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Nonautonomous long-short wave equations with quasiperiodic forces are studied. We prove the existence of the uniform attractor
for the system by means of energy method, which is widely used to deal with problems who have no continuity (with respect to
the initial data) property, as well as to those which Sobolev compact imbedding cannot be applied. Afterwards, we construct an
approximate inertial manifold bymeans of extending phase spacemethod andwe estimated the size of the corresponding attracting
neighborhood for this manifold.

1. Introduction

In this paper, we investigate the long time behavior of
solutions for the following nonautonomous generalized dis-
sipative LS equations with quasiperiodic forces:

𝑖𝑢
𝑡
+ 𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛾𝑢 + 𝑔 (|𝑢|

2
) 𝑢 = ℎ

1
(𝑥, 𝑡) , (1)

𝑛
𝑡
+ 𝛽𝑛 + |𝑢|

2

𝑥
+ 𝑓 (|𝑢|

2
) = ℎ

2
(𝑥, 𝑡) , (2)

with initial conditions and space-periodic boundary condi-
tions as

𝑢 (𝑥, 𝜏) = 𝑢
𝜏
(𝑥) , 𝑛 (𝑥, 𝜏) = 𝑛

𝜏
(𝑥) , (3)

𝑢 (𝑥 − 𝐷, 𝑡) = 𝑢 (𝑥 + 𝐷, 𝑡) , 𝑛 (𝑥 − 𝐷, 𝑡) = (𝑥 + 𝐷, 𝑡) ,

(4)

where 𝑥 ∈ Ω = (−𝐷, 𝐷), 𝐷 > 0 and 𝛾 and 𝛽 are positive
constants.

The long-wave short-wave (LS) resonance equations arise
in many kinds of physical models (see [1–4]). Due to their
rich physical and mathematical properties, the LS equations
have drawn much attention. The autonomous situations,
including the existence of solutions, the solitary waves and

their stability, and the long time behaviors of the solutions,
have been deeply researched (see [5–14]).

Recently, the nonautonomous case of LS equations with
translation compact forces was studied in [15]. Because of the
nonlinear resonance of the equations, it is difficult to prove
the continuity of the process 𝑈(𝑡, 𝜏) generated by (1)–(4).
Thus, it is hard to construct the uniform attractor directly
by constructing a compact uniform absorbing set even if the
forces are translation compact, and in [15] only the weakly
compact uniform attractor for the system is obtained.

In this paper, we firstly investigate the compact uni-
form attractor for systems (1)–(4) by employing the energy
equations and the energy method presented by Ball (see
[16, 17]). The energy method can be concisely understood
as the following two steps (e.g., in autonomous cases): (1)
construct a weakly compact attractor and (2) prove the strong
compactness of theweak attractor, that is, verify that theweak
attractor is actually the strong one. To accomplish Step 1,
one can construct a bounded (weakly compact) absorbing
set and the weak continuity of the system. Step 2 is usually
deduced by applying proper energy inequalities together with
Lemmas 11 and 12. Obviously, this method is good at solving
problems which are not continuous and those that lack
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Sobolev embeddings (such as systems defined in unbounded
domains).

Besides, approximate inertial manifolds (AIM) for the
system is studied afterwards. This manifold is a finite-
dimensional smooth surface in a phase space, whose small
vicinity attracts all the trajectories at a much higher speed
than global attractors. To investigate AIM, by employing
the extending phase space method we transfer the nonau-
tonomous system 𝑈

𝜎
(𝑡 ⋅ 𝜏) to an autonomous one 𝑆(𝑡), and

we get the AIM for𝑈
𝜎
(𝑡 ⋅ 𝜏) by constructing the AIM for 𝑆(𝑡).

The main result of this paper contains Theorems 13 and
17. It is summarized by the following.

MainTheorem. Assume that

(i) ℎ
𝑗
(𝑥, 𝑡), 𝑗 = 1, 2, are quasiperiodic forces satisfying

Assumption 1;

(ii) generalized 𝑓(𝑠) and 𝑔(𝑠) are quasilinear functions
satisfying (9) and (10).

