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A nonlinear generalization of the famous Camassa-Holm model is investigated. Provided that initial value u, € H'(R)(1 < s < 3/2)
and (1 — 82)u, satisfies an associated sign condition, it is shown that there exists a unique global weak solution to the equation in
space u(t, x) € L*([0, +00), H(R)) in the sense of distribution, and u, € L([0,+00) X R).

1. Introduction

In recent years, a lot of works have been carried out to
investigate the Camassa-Holm equation [1],

Up — Upyy + Kty + 30, = 2u 1, + Ull s (1)

which is a completely integrable equation. In fact, the
Camassa-Holm equation arises as a model describing the
unidirectional propagation of shallow water waves over a
flat bottom [1-3]. The equation was originally derived much
earlier as a bi-Hamiltonian generalization of the Korteweg-
de Vries equation (see [4]). Johnson [2], Constantin and
Lannes [5] derived models which include the Camassa-Holm
equation (1). It has been found that (1) conforms with many
conservation laws (see [6, 7]) and possesses smooth solitary
wave solutions if k > 0 [3, 8] or peakons if k = 0 [3, 9].
Equation (1) is also regarded as a model of the geodesic
flow for the H' right invariant metric on the Bott-Virasoro
group if k > 0 and on the diffeomorphism group if k = 0
(see [10-14]). The well-posedness of local strong solutions
for generalized forms of (1) has been given in [15-17].
The sharpest results for the global existence and blow-up
solutions are found in Bressan and Constantin [18, 19].

Recently, Li et al. [20] studied the following generalized
Camassa-Holm equation:

Uy =ty + k" u, + (m+ 3) ™
(2)

+1
=m+2)u"uu,, + U™ Uy

where m > 0 is a natural number. Obviously, (2) reduces
to (1) if m = 0. The authors applied the pseudoparabolic
regularization technique to build the local well-posedness
for (2) in Sobolev space H*(R) with s > 3/2 via a limiting
procedure. Provided that the initial value u, satisfies a
sign condition and u, € H'(R)(s > 3/2), it is shown
that there exists a unique global strong solution for (2) in
space C([0, 00); H*(R)) (N C' ([0, 00); H* ' (R)). However, the
existence and uniqueness of the global weak solution for (2)
is not investigated in [20].

The objective of this paper is to establish the well-
posedness of global weak solutions for (2). Using the esti-
mates in H1(R) with 0 < g < 1/2, which are derived from the
equation itself, we prove that there exists a unique global weak
solution to (2) in space H*(R) with 1 < s < 3/2ifu, € H'(R),
and (1 — 82)u, satisfies an associated sign condition.

The structure of this paper is as follows. The main result
is given in Section 2. Several lemmas are given in Section 3.
Section 4 establishes the proof of the main result.

2. Main Results

Firstly, we give some notations.

The space of all infinitely differentiable functions ¢(t, x)
with compact support in [0,+00) x R is denoted by C;°.
LY = LR (1 < p < +00) is the space of all mea-
surable functions /& such that ||h||€p = JR |h(t, x)|Pdx <
00. We define L = L%(R) with the standard norm



Al = infm(e):o SUPcR\e |hA(t, x)|. For any real number s,
we let H® = H*(R) denote the Sobolev space with the norm
defined by

. 1/2
Ml = (| (1+16P)p0fdE)  <oo. )

where h(t, £) = _[R e n(t, x)dx.

For T > 0 and nonnegative number s, let C([0, T); H*(R))
denote the Frechet space of all continuous H*-valued func-
tions on [0, T). We set A = (1 — ai)”z.

Defining

1/(x*-1)
¢ (x) = {e o <L, (4)

0, [x| =1,

and letting ¢_(x) = s_(1/4)¢(s_(1/4)x) with 0 < ¢ < 1/4 and
Uy = ¢, * 1y (convolution of ¢, and u,), we know that u,, €
C® for any u, € H® with s > 0. Notation (1 —02)u + k/2(m +
1) € N*(R) (or equivalently (1 —ai)u +k/2(m+1) € N (R))
means that (1 — ai)u * ¢, + k/2(m + 1) = 0 (or equivalently
1- ai)u * ¢, + k/2(m + 1) < 0) for an arbitrary sufficiently
small € > 0.

For the equivalent form of (2), we consider its Cauchy
problem

k +3
_ m(um+1)x _ %(um-ﬂ)x

o) (umz) - (m+1)0, (umui)

Up = Upxx =

)

m+2

m
tU U U,

u (0,x) = uy (x).

