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We investigate the Krätzel transform on certain class of generalized functions. We propose operations that lead to the construction
of desired spaces of generalized functions. The Krätzel transform is extended and some of its properties are obtained.

1. Introduction

In recent years, integral transforms of Bohemian have com-
prised an active area of research. Several integral transforms
are extended to various spaces of Bohemian, especially, that
permit a factorization property of Fourier convolution type.

On the other hand, several integral transforms that have
not permitted a factorization property of Fourier convolution
type are also extended to various spaces of Bohemian. In the
sequence of these integral transforms, the Krätzel transform
[1]

(K𝜌V𝑓) (𝑥) = ∫
R
+

Z
V
𝜌
(𝑥𝑦) 𝑓 (𝑦) 𝑑𝑦, (1)

where

Z
V
𝜌
(𝑥𝑦) = ∫

R
+

𝑡V−1𝑒−𝑡
𝜌
−𝑥𝑦/𝑡 𝑑𝑡, (2)

𝜌 > 0 (∈ N), V ∈ C, 𝑥 > 0 is extended to certain
space of ultra-Bohemian, denoted by S+(𝑙

𝑟, 𝛼, (𝛼𝑖), 𝑎) and
S+(𝑙
𝑟, 𝛼, {𝛼𝑖}, 𝑎), 1 ≤ 𝑟 ≤ ∞, respectively.
Another form of the Krätzel transform was initially

introduced in [2], and defined as a generalization of the
Laplace transform in [3] as

(𝑙(𝜌)V 𝑓) (𝑥) = ∫
R
+

𝜆(𝜌)V (𝑥𝑦) 𝑓 (𝑦) 𝑑𝑦, (3)

where

𝜆(𝜌)V (𝑥) =
(2𝜋)((𝜌−1)/2)𝜌(1/2)

𝑇 (V + 1 − (1/𝜌))

× (
𝑥

𝜌
)
𝜌V

∫
∞

1

(𝑡𝜌 − 1)
V−(1/𝜌)

𝑒−𝑥𝑡 𝑑𝑡,

(4)

for 𝜌 ∈ N and Re V > −1+(1/𝜌), 𝑥 > 0.The 𝑙(𝜌)V transformwas
extended to generalized functions in [3] and to distributions
in [4]. By 𝑙𝜌(𝑋), we denote the space of equivalence classes of
measurable functions 𝑓 : 𝑋 → R such that

∫
𝑋

𝑓

𝜌
𝑑𝜇 < ∞, (5)

where twomeasurable functions are equivalent when they are
equal to 𝜇 a.e.

For 𝑙𝜌(𝑋), the 𝑙𝜌-norm is defined as

𝑓
𝑙𝜌 = (∫

𝑋

𝑓

𝜌
𝑑𝜇)
1/𝜌

. (6)

The Banach space 𝑙𝜌,𝜇 of Lebesgue measurable functions is
defined by [3, page 446]

𝑓
𝜌,𝜇 =

𝑥
−𝜇𝑓𝜌 < ∞. (7)

Due to [3, Proposition 2.1], we state the following theorem.
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Theorem 1. Let 1 ≤ 𝜌 ≤ ∞, 𝜇, V ∈ C, 𝜌 > 0, (1/𝜌)+(1/𝜌) =
1 and Re 𝜇 > −(1/𝜌) − min{0, 𝜌Re V} and then 𝑙(𝜌)V is a
continuous linear mapping from 𝑙𝜌,𝜇 into 𝑙𝜌,2/(𝜌−𝜇−1).

Note that we always assume that the hypothesis of
Theorem 1 is satisfied. By ⋎ we denote the Mellin-type
convolution product of first order defined by [5]

(𝑓 ⋎ 𝜑) (𝑦) = ∫
R
+

𝑓 (𝑦𝑡−1) 𝑡−1𝜑 (𝑡) 𝑑𝑡. (8)

By D(R+), or simply D, denote the Schwartz space of test
functions of compact support defined on R+. Then we have
the following definition.

Definition 2. Let 𝑓, 𝑔 ∈ 𝑙𝜌,𝜇. For 𝑓 and 𝑔, we define the
operation ⊗ given by

(𝑓 ⊗ 𝑔) (𝑥) = ∫
R
+

𝑓 (𝑥𝑡) 𝑔 (𝑡) 𝑑𝑡. (9)

Then we easily see that the operations in (8) and (9) are
very basic for the next construction of the desired Bohemian
spaces.

Theorem 3. Let 𝑓 ∈ 𝑙𝜌,𝜇 and 𝜑 ∈ D, then 𝑙(𝜌)V (𝑓 ⋎ 𝜑)(𝑥) =

((𝑙(𝜌)V 𝑓) ⊗ 𝜑)(𝑥).

Proof. Let 𝑥 > 0. For 𝑓 ∈ 𝑙𝜌,𝜇 and 𝜑 ∈ D we, by (3) and (8),
get that

𝑙(𝜌)V (𝑓 ⋎ 𝜑) (𝑥)

= ∫
R
+

(∫
R
+

𝑓 (𝑦𝑡−1) 𝑡−1𝜑 (𝑡) 𝑑𝑡) 𝜆(𝜌)V (𝑥𝑦) 𝑑𝑦

= ∫
R
+

(∫
R
+

𝑓 (𝑦𝑡−1) 𝑡−1𝜑 (𝑡) 𝑑𝑡) .