Then systems (1)–(4) generate a family of processes 𝑈
𝜎
(𝑡, 𝜏) in

𝐸
0
:= 𝐻

2

𝑝𝑒𝑟
(Ω) × 𝐻

1

𝑝𝑒𝑟
(Ω). Moreover, the family of processes

𝑈
𝜎
(𝑡, 𝜏) admits a compact uniform attractor A

Σ
and an AIM

in 𝐸
0
.

Wewould like to remark that the existence of the compact
uniform attractor for the system does not depend heavily
on the quasiperiodicity of the forces. It still holds when the
forces are just translation bounded (see Remark 14), that is, it
strengthens the result in [15].

This paper is organized as follows. In Section 2, we show
the LS equations in details and we deeply introduce the
quasiperiodicity conditions. In Section 3, we get the uniform
a prior estimates for the solutions. In Section 4, we study the
unique existence of the solution. In Section 5 the existence
of the uniform attractor for (5)–(8) is obtained by applying
weak convergence method. In Section 6, AIM for (5)–(8) is
constructed by extending and splitting the phase space and
making use of projection operators.

Throughout this paper, we denote by ‖ ⋅‖ the norm of𝐻 =
𝐿
2

per(Ω) with usual inner product (⋅, ⋅), denote by ‖ ⋅ ‖
𝑝
the

norm of 𝐿𝑝per(Ω) for all 1 ⩽ 𝑝 ⩽ ∞(‖ ⋅ ‖2 = ‖ ⋅ ‖), and denote
by ‖ ⋅ ‖

𝑋
the norm of any Banach space𝑋. Besides, notations

“⇀”, “ ∗

⇀”, and “→ ” denote weakly converges to, weakly star
converges to and strongly converges to, respectively. And we
denote different constants by the same letter 𝐶, and 𝐶(⋅, ⋅)
represents that the constant relies only on the parameters that
appear in the brackets.

2. Preliminaries

We show the nonautonomous dissipative generalized long-
short wave equations with quasiperiodic forces in details as
follows:

𝑖𝑢
𝑡
+ 𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛾𝑢 + 𝑔 (|𝑢|

2
) 𝑢 = ℎ

1
(𝑥, 𝑡) , (5)

𝑛
𝑡
+ 𝛽𝑛 + |𝑢|

2

𝑥
+ 𝑓 (|𝑢|

2
) = ℎ

2
(𝑥, 𝑡) , (6)

with initial value conditions

𝑢 (𝑥, 𝜏) = 𝑢
𝜏
(𝑥) , 𝑛 (𝑥, 𝜏) = 𝑛

𝜏
(𝑥) ,

𝑥 ∈ Ω = (−𝐷,𝐷) , 𝐷 > 0,

(7)

and periodic boundary value conditions

𝑢 (𝑥 − 𝐷, 𝑡) = 𝑢 (𝑥 + 𝐷, 𝑡) , 𝑛 (𝑥 − 𝐷, 𝑡) = (𝑥 + 𝐷, 𝑡) ,

(8)

where 𝑢(𝑥, 𝑡) is an unknown complex valued vector, 𝑛(𝑥, 𝑡) is
an unknown real valued function, 𝛾, 𝛽 are positive constants
and nonautonomous terms ℎ

1
(𝑥, 𝑡), and ℎ

2
(𝑥, 𝑡) are time-

depended external forces satisfying quasiperiodicity condi-
tions (see Assumption 1); non-linear terms 𝑓(𝑠) and 𝑔(𝑠) are
given real-valued functions, satisfying

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨 ⩽ 𝑐1 (𝑠

𝑝/2
+ 1) ,

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨 ⩽ 𝑐2 (𝑠

1/2
+ 1) ,

0 ⩽ 𝑠 < ∞, 𝑝 < 2.

(9)

󵄨󵄨󵄨󵄨󵄨
𝑓

(𝑘)
(𝑠)
󵄨󵄨󵄨󵄨󵄨
⩽ 𝑐

3
,
󵄨󵄨󵄨󵄨󵄨
𝑔
(𝑘)
(𝑠)
󵄨󵄨󵄨󵄨󵄨
⩽ 𝑐

4
, 𝑘 = 1, 2, (10)

where 𝑐
𝑗
are given positive constants for 𝑗 = 1, 2, 3, 4.

