐾.
Now we make the following additional assumption.

(A4) The total energy 𝐻
𝜖
(𝑡) of motion described by (2)

satisfies
𝛿 (𝑡) + 𝑉 (𝑡, 𝑢

2
(𝑡)) ≤ 𝐻

𝜖

(𝑡)

< min {𝑉 (𝑡, 𝑢
1
(𝑡)) , 𝑉 (𝑡, 𝑢

3
(𝑡))}

(26)

on a compact subset 𝐾 of (𝑡SC1, 𝑡SC2).

If a total energy of motion described by (2) satisfies the
assumption (A4) on every compact subset 𝐾 of (𝑡SC1, 𝑡SC2),
then 𝑦

𝜖

𝑖
(𝑡) → 𝑢

2
(𝑡SC1) for 𝑡 → 𝑡

+

SC1, 𝑡 ∈ 𝐾 and 𝑦
𝜖

𝑖
(𝑡) →

𝑢
2
(𝑡SC2) for 𝑡 → 𝑡

−

SC2, 𝑡 ∈ 𝐾, and 𝑖 = 𝐿, 𝑅.
We precede the main result on the existence of nonlinear

oscillations of the solutions for (2) on the interval (𝑡SC1, 𝑡SC2)
by important example.

Example 1. Consider Duffing’s oscillator with linear
excitation

𝜖
2
𝑦

+ 3𝑦 − 𝑦

3
= 𝑡 (27)

for 𝜖2 = 0.0224 subject to the initial conditions

𝑦
𝜖

(−2.45) = −1.9, 𝑦
𝜖


(−2.45) = 11.16 (28)

on the interval ⟨−2.45, 2.1⟩.



Abstract and Applied Analysis 5

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)

−3 −2 −1 0 1 2 3 4
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

(c)

−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

5

(d)

−6

−4

−2

0

2

4

6

−3 −2 −1 0 1 2 3

(e)

−10

−8

−6

−4

−4

−2

0

2

4

6

8

10

−3 −2 −1 0 1 2 3

(f)

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−10

−8

−6

−4

−2

0

2

4

6

8

10

(g)

Figure 4: Phase portraits for 𝑡 = (from top-left to bottom-right): −2.5 (𝑡 < 𝑡SC1); −2 (𝑡 = 𝑡SC1); −1 (𝑡SC1 < 𝑡 < 𝑡SC2); 0 (heteroclinic
connections between two saddles of associated system, 𝑡∗

0
= 0); 1; 2 (𝑡 = 𝑡SC2); 2.5 (𝑡 > 𝑡SC2).

In our case 𝑡
𝐵

= −2.45, 𝑡
𝐸

= 2.1, 𝑎 ≡ 1, 𝑓(𝑦) =

3𝑦−𝑦
3
, 𝑚(𝑡) = 𝑡, 𝑡SC1 = −2, 𝑡SC2 = 2, 𝑦SC1 = −1, 𝑦SC2 = 1,

and it is not difficult to check that the assumptions (A1)–
(A3) hold.Numerical results obtained from (27) subject to the
initial conditions (28) using the software packageMATLAB 7
are shown in Figure 3(a). These oscillations are very sensitive
on the value of singular perturbation parameter 𝜖. Figure 3(b)
shows the solution of (27), (28) for 𝜖2 = 0.0225.

In order to facilitate the understanding of the qualitative
behaviors of this dynamical system, we draw the (𝑦, 𝑤)-
phase portraits at the relevant fixed value of time 𝑡 (Figure 4).
For comparison, Figure 5 shows the solution of initial value
problem

𝜖
2
𝑦

− 3𝑦 + 𝑦

3
= −𝑡,

𝑦
𝜖

(−4) = 3.1821, 𝑦
𝜖


(−4) = 0

(29)

with twin-( or single-) well potential for 𝜖
2
= 0.00354 on the

interval ⟨𝑡
𝐵
, 𝑡
𝐸
⟩ = ⟨−4, 4⟩. This type of problems has been

studied in [13].
Now we will analyze the solution of (27), (28) after the

time 𝑡SC2. The total energy (14) for (27) is

𝐻
𝜖
(𝑡, 𝑦, 𝑤) =

1

2
𝑤
2
+

3

2
𝑦
2
−

1

4
𝑦
4
+ 𝑡𝑦, (30)

and for its derivative along the solution given by (16), we
obtain

𝐻
𝜖


(𝑡) = −𝑦
𝜖

(𝑡) . (31)