(10)

A change of variables 𝑦 = 𝑡𝑧 in (10) implies

𝑙(𝜌)V (𝑓 ⋎ 𝜑) (𝑥) = ∫
R
+

(∫
R
+

𝑓 (𝑧) 𝜆(𝜌)V (𝑥𝑡𝑧) 𝑑𝑧)𝜑 (𝑡) 𝑑𝑡

= ∫
R
+

(𝑙(𝜌)V 𝑓) (𝑥𝑡) 𝜑 (𝑡) 𝑑𝑡.

(11)

Hence, by (9), we have

𝑙(𝜌)V (𝑓 ⋎ 𝜑) (𝑥) = ((𝑙(𝜌)V 𝑓) ⊗ 𝜑) (𝑥) . (12)

This completes the proof of theorem.

2. General Bohemian

The structure necessary for the construction of Bohemian
consists of the following:

(1) a group𝑋 and a commutative semigroup (𝑌, ∗);
(2) a operation ⊙ : 𝑋 × 𝑌 → 𝑋 such that 𝑥 ⊙ (𝜐1 ∗ 𝜐2) =

(𝑥 ⊙ 𝜐1) ⊙ 𝜐2, for all 𝑥 ∈ 𝑋 and 𝜐1, 𝜐2, ∈ 𝑌;

(3) a collection Δ ⊂ 𝑌N such that

(i) for all (𝜐𝑛), (𝜎𝑛) ∈ Δ, we have (𝜐𝑛 ∗ 𝜎𝑛) ∈ Δ,
(ii) If 𝑥 ⊙ 𝜐𝑛 = 𝑦 ⊙ 𝜐𝑛, then 𝑥 = 𝑦 where 𝑥, 𝑦 ∈

𝑋, (𝜐𝑛) ∈ Δ, and 𝑛 ∈ N.

Then the set Δ that satisfies (i) and (ii) is called the set of
all delta sequences.

Let 𝐴 = {(𝑥𝑛, 𝜐𝑛) : 𝑥𝑛 ∈ 𝑋, (𝜐𝑛) ∈ Δ, 𝑥𝑛 ⊙ 𝜐𝑚 = 𝑥𝑚 ⊙
𝜐𝑛, for all 𝑚, 𝑛 ∈ N}. Then we say (𝑥𝑛, 𝜐𝑛) ∼ (𝑦𝑛, 𝜎𝑛) if there
are (𝑥𝑛, 𝜐𝑛), (𝑦𝑛, 𝜎𝑛) ∈ 𝐴, such that 𝑥𝑛 ⊙ 𝜎𝑚 = 𝑦𝑚 ⊙ 𝜐𝑛, for
all 𝑚, 𝑛 ∈ N. The relation ∼ is an equivalence relation in 𝐴.
The space of equivalence classes in 𝐴 is called the space of
Bohemian and denoted by BH. Each element of BH is called
Bohemian.Then the convergence inBH is defined as follows.

(1) (ℎ𝑛) ∈ BH is said to be 𝛿-convergent to ℎ ∈ BH,
denoted by ℎ𝑛

𝛿

→ ℎ as 𝑛 → ∞, if ∃ a delta sequence
(𝜐𝑛) such that (ℎ𝑛 ⊙𝜐𝑛), (ℎ ⊙ 𝜐𝑛) ∈ 𝑋, and (ℎ𝑛 ⊙𝜐𝑘) →
(ℎ ⊙ 𝜐𝑘) ∈ 𝑋 as 𝑛 → ∞, for all 𝑘, 𝑛 ∈ N.

(2) (ℎ𝑛) ∈ BH is said to be Δ-convergent to ℎ ∈ BH,
denoted by ℎ𝑛

Δ

→ ℎ as 𝑛 → ∞, if ∃ a (𝜐𝑛) ∈ Δ
such that (ℎ𝑛 − ℎ) ⊙ 𝜐𝑛 ∈ 𝑋, for all 𝑛 ∈ N, and
(ℎ𝑛 − ℎ) ⊙ 𝜐𝑛 → 0 ∈ 𝑋 as 𝑛 → ∞.

The following theorem is equivalent to the statement of 𝛿-
convergence.

Theorem 4. ℎ𝑛
𝛿

→ ℎ ∈ BH as 𝑛 → ∞ if and only if there are
𝑓𝑛,𝑘, 𝑓𝑘 ∈ 𝑋 and 𝜐𝑘 ∈ Δ such that ℎ𝑛 = [𝑓𝑛,𝑘/𝜐𝑘], ℎ = [𝑓𝑘/𝜐𝑘]
and, for all 𝑘 ∈ N, 𝑓𝑛,𝑘 → 𝑓𝑘 ∈ 𝑋 as 𝑛 → ∞. See [6–17] for
more details.

3. The Spaces BH
1
(𝑙
𝜌,𝜇
) and BH

2
(𝑙
𝜌,2/(𝜌−𝜇−1)

)

In this section we construct the space BH(𝑙𝜌,𝜇, (D, ⋎), ⋎, Δ)
(or BH1(𝑙𝜌,𝜇)) and the space BH(𝑙𝜌,2/(𝜌−𝜇−1), (D, ⋎), ⊗, Δ)
(or BH2(𝑙𝜌,2/(𝜌−𝜇−1))) of Bohemian and give their properties.

At the first step, we prove the following connecting
theorem.

Theorem 5. Let 𝑓 ∈ 𝑙𝜌,𝜇 and 𝜑, 𝜓 ∈ D; then, 𝑓 ⊗ (𝜑 ⋎ 𝜓) =
(𝑓 ⊗ 𝜑) ⊗ 𝜓.