Let I be a topological space, and 𝜑(𝑠) ∈ I is a function.
The set

H (𝜑) = {𝜑(ℎ + 𝑠) | ℎ ∈ R} (11)

is called the hull of 𝜑 inI, denoted byH(𝜑). 𝜑 is translation
compact (resp., translation bounded) if H(𝜑) is compact
(resp., bounded) inI.

We denote all the translation compact functions in
𝐿
2

loc(R; 𝑋) by 𝐿
2

𝑐
(R; 𝑋); 𝑋 is a 𝐵𝑎𝑛𝑎𝑐ℎ space. Apparently,

𝜑 ∈ 𝐿
2

𝑐
(R; 𝑋) implies that 𝜑 is translation bounded as follows:

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑏
(R;𝑋)

= sup
𝑡∈R

∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

𝑋
𝑑𝑠 < ∞. (12)

Assumption 1. For 𝑖 = 1, 2, we suppose ℎ
𝑖
(𝑥, 𝑡) ∈ 𝐶

1
(𝜏, +∞;

𝐻
1

per(Ω)) and it satisfies quasiperiodicity conditions; namely,

ℎ
𝑖
(𝑥, 𝑡) = 𝐻

𝑖
(𝑥, 𝜔

𝑖
(𝑡)) = 𝐻

𝑖
(𝑥, 𝜔

𝑖

1
(𝑡) , . . . , 𝜔

𝑖

𝑘
𝑖

(𝑡)) , (13)

and for all 𝑗 ∈ {1, 2, . . . , 𝑘
𝑖
},

𝐻
𝑖
(𝑥, 𝜔

𝑖

1
, 𝜔

𝑖

2
, . . . , 𝜔

𝑖

𝑗
+ 2𝜋, . . . , 𝜔

𝑖

𝑘
𝑖

)

= 𝐻
𝑖
(𝑥, 𝜔

𝑖

1
, 𝜔

𝑖

2
, . . . , 𝜔

𝑖

𝑗
, . . . , 𝜔

𝑖

𝑘
𝑖

) ,

(14)

where 𝜔𝑖

𝑗
= 𝛼

𝑖

𝑗
𝑡, 1 ⩽ 𝑘

𝑖
< ∞, and {𝛼𝑖

𝑗
}
𝑘
𝑖

𝑗=1
are rational and

independent;𝐻
𝑖
is differentiable to each position and

𝐻
𝑖
,
𝜕𝐻

𝑖

𝜕𝜔
𝑖

𝑗

∈ 𝐻
1

per (Ω) . (15)

If ℎ
𝑖
(𝑥, 𝑡) satisfy Assumption 1, we can consider the

symbol spaceH(ℎ
𝑖
) as



Abstract and Applied Analysis 3

H (ℎ
𝑖
) = {𝐻

𝑖
(𝛼

𝑖

1
𝑡 + 𝜔

𝑖

01
, 𝛼

𝑖

2
𝑡 + 𝜔

𝑖

02
, . . . , 𝛼

𝑖

𝑘
𝑖

𝑡 + 𝜔
𝑖

0𝑘
𝑖

) | (𝜔
𝑖

01
, 𝜔

𝑖

02
, . . . , 𝜔

𝑖

0𝑘
𝑖

) =: 𝜔
𝑖

0
∈ 𝑇𝑘

𝑖}. (16)

Since there is a continuous mapping 𝑇𝑘
𝑖 → H(ℎ

𝑖
) : 𝜔

𝑖

0
→

𝐻
𝑖
(𝛼

𝑖
𝑡 + 𝜔

𝑖

0
), from [18] we know that the symbol space Σ

0
=

H(ℎ
1
) ×H(ℎ

2
) can be replaced by 𝑇𝑘

:= 𝑇
𝑘
1 × 𝑇

𝑘
2 . And, for

each 𝜔
0
:= (𝜔

1

0
, 𝜔

2

0
) ∈ 𝑇

𝑘, the translation operator acting on
𝑇

𝑘 can be defined as
𝑇 (ℎ) : 𝑇 (ℎ) 𝜔

0
= [𝜔

0
+ 𝛼ℎ]

= (𝜔
0
+ 𝛼ℎ) mod (2𝜋)𝑘.