Due to the oscillations around 𝑢
2
(𝑡) in left neighborhood of

𝑡SC2 between 𝑢
1
(𝑡) and 𝑢

3
(𝑡), that is, 𝑦𝜖 > 0, the total energy

decreases (dissipation) in right neighborhood of 𝑡SC2,

𝐻
𝜖


(𝑡) = −𝑦
𝜖

(𝑡) < 0. (32)
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Figure 5: Solution of (29), 𝜖2 = 0.00354 on ⟨−4, 4⟩.

As it follows from the shape of potential 𝑉 and the phase
portrait for 𝑡 > 𝑡SC2, 𝑦

𝜖
(𝑡
∗
) → ∞ for 𝜖 → 0

+ and 𝑡
∗

∈

(𝑡SC2, 𝑡𝐸⟩.

3. Analysis of Solutions Lying on the Periodic
Orbits: Main Result

Now we formulate the theorem on nonlinear oscillations
of solutions of (2) for the motion with total energy 𝐻

𝜖
(𝑡)

satisfying the assumption (A4). Moreover, we show that
the parameter 𝜖 plays role modeling tool for the frequency
control of the nonlinear oscillations.

Denote by 𝑠
𝜖
the spacing between two successive zero

numbers of the function 𝑦
𝜖
− 𝑢
2
on 𝐾, where 𝑦

𝜖 is a solution
of (2).

Theorem 2. Under the assumptions (A1)–(A4), the solutions
of problem (2) oscillate on the compact set 𝐾, 𝐾 ⊂ (𝑡SC1, 𝑡SC2)
between 𝑢

1
(𝑡) and 𝑢

3
(𝑡) and

𝜖
𝜋

𝜇
2
(𝐾, 𝜖
0
)

≤ 𝑠
𝜖
≤ 𝜖

𝜋

𝜇
1
(𝐾, 𝜖
0
)
, 𝜖 ∈ (0, 𝜖

0
] , (33)

where 𝜇
1
(𝐾, 𝜖
0
) and 𝜇

2
(𝐾, 𝜖
0
) are the positive constants inde-

pendent of the singular perturbation parameter 𝜖, 𝜖 ∈ (0, 𝜖
0
].

Proof. To obtain the oscillations and the estimate of their
frequencies, we analyze the differential equation (21); that is,

𝛾

=

1

𝜖
[

1

𝑎2 (𝑡)
sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 +

𝜖𝑢


2
(𝑡)

𝑟𝜖 (𝑡)
sin 𝛾] . (34)

Taking into consideration the fact that 𝑟
𝜖

min(𝐾) ≥ Δ > 0

independently of parameter 𝜖 due to the assumption (A4), we
can estimate that



𝜖𝑢


2
(𝑡)

𝑟𝜖 (𝑡)
sin 𝛾



≤ 𝜖


𝑢


2
(𝑡)



𝑟
𝜖

min (𝐾)
≤ 𝜖


𝑢


2
(𝑡)


Δ → 0

+ (35)

for 𝜖 → 0
+. Further for 𝑡 ∈ 𝐾 and 𝑦 ∈ (𝑢

3
(𝑡), 𝑢
1
(𝑡)), we

have 𝑓(𝑡, 𝑦) > 0. Thus for sufficiently small values of the
singular perturbation parameter 𝜖, say, 𝜖 ∈ (0, 𝜖

0
], there exist

the positive constants 𝜇
1
(𝐾, 𝜖
0
), 𝜇
2
(𝐾, 𝜖
0
), and 𝜇

1
(𝐾, 𝜖
0
) <

𝜇
2
(𝐾, 𝜖
0
):

𝜇
1
(𝐾, 𝜖
0
)

= min[
1

𝑎2 (𝑡)
sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 +

𝜖
0
𝑢


2
(𝑡)

𝑟𝜖 (𝑡)
sin 𝛾;

𝑡 ∈ 𝐾, 𝑦 ∈ ⟨𝑦
0

𝐿
(𝑡) , 𝑦
0

𝑅
(𝑡)⟩ , 𝛾 ∈ ⟨0, 2𝜋⟩] ,

𝜇
2
(𝐾, 𝜖
0
)