Proof. Let 𝑓 ∈ 𝑙𝜌,𝜇 and 𝜑, 𝜓 ∈ D; then, applying the Fubinitz
theorem yields

(𝑓 ⊗ (𝜑 ⋎ 𝜓)) (𝑥)

= ∫
R
+

𝑓 (𝑥𝑡) (𝜑 ⋎ 𝜓) (𝑡) 𝑑𝑡

= ∫
R
+

𝑓 (𝑥𝑡) (∫
R
+

𝜑(
𝑡

𝑦
)𝜓 (𝑦) 𝑦−1 𝑑𝑦)𝑑𝑡

= ∫
R
+

(∫
R
+

𝑓 (𝑥𝑡) 𝜑 (
𝑡

𝑦
)𝑦−1 𝑑𝑦)𝜓 (𝑦) 𝑑𝑦.

(13)
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The change of variables 𝑡 = 𝑦𝑧 implies 𝑑𝑡 = 𝑦𝑑𝑧 and further

(𝑓 ⊗ (𝜑 ⋎ 𝜓)) (𝑥) = ∫
R
+

(∫
R
+

𝑓 (𝑥𝑦𝑧) 𝜑 (𝑧) 𝑑𝑧)𝜓 (𝑦) 𝑑𝑦.

(14)

Therefore,

(𝑓 ⊗ (𝜑 ⋎ 𝜓)) (𝑥) = ∫
R
+

(𝑓 ⊗ 𝜑) (𝑥𝑦)𝜓 (𝑦) 𝑑𝑦. (15)

Hence, (15) implies

(𝑓 ⊗ (𝜑 ⋎ 𝜓)) (𝑥) = ((𝑓 ⊗ 𝜑) ⊗ 𝜓) (𝑥) . (16)

This completes the proof of the theorem.

Next, forthcoming theorems prove the existence of the
space BH1(𝑙𝜌,𝜇).

Theorem 6. Let 𝑓 ∈ 𝑙𝜌,𝜇 and 𝜑 ∈ D and then 𝑓 ⋎ 𝜑 ∈ 𝑙𝜌,𝜇.

Proof. For each 𝑓 ∈ 𝑙𝜌,𝜇 and 𝜑 ∈ D, we have

𝑥
𝜇 (𝑓 ⋎ 𝜑) (𝑥)

𝜌

𝜌,𝜇
= ∫

R
+


𝑥𝜇 ∫

R
+

𝑓 (𝑥𝑡) 𝜑 (𝑡) 𝑑𝑡


𝜌

𝑑𝑥. (17)

By Jensen’s theorem, we write
𝑥
𝜇 (𝑓 ⋎ 𝜑) (𝑥)

𝜌

𝜌,𝜇

≤ ∫
R
+

∫
R
+


𝑥𝜇 ∫

R
+

𝑓 (𝑥𝑡) 𝜑 (𝑡) 𝑑𝑡


𝜌

𝑑𝑥

≤ ∫
R
+

∫
R
+

𝑥
𝜇𝑓 (𝑥𝑡)

𝜌 𝜑 (𝑡)
 𝑑𝑡 𝑑𝑥

≤ 𝑓

𝜌

𝜌,𝜇
∫
𝐾

𝜑 (𝑡)
 𝑑𝑡,

(18)

where 𝐾 = [𝑎, 𝑏], 𝑏 > 𝑎 > 0 is a compact subset containing
the support of 𝜑. Hence, from (18), we get

𝑥
𝜇 (𝑓 ⋎ 𝜑) (𝑥)

𝜌

𝜌,𝜇
≤ 𝑓


𝜌

𝜌,𝜇
𝑀(𝑏 − 𝑎) , (19)

where𝑀 is certain positive real number. This completes the
proof of the theorem.

Theorem 7. Let 𝑓 ∈ 𝑙𝜌,𝜇 and 𝜑, 𝜓 ∈ D and then

(i) 𝑓 ⋎ (𝜑 + 𝜓) = 𝑓 ⋎ 𝜑 + 𝑓 ⋎ 𝜓;
(ii) (𝛼𝑓) ⋎ 𝜑 = 𝛼(𝑓 ⋎ 𝜑);
(iii) let (𝑓𝑛) ∈ 𝑙𝜌,𝜇 and𝑓𝑛 → 𝑓 as 𝑛 → ∞ then for 𝜑 ∈ D,

and we have 𝑓𝑛 ⋎ 𝜑 → 𝑓 ⋎ 𝜑 as 𝑛 → ∞;
(iv) 𝑓 ⋎ (𝜑 ⋎ 𝜓) = (𝑓 ⋎ 𝜑) ⋎ 𝜓.

Proof of Part (i), (ii), and (iii) follows from properties
of integral operators ∫. Similarly, the proof of Part (iv) is
straightforward from the properties of ⋎ proved in [5].

Following theorem is straightforward, and detailed proof
is omitted.

Theorem 8. Let 𝑓 ∈ 𝑙𝜌,𝜇 and (𝜇𝑛) ∈ Δ then 𝑓 ⋎ 𝜇𝑛 → 𝑓 as
𝑛 → ∞.