Definition 1. A function u(t,x) € L*([0,+00), H'(R)) is
called a global weak solution to problem (5) if for every T > 0,
u(t,x) € H'(R),u,(t,x) € H'(R), and all y(t, x) € C, it
holds that

T
J J [ut — k", + (m+3) "
0o Jr

(6)

m+1

-m+2)u"uu,, —u uxxx] v (t,x)dxdt =0

with u(0, x) = uy(x).

Now, we give the main result of this work.

Theorem 2. Let uy(x) € H'(R), 1 < s < 3/2, (1 - %)y, +
k/2(m + 1) € N'(R), and k > 0 (or equivalently (1 — 0%)u, +
k/2(m + 1) € N (R), k < 0). Then, problem (5) has a unique
global weak solution u(t, x) € Lz([O, +00), H*(R)) in the sense
of distribution, and u,. € L°([0, +00) X R).
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3. Several Lemmas

Lemma 3 (see [20]). Let uy(x) € H'(R) with s > 3/2. Then,
the Cauchy problem (5) has a unique solution
u(t,x) € C([0,T); H (R)[C' ([0, T); H*' (R)),
7)

where T > 0 depends on [l s (r)-

Lemma 4 (see [20]). Let uy(x) € H', s > 3/2, and k >
0,(1 - ai)uo +k/2(m + 1) > 0 (or equivalently k < 0,(1 —
ai)uo + k/2(m + 1) < 0). Then, problem (5) has a unique
solution satisfying

u(t,x) € C([0,00); H* (R)) () C' ([0,00); H*' (R)).

(8)
Using the first equation of system (5) derives
iJ (u2+u2)dx:0, 9)
dt Jr *

from which one has the conservation law
j (o + 1) dx = j (i3 +123,) . (10)
R R
Lemma 5 (see [20]). Lets > 3/2, and the function u(t, x) is a

solution of problem (5) and the initial data u,(x) € H. Then,
the following inequality holds:

llly < [ (i +i)dx= [ (@+d)ar. a

For q € (0,s — 1], there is a constant ¢ such that
q+1 2 g+l 2
. (A u) dx < A (A uo) dx

t
te L ol (o el

Hull e ey |70 ) dr.
(12)
For q € [0,s — 1], there is a constant ¢ such that
letell o < cllullpgan (leellFeo Nesll g + el 7oo oo
i (13)
Hul7" o)
For (2), consider the problem
p,=u"" (t,p), tel0,T),
‘ (tp) (1)

p(0,x) = x.

Lemma 6 (see [20]). Let uy € H', s > 3, and let T > 0 be
the maximal existence time of the solution to problem (5).
Then, problem (14) has a unique solution p € Cl([O,T) x R).
Moreover, the map p(t,-) is an increasing diffeomorphism of R
with p.(t,x) > 0 for (t,x) € [0,T) X R.
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Differentiating (14) with respect to x yields

d
—p,=m+1)u"u,(t o te[0,T),
5P (tp)p 1s)

P, (0,x) =1,

which leads to

t
P, (t,x) = exp <J (m+1)u"u, (r,p(1,%)) dT> . (16)

0

The next lemma is reminiscent of a strong invariance
property of the Camassa-Holm equation (the conservation of
momentum [21]).

Lemma 7 (see [20]). Letu, € H® withs >3, andlet T > 0 be
the maximal existence time of the problem (5). It holds that
Yt p(6,5)) P (£,X) = yo (x) eh ™l (17)

where (t,x) € [0,T) x Rand y := u —u,, + k/2(m + 1).

Lemma8. Ifu, € H', s > 3, such that(l—ai)u0+k/2(m+1) >
0, k > 0 (or equivalently, (1 —ai)uo +k/2m+1) <0, k<0),
then the solution of problem (5) satisfies

|k|
"ux"L‘X‘ < lullpe + m <c. (18)

Proof. Using uy—u,.,.+k/2(m+1) > 0, it follows from Lemma
7thatu—u,, +k/2(m+1) > 0. Letting Y, = u—u,,, we have

xx>
1 (% 1 (™,
u= e J eYl(t,n)dn+Ee J e Y, (t,n)dny,
(19)
from which we obtain

0,u(t, x)

- _% (e-x J ey, (t,n)dn+e* J e Yy (t.n) d’?)