(17)

Therefore, 𝑇𝑘 is translation compact.

Proposition 2. Under Assumption 1, we can deduce the fol-
lowing properties:

(i) ℎ
𝑖
(𝑥, 𝑡) is translation bounded in 𝐻1

𝑝𝑒𝑟
(Ω); that is,

sup
𝑡⩾𝜏

∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩ℎ𝑖(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
1

𝑝𝑒𝑟

𝑑𝑠 ⩽ ∫

𝜏+𝑇

𝜏

󵄩󵄩󵄩󵄩ℎ𝑖(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
1

𝑝𝑒𝑟

𝑑𝑠 ⩽ 𝐶, (18)

where 𝑇 = max{1, 2𝜋 ⋅ ∏𝑘
𝑖

𝑗=1
𝛼
𝑖

𝑗
}, 𝐶 = 𝑇 ⋅

max
𝜏⩽𝑡⩽𝜏+𝑇

‖ℎ
𝑖
(𝑡)‖

2

𝐻
1

𝑝𝑒𝑟

,

(ii) for all 𝑦
1
∈H(ℎ

1
), ‖𝑦

1
‖
2

𝐿
2

𝑏
(R;𝑋)

⩽ ‖ℎ
1
‖
2

𝐿
2

𝑏
(R;𝑋)

,

(iii) ℎ
𝑖𝑡
∈ 𝐻

1

𝑝𝑒𝑟
(Ω), which can be seen directly from (15) and

the fact that

ℎ
𝑖𝑡
=

𝑘
𝑖

∑

𝑗=1

𝜕𝐻
𝑖

𝜕𝜔
𝑖

𝑗

𝛼
𝑖

𝑗
. (19)

Moreover, ℎ
𝑖𝑡
is translation bounded in 𝐻1

𝑝𝑒𝑟
(Ω). Similarly to

(18), by the continuity of ℎ
𝑖𝑡
, we can find a constant 𝐶, which is

independent of 𝑡, such that
󵄩󵄩󵄩󵄩ℎ𝑖𝑡
󵄩󵄩󵄩󵄩𝐿∞
𝑏
(𝜏,∞;𝐻

1

𝑝𝑒𝑟
)
⩽ 𝐶. (20)

For brevity, we set𝑊(𝑥, 𝑡) := (𝑢(𝑥, 𝑡), 𝑛(𝑥, 𝑡)), 𝑌
0
(𝑥, 𝑡) :=

(ℎ
1
(𝑥, 𝑡), ℎ

2
(𝑥, 𝑡)), and let 𝐸

0
:= 𝐻

2

per(Ω) × 𝐻
1

per(Ω) with the
norm

‖𝑊‖
𝐸
0

= {‖𝑢‖
2

𝐻
2 + ‖𝑛‖

2

𝐻
1}

1/2

. (21)

Similarly, we let Σ
0
:= H(ℎ

1
) × H(ℎ

2
) and for each 𝑌 =

(𝑦
1
, 𝑦

2
) ∈ Σ

0
,

‖𝑌‖
Σ
0

= {
󵄩󵄩󵄩󵄩𝑦1
󵄩󵄩󵄩󵄩

2

𝐻
1 +
󵄩󵄩󵄩󵄩𝑦2
󵄩󵄩󵄩󵄩

2

𝐻
1}

1/2

. (22)

Then systems (5)–(8) can be rewritten as

𝜕
𝑡
𝑊 = 𝐴

𝜎(𝑡)
𝑊, 𝑊|

𝑡=𝜏
= 𝑊

𝜏
,

𝑊 (𝑥 + 𝐷, 𝑡) = 𝑊 (𝑥 − 𝐷, 𝑡) ,

(23)

where the symbol 𝜎(𝑠) = 𝑌(𝑥, 𝑠) or𝜔(𝑠) and the symbol space
Σ = Σ

0
or 𝑇𝑘.