Proof. Since D is a dense subspace of 𝑙𝜌 then it is a dense
subspace of 𝑙𝜌,𝜇. Hence, there can be found 𝜓 ∈ D such that

𝑓 − 𝜓𝜌,𝜇 < 𝜀 (20)

for 𝜀 > 0. Also, from (18), we have
(𝑓 − 𝜓) ⋎ 𝜇𝑛


𝜌

𝜌,𝜇
≤ 𝑓


𝜌

𝜌,𝜇

𝜇𝑛
𝑙1 . (21)

Let 𝑔(𝑡) = 𝑦𝜇𝜓(𝑦𝑡−1)𝑡−1 then; 𝑔(𝑡) ∈ D and hence uniformly
continuous on R+.

Therefore, there is 𝛿 > 0 such that
𝑔 (𝑦) − 𝑔 (𝑥)

 < 𝜀 whenever 𝑦 − 𝑥
 < 𝛿. (22)

Thus, using (22), we get

(𝜓 × 𝜇𝑛 − 𝜓) (𝑦)

𝜌

𝜌,𝜇

= ∫
R
+

𝑦
𝜇 (𝜓 × 𝜇𝑛 − 𝜓) (𝑦)


𝜌
𝑑𝑦

≤ ∫
R
+

∫
R
+

𝑦
𝜇 (𝜓 (𝑦𝑡−1) 𝑡−1𝜇𝑛 (𝑡)

−𝜓 (𝑦) ) 𝜇𝑛 (𝑡)

𝜌

𝑑𝑡 𝑑𝑦

≤ ∫
R
+

∫
R
+

𝑦
𝜇 (𝜓 (𝑦𝑡−1) 𝑡−1 − 𝜓 (𝑦))


𝜌

× 𝜇𝑛 (𝑡)
 𝑑𝑡 𝑑𝑦

= ∫
R
+

∫
R
+

𝑔 (𝑦) − 𝑔 (1)

𝜌 𝜇𝑛 (𝑡)

 𝑑𝑡 𝑑𝑦

= ∫
R
+

∫
R
+

𝜀𝜌 𝜇𝑛 (𝑡)
 𝑑𝑡 𝑑𝑦.

(23)

By (22), supp 𝜇𝑛(𝑡) → 0 as 𝑛 → ∞ implies that there can
be found 𝑁 ∈ N, such that supp 𝜇𝑛 ⊆ [0, 𝛿], for all 𝑛 ≥ 𝑁.
Further, the fact that the function 𝜓 is of compact support
thus this implies that supp𝜓(𝑦) ⊆ 𝐾 = [𝑎, 𝑏], where 𝐾 is a
compact subset of R+. Thus, from (23), we write

𝜓 ⋎ 𝜇𝑛 − 𝜓

𝜌

𝜌,𝜇
≤ 𝜀𝜌 ∫

𝑏

𝑎

∫
𝛿

0

𝑀𝑑𝑡

= 𝜀𝜌 (𝑏 − 𝑎) (2𝛿)𝑀.

(24)

Now, we have
𝑓 × 𝜇𝑛 − 𝑓

𝜌,𝜇 ≤
(𝑓 − 𝜓) ⋎ 𝜇𝑛

𝜌,𝜇

+ 𝜓 × 𝜇𝑛 − 𝜓
𝜌,𝜇 +

(𝑓 − 𝜓)𝜌,𝜇.
(25)

On using (20), (21) and (24) prove that
𝑓 × 𝜇𝑛 − 𝑓

𝜌,𝜇 → 0 as 𝜖 → 0. (26)
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Thus the theorem is proved. Then the Bohemian space
BH1(𝑙𝜌,𝜇) is therefore constructed. The operations such as
sum and multiplication by a scalar of two Bohemian in
BH1(𝑙𝜌,𝜇) are defined in a natural way

[
(𝑓𝑛)

(𝜇𝑛)
] + [

(𝑔𝑛)

(𝜏𝑛)
] = [

(𝑓𝑛 ⋎ 𝜏𝑛 + 𝑔𝑛 ⋎ 𝜇𝑛)

(𝜇𝑛 ⋎ 𝜏𝑛)
] ,

𝛼 [
(𝑓𝑛)

(𝜇𝑛)
] = [

(𝑎𝑓𝑛)

(𝜇𝑛)
] ,

(27)

where 𝛼 is a complex number.
Similarly, the operation ⋎ and differentiation are defined

by

[
(𝑓𝑛)

(𝜇𝑛)
] ⋎ [

(𝑔𝑛)

(𝜏𝑛)
] = [

(𝑓𝑛 ⋎ 𝑔𝑛)

(𝜇𝑛 ⋎ 𝜏𝑛)
] ,

D
𝛼 [

(𝑓𝑛)

(𝜇𝑛)
] = [

(D𝛼𝑓𝑛)

(𝜇𝑛)
] .

(28)

Now constructing the space BH2(𝑙𝜌,2/(𝜌−𝜇−1)) follows from
theorems which were used for constructing the space
BH1(𝑙𝜌,𝜇). Therefore, the corresponding proofs of Theorems
10 and 11 are omitted.

Theorem 9. Let 𝑓 ∈ 𝑙𝜌,2/(𝜌−𝜇−1) and 𝜑 ∈ D and then 𝑓 ⊗ 𝜑 ∈
𝑙𝜌,2/(𝜌−𝜇−1).

Theorem 10. Let 𝑓 ∈ 𝑙𝜌,2/(𝜌−𝜇−1), 𝜑, 𝜓 ∈ D and then the
following hold:

(i) 𝑓 ⊗ (𝜑 + 𝜓) = 𝑓 ⊗ 𝜑 + 𝑓 ⊗ 𝜓;
(ii) (𝛼𝑓) ⊗ 𝜑 = 𝛼(𝑓 ⊗ 𝜑);
(iii) if 𝑓𝑛 → 𝑓 in 𝑙𝜌,2/(𝜌−𝜇−1), as 𝑛 → ∞ then 𝑓𝑛 ⊗ 𝜑 →

𝑓 ⊗ 𝜑 as 𝑛 → ∞;
(iv) if (𝜇𝑛) ∈ Δ, then 𝑓 ⊗ 𝜇𝑛 → 𝑓 as 𝑛 → ∞.