X
+e* J e Y, (t,n)dn

=-u(t,x)+e J e Y, (t,n)dn

X

(7 - k
=-u(t,x)+e L e”<Y1(t,n)+m>d11

koo [® o
T2m+1)S L e tdn

=-u(t,x)+e* L e (y(t,n))dy

_k
2(m+1)

C2(m+1)

>—u(t,x) -

(20)

On the other hand, we have

0,u(t,x)

== (e_x J ey, (t,n)dn+e J e Y (t.n) dn)

X

—e” J 'Y, (t:n)dn

=u(t,x)—e " J ey, (t,n)dn
=u(t,x)—e " J' e’ (Y1 (1) +

k N
+—2(m+1)e Jﬁooedr]

k
2(m+1)>d’7

= —e* * 4 _—
u(t,x)—e Jlooey(t,n)dn+2(m+l)

<u(t,x)+ m

(21)

The inequalities (19), (20), and (21) derive that inequality (18)
is valid. Similarly, if (1 — 02)u, + k/2(m + 1) < 0,k < 0, we
still know that (18) is valid. ]

Lemma9. Fors > 0, u, € H, it holds that

"usOx”LOo < C"T/lox”Loo,
[ueolipe <o ifg<s,

q/4

[eoll o < ™ if g > s, (22)

lleteo — ol o < ce” 1, ifq<s,

o — 1ol = = 0 (1),

where c is a constant independent of .

The proof of this lemma can be found in Lai and Wu [15].
From Lemma 3, it derives that the Cauchy problem

= ) s )

—(m+1)0, (umui) +u"u ., (23)

u(0,x) =u,(x), x€R,

has a unique solution u depending on the parameter e. We
write u, (¢, x) to represent the solution of problem (23). Using
Lemma 3 derives that u,(t,x) € C([0,T), H*(R)) since
ug(x) € Cy°(R).



Lemma 10. Provided thatu, € H, 1 < s < 3/2,k > 0, and
(1- ai)uo +k/2(m+1) € N"(R) (or equivalently (1 —ai)uo +
k/2(m+1) € N (R), k < 0), then there exists a constant ¢, > 0
independent of € such that the solution of problem (23) satis-

fies

K.
2m+1) - "

[texll o < [t ;eo + (24)

Proof. Using identity (10) and Lemma 9, if u, € H*(R) with
1 <s<3/2,wehave

letell oo = el = useollen <. (25)

where ¢ is independent of ¢.
From Lemma 8, we have

Ik Ik|

2one) =T 2mey 2

el oo < Nl +

which completes the proof. O

Lemma 11. Forany f, € L, f, € H® with z < 0, it holds
that

”flfz”HZ < C"fl"LmlfanZ for any z < 0. (27)

The proof of this lemma can be found in [15].

4. Existence and Uniqueness of
Global Weak Solution

Provided that 1 < s < 3/2, for problem (23), applying
Lemmas 5,9, and 10, and the Gronwall’s inequality, we obtain
the inequalities

letellirr < Jueollir <

t
"us"H‘l < C"usO"H‘? €xp |:J;) ("“sx” + ”uex”i“’) dT] sce,

el < Dot (14 ) < ¢ (1 +€%),

(28)

where g € (0,s],r € [0,s—1], and cis a constant independent
of &. It follows from the Aubin’s compactness theorem that
there is a subsequence of {1}, denoted by {”s,, }, such that {usn}
and their temporal derivatives {u, ,} are weakly convergent to

a function u(t, x) and its derivative u, in L*([0,T], H) and
LZ([O, T],Hsfl), respectively, where T' is an arbitrary fixed
positive number. Moreover, for any real number R, > 0,
{u,,} is convergent to the function u strongly in the space
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Lz([O, T],HY(-R,,R))) for ¢ € (0,s] and {usnt} converges

to u, strongly in the space L*([0,T],H"(-R,R,)) for r €
[0,s—1].