3. Uniform a Prior Estimates of the Solutions

In this section, we derive uniform a priori estimates of the
solutions both in time 𝑡 and in symbols 𝑌(𝑥, 𝑡) = (𝑦

1
, 𝑦

2
)

which come from the symbol space Σ =H(ℎ
1
)×H(ℎ

2
). First

we recall the following interpolation inequality.

Lemma 3. Let 𝑗,𝑚 ∈ N ∪ {0}, 𝑞, 𝑟 ∈ R+, such that 0 ⩽ 𝑗 < 𝑚,
1 ⩽ 𝑞, 𝑟 ⩽ ∞. Then we have

󵄩󵄩󵄩󵄩󵄩
𝐷

𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩𝑝
⩽ 𝐶
󵄩󵄩󵄩󵄩𝐷

𝑚
𝑢
󵄩󵄩󵄩󵄩

𝑎

𝑟
‖𝑢‖

1−𝑎

𝑞
, (24)

for 𝑢 ∈ 𝑊𝑚,𝑟
(Ω) ∩ 𝐿

𝑞
(Ω), where Ω ⊂ R1 and 𝑗/𝑚 ⩽ 𝑎 ⩽ 1,

1/𝑝 = 𝑗 + 𝑎((1/𝑟) − 𝑚) + ((1 − 𝑎)/𝑞).

Lemma 4. Let Assumption 1 hold. If 𝑢
𝜏
(x) ∈ 𝐿2

𝑝𝑒𝑟
(Ω) and

𝑌(𝑥, 𝑡) ∈ Σ, then the solutions of problem (5)–(8) satisfy

‖𝑢 (𝑡)‖ ⩽ 𝐶
1
, ∀𝑡 ⩾ 𝑡

1
, (25)

where 𝐶
1
= 𝐶(𝛾, ℎ

1
) and 𝑡

1
= 𝐶(𝛾, ℎ

1
, 𝑅), whenever ‖𝑢

𝜏
‖ ⩽ 𝑅.

Proof. Taking the inner product of (5) with 𝑢 in 𝐿2per(Ω) we
get that

(𝑖𝑢
𝑡
+ 𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛾𝑢 + 𝑔 (|𝑢|

2
) 𝑢, 𝑢) = (𝑦

1
(𝑥, 𝑡) , 𝑢) . (26)

Taking the imaginary part of (26), we obtain that

1

2

𝑑

𝑑𝑡
‖𝑢‖

2
+ 𝛾‖𝑢‖

2
= Im (𝑦

1
, 𝑢) . (27)

By Young inequality and Proposition 2 we have

𝑑

𝑑𝑡
‖𝑢‖

2
+ 𝛾‖𝑢‖

2
⩽
1

𝛾

󵄩󵄩󵄩󵄩𝑦1(𝑥, 𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑏
(R;𝐻per)

⩽
1

𝛾

󵄩󵄩󵄩󵄩ℎ1(𝑥, 𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑏
(R;𝐻
1

per)
.

(28)

Then by Gronwall lemma we can complete the proof.

In the following, we denote by ∫ ⋅ 𝑑𝑥 = ∫
Ω
⋅ 𝑑𝑥, which

will not cause no confusions.

Lemma 5. Under assumptions of (9) and (10) and
Assumption 1, if 𝑊(𝜏) ∈ 𝐻1

𝑝𝑒𝑟
× 𝐻

𝑝𝑒𝑟
, then solutions of

problems (5)–(8) satisfy

‖𝑊(𝑡)‖
2

𝐻
1

𝑝𝑒𝑟
×𝐻
𝑝𝑒𝑟

⩽ 𝐶
2
, ∀𝑡 ⩾ 𝑡

2
, (29)

where 𝐶
2
= 𝐶(𝛾, 𝛽, 𝑓, 𝑔, 𝑌

0
, ℎ

1𝑡
) and 𝑡

2
= 𝐶(𝛾, 𝛽, 𝑓, 𝑔, 𝑌

0
, ℎ

1𝑡
,

𝑅), whenever ‖𝑊
𝜏
‖
𝐻
1
×𝐻
⩽ 𝑅.
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Proof. Taking the inner product of (5) with 𝑢
𝑡
in𝐻per(Ω) and

taking the real part, we have

−
1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

−
1

2
∫ 𝑛
𝑑

𝑑𝑡
|𝑢|

2
𝑑𝑥 + Re (𝑖𝛾𝑢, 𝑢

𝑡
)

+
1

2
∫𝑔 (|𝑢|

2
)
𝑑

𝑑𝑡
|𝑢|

2
𝑑𝑥 = Re (𝑦

1
(𝑥, 𝑡) , 𝑢

𝑡
) .