Theorem 11. Let 𝑓 ∈ 𝑙𝜌,2/(𝜌−𝜇−1) and 𝜑, 𝜓 ∈ D and then 𝑓 ⊗
(𝜑 ⋎ 𝜓) = (𝑓 ⊗ 𝜑) ⊗ 𝜓.

Proof of this theorem is similar to that of Theorem 6.
Thus the spaceBH2(𝑙𝜌,2/(𝜌−𝜇−1)) can be regarded as Bohemian
space.

4. Krätzel Transform of Bohemian

By aid of Theorem 4, we have the right to define the Krätzel
transform of [(𝑓𝑛)/(𝜇𝑛)] ∈ BH1(𝑙𝜌,𝜇) as the Bohemian

̂
𝑙(𝜌)V [

(𝑓𝑛)

(𝜇𝑛)
] = [

(𝑙(𝜌)V 𝑓𝑛)

(𝜇𝑛)
] (29)

is embedded in the space BH2(𝑙𝜌,2/(𝜌−𝜇−1)).

Theorem 12. The mapping ̂
𝑙(𝜌)V : BH1(𝑙𝜌,𝜇) →

BH2(𝑙𝜌,2/(𝜌−𝜇−1)) is
(i) well defined,
(ii) linear.

Proof. Let [(𝑓𝑛)/(𝜇𝑛)], [(𝑔𝑛)/(𝜓𝑛)] ∈ BH1(𝑙𝜌,𝜇) be such that
[(𝑓𝑛)/(𝜇𝑛)] = [(𝑔𝑛)/(𝜓𝑛)], and then 𝑓𝑛 ⋎ 𝜓𝑚 = 𝑔𝑚 ⋎ 𝜇𝑛 =
𝑔𝑛⋎𝜇𝑚. UsingTheorem 4 implies 𝑙(𝜌)V 𝑓𝑛⊗𝜓𝑚 = 𝑙(𝜌)V 𝑔𝑛⊗𝜇𝑚, for
all 𝑛,𝑚. The idea of quotient of sequences in BH2(𝑙𝜌,2/(𝜌−𝜇−1))
implies that

𝑙(𝜌)V 𝑓𝑛
𝜇𝑛

is equivalent to
𝑙(𝜌)V 𝑔𝑛
𝜓𝑛

. (30)

That is,

[
(𝑙(𝜌)V 𝑓𝑛)

(𝜇𝑛)
] = [

(𝑙(𝜌)V 𝑔𝑛)

(𝜓𝑛)
] . (31)

To prove part (ii) of the theorem, if [(𝑓𝑛)/(𝜇𝑛)], [(𝑔𝑛)/(𝜓𝑛)] ∈
BH1(𝑙𝜌,𝜇), then

̂
𝑙(𝜌)V ([

(𝑓𝑛)

(𝜇𝑛)
] + [

(𝑔𝑛)

(𝜓𝑛)
]) = [

(𝑙(𝜌)V 𝑓𝑛 ⊗ 𝜓𝑛 + 𝑙
(𝜌)

V 𝑔𝑛 ⊗ 𝜇𝑛)

(𝜇𝑛 ⊗ 𝜓𝑛)
] .

(32)

Hence

̂
𝑙(𝜌)V ([

(𝑓𝑛)

(𝜇𝑛)
] + [

(𝑔𝑛)

(𝜓𝑛)
]) =

̂
𝑙(𝜌)V [

(𝑓𝑛)

(𝜇𝑛)
] +

̂
𝑙(𝜌)V [

(𝑔𝑛)

(𝜓𝑛)
] .

(33)

Also, if 𝛼 ∈ C, then

𝛼
̂
𝑙(𝜌)V [

(𝑓𝑛)

(𝜇𝑛)
] = 𝛼[

(𝑙(𝜌)V 𝑓𝑛)

(𝜇𝑛)
] = [

(𝑙(𝜌)V (𝛼𝑓𝑛))

(𝜇𝑛)
] . (34)

Hence

𝛼
̂
𝑙(𝜌)V [

(𝑓𝑛)

(𝜇𝑛)
] =

̂
𝑙(𝜌)V (𝛼[

(𝑓𝑛)

(𝜇𝑛)
]) . (35)

This completes the proof.

Definition 13. Let [(𝑙(𝜌)V 𝑓𝑛)/(𝜇𝑛)] ∈ BH2(𝑙𝜌,2/(𝜌−𝜇−1)). We

define the inverse of ̂
𝑙(𝜌)V transform of the Bohemian

[(𝑙(𝜌)V 𝑓𝑛)/(𝜇𝑛)] as

̂
𝑙(𝜌)V
−1

[
(𝑙(𝜌)V 𝑓𝑛)

(𝜇𝑛)
] = [

[

(𝑙(𝜌)V )
−1

(𝑙(𝜌)V 𝑓𝑛)

(𝜇𝑛)
]

]

= [
(𝑓𝑛)

(𝜇𝑛)
] , (36)

for each (𝜇𝑛) ∈ Δ.