4.1. The Proof of Existence for Global Weak Solution. For
an arbitrary fixed T > 0, from Lemma 10, we know that
{usnx}(sn — 0) is bounded in the space L*. Thus, the
sequences {u, }, {u, .}, {uix}, and {ugnx} are weakly conver-
gent to u, u, uz, and 1 in L*([0,T], H'(-R,, R,)) for any
r € [0,5—1), separately. Using u” (1) . = (u"u2) . — (u™) 142,
we know that u satisfies the equation

T
- J JR u (gt - gxxt) dxdt

0
T
m+3 0 m 2)
= — +(m+1

Jo JR [<m+2u (m Ju Hx ) 9x

(29)

1 m+2 1 m_ 2
U Gyxx ~ Eu UGy

m+2
m
—zum 1uig] dxdt,

with u(0, x) = u,(x) and g € C°. Since X = L' ([0, T] x R) is
a separable Banach space and {u, ,} is a bounded sequence
in the dual space X* = L™([0,T] x R) of X, there exists
a subsequence of {u, .}, still denoted by {u, ,}, weakly star
convergent to a function v in L ([0, T] x R). As {usnx} weakly
converges to u, in L*([0, T] x R), it results that u, = valmost
everywhere. Thus, we obtain u, € L([0, T]xR). Since T > 0
is an arbitrary number, we complete the global existence of
weak solutions to problem (5).

Proof of Uniqueness. Suppose that there exist two global
weak solutions u(f, x) and v(t, x) to problem (5) with the
same initial value u(0,x) € H°(R), 1 < s < 3/2, we
consider its associated regularized problem (23). Letting w, =
u(t, x) = v(t, x), from Lemma 10, we get [|0u,; ,)/0xl o <
¢ and [|0v, ) /0xll ;. < ¢ which is independent of . Still
denoting u = u,,v = v,, and w = w,, it holds that

w, = (1 _ a)zc)*l [_ax (um+2 _ Um+2)
-9, [0, (") 0w
+ax (um+1 _ Um+1) axv]
(30)

+ [umuxuxx - vmvxvxx] ]

= 1 Zax (um+2 3 Um+2)

>

w(0,x) = 0.
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Multiplying both sides of (30) by w, we get

%% JR widx < ¢ J w(um+2 vm+2)xdx‘
N J w A—z mi2 m+2 dx ‘
R
-2 m+1
+ JRw [a )a w] dx

+ J wA” 2[6 W - m+1)6xv]xdx
R

=)
+ J wA™ [u"uu,, —0v"v,0, ] dx
R

=L+, +I;+1,+1s.
(1)

Using [lull 0 < ¢, [Vl < ¢, lugllieo < ¢ lluygllpe < ¢, we have

m+1
o
I, <c J w wZqu"1+ Il dx
R
X

j=0

m+l . m+l .
=c J w|w, Z W™ 1w Z (ujvmﬂ_])x dx
R =0 =0

-1 m+1 . . m+1 . .
=c J <—w2) Z (u]vm“_J) + w? Z (ujvm“_J) dx
r\ 2 = X = X
1 2 s j, m+l—j
:CJR<EW>;( )dx

+1—
< ol S [ ) ]

=0

< c||w||iz.
(32)

Applying Lemma 11 repeatedly, we have

A—Z(um+2 _ Um+2)

I, < clulys P

m+1

wz u]vm+1—]

=0

< cllwll

LZ

m+1

2 j m+1-j
< clwlize Y. lullje ol
j=0

2
< clwllyz,

I < clwl 2 HA_2 [ax (um+1) axw]xHLz
< clwlp2 o, (u™") .w ;-

< clwl 2 [9,w] 1 o (™) o
< cllwl?2,

Iy < clwl2 Hax (uWrl - UWHI) axv"H,1

< cllwll;2 ”axv”L"O "ax (um+1 MH)"H

< cllwll;: Huerl B vm+1H

m

wZuJ v

=0

< cllwllp2

LZ

m
2 j m—
< cllwlj> Y lul]e vl

j=0

< cllwll?..
(33)

For I5, using Lemma 11 derives

Is < clwl2 ”(um -u™) (ui)x + Um[“fc - vi]xH -
=0") () L + " [ - 2],
") ()], -

I 01 = 0, (1t + 0,0 )

< cllwlz | (" [

< clhwlz (][«

- Um)xu)chHfz

2 2
< cllwl;2 ("(um—vm) ux"H,1 +||(1/tm—1f")xuxHH,2 +c||w||Lz)

m—1
2 m—1—
< cllwll2 <||ux||Lm||w||Lz 3 lullwlvllye ™ + c||w||Lz>

=0
< c||w||iz.
(34)
Using (32)-(34), we get
23 J wdx < cllwl|}:. (35)

Applying w(0) = 0 results in ||w||iz = 0. Consequently, we
know that the global weak solution is unique. O
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