(30)

By (6) we know that

𝑑

𝑑𝑡
∫ 𝑛
𝑑

𝑑𝑡
|𝑢|

2
𝑑𝑥

=
𝑑

𝑑𝑡
∫ 𝑛|𝑢|

2
𝑑𝑥 − ∫ |𝑢|

2
𝑛
𝑡
𝑑𝑥

=
𝑑

𝑑𝑡
∫ 𝑛|𝑢|

2
𝑑𝑥 + ∫ |𝑢|

2
|𝑢|

2

𝑥
𝑑𝑥 + 𝛽∫𝑛|𝑢|

2
𝑑𝑥

+ ∫𝑓 (|𝑢|
2
) |𝑢|

2
𝑑𝑥 − ∫𝑦

2
(𝑥, 𝑡) |𝑢|

2
𝑑𝑥

=
𝑑

𝑑𝑡
∫ 𝑛|𝑢|

2
𝑑𝑥 + 𝛽∫𝑛|𝑢|

2
𝑑𝑥

+ ∫𝑓 (|𝑢|
2
) |𝑢|

2
𝑑𝑥 − ∫𝑦

2
|𝑢|

2
𝑑𝑥,

(31)

which shows that

−
1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

−
1

2
(
𝑑

𝑑𝑡
∫ 𝑛|𝑢|

2
𝑑𝑥 + 𝛽∫𝑛|𝑢|

2
𝑑𝑥

+∫𝑓 (|𝑢|
2
) |𝑢|

2
𝑑𝑥 − ∫𝑦

2
|𝑢|

2
𝑑𝑥)

+
1

2

𝑑

𝑑𝑡
∫𝐺 (|𝑢|

2
) 𝑑𝑥 + Re (𝑖𝛾𝑢, 𝑢

𝑡
) −
𝑑

𝑑𝑡
Re (𝑦

1
, 𝑢)

+ Re∫𝑦
1𝑡
(𝑥, 𝑡) 𝑢 𝑑𝑥 = 0,

(32)

where 𝐺(𝑠) is introduced by

𝐺 (𝑠) = ∫

𝑠

0

𝑔 (𝜉) 𝑑𝜉. (33)

Taking the inner product of (5) with 𝑢 in𝐻per(Ω) and taking
the real part, we get that

Re (𝑖𝑢
𝑡
, 𝑢) −

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

− ∫𝑛|𝑢|
2
𝑑𝑥 + ∫𝑔 (|𝑢|

2
) |𝑢|

2
𝑑𝑥

− Re (𝑦
1
(𝑥, 𝑡) , 𝑢) = 0.

(34)

Multiply (34) by 𝛾 and add the resulting identity to (32) to get

−
1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

−
1

2

𝑑

𝑑𝑡
∫ 𝑛|𝑢|

2
𝑑𝑥 −

1

2
(𝛽 + 2𝛾)∫ 𝑛|𝑢|

2
𝑑𝑥

−
1

2
∫𝑓 (|𝑢|

2
) |𝑢|

2
𝑑𝑥 +

1

2
∫𝑦

2
(𝑥, 𝑡) |𝑢|

2
𝑑𝑥

+
1

2

𝑑

𝑑𝑡
∫𝐺 (|𝑢|

2
) 𝑑𝑥 − 𝛾

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝛾∫𝑔 (|𝑢|
2
) |𝑢|

2
𝑑𝑥

− 𝛾Re (𝑎 (𝑥, 𝑡) , 𝑢) − 𝑑
𝑑𝑡

Re (𝑦
1
(𝑥, 𝑡) , 𝑢)

+ Re∫𝑦
1𝑡
(𝑥, 𝑡) 𝑢𝑑𝑥 = 0.