Theorem 14. ̂𝑙(𝜌)V : BH1(𝑙𝜌,𝜇) → BH2(𝑙𝜌,2/(𝜌−𝜇−1)) is an
isomorphism.

Proof. Let ̂𝑙(𝜌)V [(𝑓𝑛)/(𝜇𝑛)] =
̂
𝑙(𝜌)V [(𝑔𝑛)/(𝜓𝑛)] ∈ BH2(𝑙𝜌,2/(𝜌−𝜇−1))

and then by (29) we get 𝑙(𝜌)V 𝑓𝑛 ⊗ 𝜓𝑚 = 𝑙(𝜌)V 𝑔𝑚 ⊗ 𝜇𝑛. Therefore,
Theorem 4 implies

𝑙(𝜌)V (𝑓𝑛 ⋎ 𝜓𝑚) = 𝑙(𝜌)V (𝑔𝑚 ⋎ 𝜇𝑛) . (37)
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Thus 𝑓𝑛 ⋎ 𝜓𝑚 = 𝑔𝑚 ⋎ 𝜇𝑛, for all 𝑚, 𝑛 ∈ N. The concept of
quotients of equivalent classes of BH1(𝑙𝜌,𝜇) then gives

[
(𝑓𝑛)

(𝜇𝑛)
] = [

(𝑔𝑛)

(𝜓𝑛)
] . (38)

This proves that ̂𝑙(𝜌)V is injective.
To show that 𝑙(𝜌)V is surjective, let [(𝑙(𝜌)V 𝑓𝑛)/(𝜇𝑛)] ∈

BH2(𝑙𝜌,2/(𝜌−𝜇−1)).Then (𝑙(𝜌)V 𝑓𝑛)/(𝜇𝑛) is a quotient of sequences
in BH2(𝑙𝜌,2/(𝜌−𝜇−1)). Hence, 𝑙

(𝜌)

V 𝑓𝑛 ⊗ 𝜇𝑚 = 𝑙(𝜌)V 𝑓𝑚 ⊗ 𝜇𝑛, for all
𝑚, 𝑛 ∈ N. Once again, Theorem 4 implies that 𝑙(𝜌)V (𝑓𝑛 ⋎ 𝜇𝑚) =
𝑙(𝜌)V (𝑓𝑚 ⋎ 𝜇𝑛). Hence [(𝑓𝑛)/(𝜇𝑛)] ∈ BH1(𝑙𝜌,𝜇) satisfies

𝑙(𝜌)V [
(𝑓𝑛)

(𝜇𝑛)
] = [

(𝑙(𝜌)V 𝑓𝑛)

(𝜇𝑛)
] . (39)

This completes the proof of the theorem.

Theorem 15. Let 𝜓 ∈ D and [(𝑙(𝜌)V 𝑓𝑛)/(𝜇𝑛)] ∈
BH2(𝑙𝜌,2/(𝜌−𝜇−1)) then one has

(i) ̂𝑙(𝜌)V
−1

([(𝑙(𝜌)V 𝑓𝑛)/(𝜇𝑛)] ⊗ 𝜓) = [(𝑓𝑛)/(𝜇𝑛)] ⋎ 𝜓;

(ii) ̂𝑙(𝜌)V ([(𝑓𝑛)/(𝜇𝑛)] ⋎ 𝜓) = [(𝑙(𝜌)V 𝑓𝑛)/(𝜇𝑛)] ⊗ 𝜓.

Proof. By using (29), we have

̂
𝑙(𝜌)V
−1

([
(𝑙(𝜌)V 𝑓𝑛)

(𝜇𝑛)
] ⊗ 𝜓) = [

[

(𝑙(𝜌)V )
−1

((𝑙(𝜌)V 𝑓𝑛) ⊗ 𝜓)

(𝜇𝑛)
]

]

.

(40)

Theorem 4 then gives

̂
𝑙(𝜌)V
−1

([
(𝑙(𝜌)V 𝑓𝑛)

(𝜇𝑛)
] ⊗ 𝜓) = [

(𝑓𝑛) ⋎ 𝜓

(𝜇𝑛)
] = [

(𝑓𝑛)

(𝜇𝑛)
] ⋎ 𝜓.

(41)

Hence the part (i) of the theorem is proved.The proof of part
(ii) is similar thus we omit the details. This completes the
proof of the theorem.

Theorem 16. The mappings

(i) ̂𝑙(𝜌)V : BH1(𝑙𝜌,𝜇) → BH2(𝑙𝜌,2/(𝜌−𝜇−1)) are continuous
with respect to 𝛿 and Δ-convergence.

(ii) ̂𝑙(𝜌)V
−1

: BH2(𝑙𝜌,2/(𝜌−𝜇−1)) → BH1(𝑙𝜌,𝜇) are continuous
with respect to 𝛿 and Δ-convergence.

Proof. At first, let us show that ̂𝑙(𝜌)V and ̂
𝑙(𝜌)V
−1

are continuous
with respect to 𝛿-convergence.