= max[
1

𝑎2 (𝑡)
sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 +

𝜖
0
𝑢


2
(𝑡)

𝑟𝜖 (𝑡)
sin 𝛾;

𝑡 ∈ 𝐾, 𝑦 ∈ ⟨𝑦
0

𝐿
(𝑡) , 𝑦
0

𝑅
(𝑡)⟩ , 𝛾 ∈ ⟨0, 2𝜋⟩] ,

(36)

where 𝑦
0

𝐿
(𝑡), and 𝑦

0

𝑅
(𝑡) are the roots of the equation

min {𝑉 (𝑡, 𝑢
1
(𝑡)) , 𝑉 (𝑡, 𝑢

3
(𝑡))} − 𝑉 (𝑡, 𝑦) = 0, (37)

lying on the periodic orbit.
Putting (35) into the definitions of constants 𝜇

1
(𝐾, 𝜖
0
),

and 𝜇
2
(𝐾, 𝜖
0
), we obtain that

𝜇
1
(𝐾, 𝜖
0
)

≥ min [
1

𝑎2 (𝑡)
sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 − 𝜖

0


𝑢


2
(𝑡)


Δ;

𝑡 ∈ 𝐾, 𝑦 ∈ ⟨𝑦
0

𝐿
(𝑡) , 𝑦
0

𝑅
(𝑡)⟩ , 𝛾 ∈ ⟨0, 2𝜋⟩] > 0,

𝜇
2
(𝐾, 𝜖
0
)

≤ max [
1

𝑎2 (𝑡)
sin2𝛾 + 𝑓 (𝑡, 𝑦) cos2𝛾 + 𝜖

0


𝑢


2
(𝑡)


Δ;

𝑡 ∈ 𝐾, 𝑦 ∈ ⟨𝑦
0

𝐿
(𝑡) , 𝑦
0

𝑅
(𝑡)⟩ , 𝛾 ∈ ⟨0, 2𝜋⟩] > 0

(38)

for sufficiently small value of upper bound 𝜖
0
of singular

perturbation parameter 𝜖.
Further, if 𝜖(1)

0
< 𝜖
(2)

0
, then

𝜇
1
(𝐾, 𝜖
(1)

0
) > 𝜇
1
(𝐾, 𝜖
(2)

0
) , (39)

and conversely

𝜇
2
(𝐾, 𝜖
(1)

0
) < 𝜇
2
(𝐾, 𝜖
(2)

0
) . (40)

Thus we have the inequality

𝜇
1
(𝐾, 𝜖
0
) 𝜖
−1

≤ 𝛾

≤ 𝜇
2
(𝐾, 𝜖
0
) 𝜖
−1

. (41)
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Integrating this inequality with respect to the variable 𝑡

between two successive zeros (𝑗th and (𝑗 + 1)th, 𝑗 = 1, 2, . . .)
of 𝑦𝜖(𝑡) − 𝑢

2
(𝑡), 𝑡 ∈ 𝐾, we obtain immediately the lower and

upper bound of their spacing 𝑠
𝜖
. Indeed,

∫

zero(𝑗+1)th

zero(𝑗)th

𝜇
2
(𝐾, 𝜖
0
)

𝜖
𝑑𝑡 ≥ ∫

zero(𝑗+1)th

zero(𝑗)th
𝛾

𝑑𝑡

≥ ∫

zero(𝑗+1)th

zero(𝑗)th

𝜇
1
(𝐾, 𝜖
0
)

𝜖
𝑑𝑡,

𝜇
2
(𝐾, 𝜖
0
)

𝜖
𝑠
𝜖
≥ 𝜋 ≥

𝜇
1
(𝐾, 𝜖
0
)

𝜖
𝑠
𝜖
.

(42)

Hence,

𝜖
𝜋

𝜇
2
(𝐾, 𝜖
0
)

≤ 𝑠
𝜖
≤ 𝜖

𝜋

𝜇
1
(𝐾, 𝜖
0
)
, 𝜖 ∈ (0, 𝜖

0
] . (43)

4. Conclusion

The frequency of nonlinear oscillations of Duffing’s type
equations arising via saddle-center bifurcation in associated
system may be controlled by the singular perturbation
parameter 𝜖.These oscillations are very sensitive on the initial
conditions.
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