(35)

That is,

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ ∫𝑛|𝑢|
2
𝑑𝑥 − ∫𝐺 (|𝑢|

2
) 𝑑𝑥

+ 2Re∫𝑦
1
(𝑥, 𝑡) 𝑢𝑑𝑥)

+ 𝛾 (
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ ∫𝑛|𝑢|
2
𝑑𝑥 − ∫𝐺 (|𝑢|

2
) 𝑑𝑥

+ 2Re∫𝑦
1
(𝑥, 𝑡) 𝑢𝑑𝑥) + 𝛾

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

= −∫𝑓 (|𝑢|
2
) |𝑢|

2
𝑑𝑥 + ∫𝑦

2
(𝑥, 𝑡) |𝑢|

2
𝑑𝑥

− 𝛾∫𝐺 (|𝑢|
2
) 𝑑𝑥 − (𝛾 + 𝛽)∫ 𝑛|𝑢|

2
𝑑𝑥

+ 2Re∫𝑦
1𝑡
(𝑥, 𝑡) 𝑢 𝑑𝑥.

(36)

In the following, we denote by 𝐶 any constants depending
only on the data (𝛼, 𝛽, 𝑓, 𝑔) and 𝐶(⋅, ⋅) means it depends not
only on (𝛾, 𝛽, 𝑓, 𝑔) but also on parameters in the brackets. For
all 𝜌 > 0, when 𝑡 is sufficiently large, by (9), Lemmas 3 and 4
we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
− ∫𝑓 (|𝑢|

2
) |𝑢|

2
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶∫ |𝑢|
𝑝+2
𝑑𝑥 + 𝐶∫ |𝑢|

2
𝑑𝑥

⩽ 𝐶∫ (|𝑢|
2𝑝
+ |𝑢|

4
) 𝑑𝑥 + 𝐶‖𝑢‖

2

⩽ 𝐶‖𝑢‖
4

4
+ 𝐶 ⩽ 𝐶

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩 ‖𝑢‖

3
+ 𝐶 ⩽ 𝜌

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶 (𝜌) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ 𝑦

2
(𝑥, 𝑡) |𝑢|

2
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽
󵄩󵄩󵄩󵄩𝑦2 (𝑥, 𝑡)

󵄩󵄩󵄩󵄩

2

𝐿
2

𝑏
(R;𝐻

1

per)
+ ‖𝑢‖

4

4

⩽
󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑏
(R;𝐻
1

per)
+ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩 ⩽ 𝜌

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶
2
(𝜌) .

(37)
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By (9) we deduce that

|𝐺 (𝑠)| ⩽
2

3
𝑐
2
𝑠
3/2
+ 𝑐

2
𝑠, ∀𝑠 ⩾ 0. (38)

And then
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−𝛾∫

Ω

𝐺(|𝑢|
2
) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶∫ (|𝑢|
3
+ |𝑢|

2
) 𝑑𝑥

⩽ 𝐶‖𝑢‖
3

3
+ 𝐶‖𝑢‖

2

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

1/2

‖𝑢‖
5/2
+ 𝐶 ⩽ 𝜌

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶
3
(𝜌) ,

(39)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
− (𝛾 + 𝛽)∫

Ω

𝑛|𝑢|
2
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝜌‖𝑛‖
2
+ 𝐶 (𝜌) ‖𝑢‖

4

4

⩽ 𝜌‖𝑛‖
2
+ 𝜌
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶
4
(𝜌) ,

(40)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2Re∫

Ω

𝑦
1𝑡
(𝑥, 𝑡) 𝑢𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽
󵄩󵄩󵄩󵄩𝑦1𝑡
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑐
(R;𝐻
1

per)
+ ‖𝑢‖

2

⩽ 𝐶(
󵄩󵄩󵄩󵄩ℎ1𝑡
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑐
(R;𝐻

1

per)
, ‖𝑢‖

2
) .