Let 𝛽𝑛
𝛿

→ 𝛽 in BH1(𝑙𝜌,𝜇) as 𝑛 → ∞ and then we show

that ̂𝑙(𝜌)V 𝛽𝑛 →
̂
𝑙(𝜌)V 𝛽 as 𝑛 → ∞. By virtue of Theorem 5, we

can find 𝑓𝑛,𝑘 and 𝑓𝑘 in 𝑙𝜌,𝜇 such that

𝛽𝑛 = [
𝑓𝑛,𝑘
𝜇𝑘

] , 𝛽 = [
𝑓𝑘
𝜇𝑘
] (42)

such that 𝑓𝑛,𝑘 → 𝑓𝑘 as 𝑛 → ∞ for every 𝑘 ∈ N. Hence,
𝑙(𝜌)V 𝑓𝑛,𝑘 → 𝑙(𝜌)V 𝑓𝑘 ∈ 𝑙𝜌,2/(𝜌−𝜇−1) as 𝑛 → ∞. Thus,

[
𝑙(𝜌)V 𝑓𝑛,𝑘
𝜇𝑘

] → [
𝑙(𝜌)V 𝑓𝑘
𝜇𝑘

] ∈ BH2 (𝑙𝜌,2/(𝜌−𝜇−1)) (43)

as 𝑛 → ∞.
To prove the Part (ii), Let 𝑔𝑛, 𝑔 ∈ BH2(𝑙𝜌,2/(𝜌−𝜇−1)) be such

that 𝑔𝑛
𝛿

→ 𝑔 as 𝑛 → ∞. Then, once again, by Theorem 5,
𝑔𝑛 = [𝑙(𝜌)V 𝑓𝑛,𝑘/𝜇𝑘] and 𝑔 = [𝑙(𝜌)V 𝑓𝑘/𝜇𝑘] for some 𝑓𝑛,𝑘, 𝑓𝑘 ∈
𝑙𝜌,𝜇 and 𝑙(𝜌)V 𝑓𝑛,𝑘 → 𝑙(𝜌)V 𝑓𝑘 as 𝑛 → ∞. Hence [𝑓𝑛,𝑘/𝜇𝑘] →
[𝑓𝑘/𝜇𝑘] as 𝑛 → ∞.

Using (36), we get

̂
𝑙(𝜌)V
−1

[
𝑙(𝜌)V 𝑓𝑛,𝑘
𝜇𝑘

] →
̂
𝑙(𝜌)V
−1

[
𝑙(𝜌)V 𝑓𝑘
𝜇𝑘

] as 𝑛 → ∞. (44)

Now, we establish that ̂𝑙(𝜌)V and ̂
𝑙(𝜌)V
−1

are continuous with
respect to Δ-convergence.

Let 𝛽𝑛
Δ

→ 𝛽 in BH1(𝑙𝜌,𝜇) as 𝑛 → ∞. Then, there exist
𝑓𝑛 ∈ 𝑙𝜌,𝜇 and (𝜇𝑛) ∈ Δ such that (𝛽𝑛−𝛽)⋎𝜇𝑛 = [((𝑓𝑛)⋎𝜇𝑘)/𝜇𝑘]
and 𝑓𝑛 → 0 as 𝑛 → ∞. By applying (29) we get

̂
𝑙(𝜌)V ((𝛽𝑛 − 𝛽) ⋎ 𝜇𝑛) = [

𝑙(𝜌)V ((𝑓𝑛) ⋎ 𝜇𝑘)

𝜇𝑘
] . (45)

Hence, we have ̂𝑙(𝜌)V ((𝛽𝑛 − 𝛽) ⋎ 𝜇𝑛) = [((𝑙(𝜌)V 𝑓𝑛) ⊗ 𝜇𝑘)/𝜇𝑘] =
𝑙(𝜌)V 𝑓𝑛 → 0 as 𝑛 → ∞ in 𝑙𝜌,2/(𝜌−𝜇−1).

Therefore
̂
𝑙(𝜌)V ((𝛽𝑛 − 𝛽) ⋎ 𝜇𝑛) = (

̂
𝑙(𝜌)V 𝛽𝑛 −

̂
𝑙(𝜌)V 𝛽) ⊗ 𝜇𝑛 → 0

as 𝑛 → ∞.

(46)

Hence, ̂𝑙(𝜌)V 𝛽𝑛
Δ

→
̂
𝑙(𝜌)V 𝛽 as 𝑛 → ∞.

Finally, let 𝑔𝑛
Δ

→ 𝑔 ∈ BH2(𝑙𝜌,2/(𝜌−𝜇−1)) as 𝑛 → ∞ and
then we find 𝑙(𝜌)V 𝑓𝑘 ∈ 𝑙𝜌,2/(𝜌−𝜇−1) such that (𝑔𝑛 − 𝑔) ⊗ 𝜇𝑛 =

[(𝑙(𝜌)V 𝑓𝑘 ⊗ 𝜇𝑘)/𝜇𝑘] and 𝑙
(𝜌)

V 𝑓𝑘 → 0 as 𝑛 → ∞ for some (𝜇𝑛) ∈
Δ.

Now, using (36), we obtain

̂
𝑙(𝜌)V
−1

((𝑔𝑛 − 𝑔) ⊗ 𝜇𝑛) = [

[

(𝑙(𝜌)V )
−1

(𝑙(𝜌)V 𝑓𝑘 ⊗ 𝜇𝑘)

𝜇𝑘
]

]

. (47)

Theorem 4 implies

̂
𝑙(𝜌)V
−1

((𝑔𝑛 − 𝑔) ⊗ 𝜇𝑛) = [
(𝑓𝑛) ⋎ 𝜇𝑘

𝜇𝑘
] = 𝑓𝑛 → 0

as 𝑛 → ∞ in 𝑙𝜌,𝜇.

(48)

Thus
̂
𝑙(𝜌)V
−1

((𝑔𝑛 − 𝑔) ⊗ 𝜇𝑛)

= (
̂
𝑙(𝜌)V
−1

𝑔𝑛 −
̂
𝑙(𝜌)V
−1

𝑔) ⋎ 𝜇𝑛 → 0 as 𝑛 → ∞.

(49)
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From this, we find that ̂𝑙(𝜌)V
−1

𝑔𝑛
Δ

→
̂
𝑙(𝜌)V
−1

𝑔 as 𝑛 → ∞ in
BH1(𝑙𝜌,𝜇).

This completes the proof of the theorem.

Theorem 17. The ̂𝑙(𝜌)V transform is consistent with the classical
transform 𝑙(𝜌)V .

Proof. For every 𝑓 ∈ 𝑙𝜌,𝜇, let 𝛽 be its representative in
BH1(𝑙𝜌,𝜇) and then 𝛽 = [(𝑓 ⋎ (𝜇𝑛))/(𝜇𝑛)] where (𝜇𝑛) ∈ Δ, for
all 𝑛 ∈ N. Since (𝜇𝑛) is independent from the representative,
for all 𝑛 ∈ N, therefore

̂
𝑙(𝜌)V (𝛽) =

̂
𝑙(𝜌)V ([

𝑓 ⋎ (𝜇𝑛)

(𝜇𝑛)
]) = [

𝑙(𝜌)V 𝑓 ⊗ (𝜇𝑛)

(𝜇𝑛)
] , (50)

which is the representative of 𝑙(𝜌)V 𝑓 ∈ 𝑙𝜌,2/(𝜌−𝜇−1). Thus this
completes the proof.

Theorem 18. Let [(𝑔𝑛)/(𝜓𝑛)] ∈ BH2(𝑙𝜌,2/(𝜌−𝜇−1)) and then a
necessary and sufficient condition for [(𝑔𝑛)/(𝜓𝑛)] to be in the
range of ̂𝑙(𝜌)V is that 𝑔𝑛 belongs to range of 𝑙(𝜌)V , for all 𝑛 ∈ N.

Proof. Let [(𝑔𝑛)/(𝜓𝑛)] be in the range of
̂
𝑙(𝜌)V and then it is clear

that 𝑔𝑛 belongs to the range of 𝑙
(𝜌)

V , for all 𝑛 ∈ N.
To establish the converse, let 𝑔𝑛 be in the range of 𝑙(𝜌)V , for

all 𝑛 ∈ N. Then there is 𝑓𝑛 ∈ 𝑙𝜌,𝜇 such that 𝑙(𝜌)V 𝑓𝑛 = 𝑔𝑛, 𝑛 ∈ N.
Since [(𝑔𝑛)/(𝜓𝑛)] ∈ BH2(𝑙𝜌,2/(𝜌−𝜇−1)),

𝑔𝑛 ⊗ 𝜓𝑚 = 𝑔𝑚 ⊗ 𝜓𝑛, (51)

for all𝑚, 𝑛 ∈ N, therefore,

𝑙(𝜌)V (𝑓𝑛 ⋎ 𝜑𝑛) = 𝑙(𝜌)V (𝑓𝑚 ⋎ 𝜑𝑛) , ∀𝑚, 𝑛 ∈ N, (52)

where 𝑓𝑛 ∈ 𝑙𝜌,𝜇 and 𝜑𝑛 ∈ Δ, for all 𝑛 ∈ N. Then it follows
that we get 𝑓𝑛 ⋎ 𝜑𝑚 = 𝑓𝑚 ⋎ 𝜑𝑛, for all 𝑚, 𝑛 ∈ N. Thus 𝑓𝑛/𝜑𝑛
is a quotient of sequences in BH1(𝑙𝜌,𝜇). Therefore, we have
[(𝑓𝑛)/(𝜑𝑛)] ∈ BH1(𝑙𝜌,𝜇) and

̂
𝑙(𝜌)V ([

(𝑓𝑛)

(𝜑𝑛)
]) = [

(𝑔𝑛)

(𝜓𝑛)
] . (53)

Hence the theorem is proved.

Theorem 19. If 𝛽 = [(𝑓𝑛)/(𝜑𝑛)] ∈ BH1(𝑙𝜌,𝜇) and 𝛾 =
[(𝜅𝑛)/(𝜇𝑛)] ∈ BH1(𝑙𝜌,𝜇), then one has

̂
𝑙(𝜌)V ([

(𝑓𝑛)

(𝜑𝑛)
] ⋎ [

(𝜅𝑛)

(𝜇𝑛)
]) = [

(𝑙(𝜌)V 𝑓𝑛)

(𝜑𝑛)
] ⊗ [

(𝜅𝑛)

(𝜇𝑛)
] . (54)

Proof. Let the hypothesis of the theorem be satisfied for some
[(𝑓𝑛)/(𝜑𝑛)] and [(𝜅𝑛)/(𝜇𝑛)]. Therefore,

̂
𝑙(𝜌)V ([

(𝑓𝑛)

(𝜑𝑛)
] ⋎ [

(𝜅𝑛)

(𝜇𝑛)
]) =

̂
𝑙(𝜌)V ([

(𝑓𝑛 ⋎ 𝜅𝑛)

(𝜑𝑛 ⋎ 𝜇𝑛)
])

= [
((𝑙(𝜌)V 𝑓𝑛) ⊗ 𝜅𝑛)

(𝜑𝑛 ⊗ 𝜇𝑛)
]

= [
(𝑙(𝜌)V 𝑓𝑛)

(𝜑𝑛)
] ⊗ [

(𝜅𝑛)

(𝜇𝑛)
] .

(55)

This completes the proof.
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