(41)

By (36)–(41) we deduce that
𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ ∫𝑛|𝑢|
2
𝑑𝑥 − ∫𝐺 (|𝑢|

2
) 𝑑𝑥

+ 2Re∫𝑦
1
(𝑥, 𝑡) 𝑢𝑑𝑥)

+ 𝛾 (
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ ∫𝑛|𝑢|
2
𝑑𝑥 − ∫𝐺 (|𝑢|

2
) 𝑑𝑥

+ 2Re∫𝑦
1
𝑢𝑑𝑥) + 𝛾

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

⩽ 𝜌‖𝑛‖
2
+ 4𝜌
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶 (𝜌)

+ 𝐶 (
󵄩󵄩󵄩󵄩ℎ1𝑡
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑏
(R;𝐻
1

per)
, ‖𝑢‖

2
) .

(42)

Similarly we can also deduce that
𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ ∫𝑛|𝑢|
2
𝑑𝑥 − ∫𝐺 (|𝑢|

2
) 𝑑𝑥

+ 2Re∫𝑦
1
𝑢𝑑𝑥)

+ 𝛽(
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ ∫𝑛|𝑢|
2
𝑑𝑥 − ∫𝐺 (|𝑢|

2
) 𝑑𝑥

+ 2Re∫𝑦
1
𝑢𝑑𝑥) + (2𝛾 − 𝛽)

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

⩽ 𝜌‖𝑛‖
2
+ 4𝜌
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶 (𝜌)

+ 𝐶 (
󵄩󵄩󵄩󵄩ℎ1𝑡
󵄩󵄩󵄩󵄩

2

𝐿
2

𝑏
(R;𝐻
1

per)
, ‖𝑢‖

2
) .

(43)

Taking the inner product of (6) with 𝑛 in𝐻per(Ω), we have

1

2

𝑑

𝑑𝑡
‖𝑛‖

2
+ ∫𝑛|𝑢|

2

𝑥
𝑑𝑥 + 𝛽‖𝑛‖

2
+ ∫𝑓 (|𝑢|

2
) 𝑛 𝑑𝑥

−∫𝑦
2
(𝑥, 𝑡) 𝑛 𝑑𝑥 = 0.

(44)

By (5) we get that

∫𝑛|𝑢|
2

𝑥
𝑑𝑥

= ∫𝑛𝑢
𝑥
𝑢 𝑑𝑥 + ∫𝑛𝑢𝑢

𝑥
𝑑𝑥

= 𝑖 ∫ (𝑢
𝑡
𝑢
𝑥
− 𝑢

𝑡
𝑢
𝑥
) 𝑑𝑥 + 2Re∫ 𝑖𝛾𝑢𝑢

𝑥
𝑑𝑥

− 2Re∫𝑦
2
(𝑥, 𝑡) 𝑢

𝑥
𝑑𝑥,

(45)

𝑑

𝑑𝑡
∫ (𝑖𝑢𝑢

𝑥
− 𝑖𝑢

𝑥
𝑢) 𝑑𝑥

= 𝑖 ∫ (𝑢
𝑡
𝑢
𝑥
+ 𝑢𝑢

𝑥𝑡
− 𝑢

𝑥𝑡
𝑢 − 𝑢

𝑥
𝑢
𝑡
) 𝑑𝑥

= 𝑖 ∫ (𝑢
𝑡
𝑢
𝑥
− 𝑢

𝑥
𝑢
𝑡
+ 𝑢

𝑡
𝑢
𝑥
− 𝑢

𝑥
𝑢
𝑡
) 𝑑𝑥

= 2𝑖 ∫ (𝑢
𝑡
𝑢
𝑥
− 𝑢

𝑡
𝑢
𝑥
) 𝑑𝑥.

(46)

It comes from (44)–(46) that

𝑑

𝑑𝑡
‖𝑛‖

2
+
𝑑

𝑑𝑡
∫ 𝑖 (𝑢𝑢

𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥 + 2𝛽‖𝑛‖

2

+ 𝑖𝛾∫ (𝑢𝑢
𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥

⩽ 𝑖𝛾∫ (𝑢𝑢
𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥 − 4Re∫ 𝑖𝛾𝑢𝑢

𝑥
𝑑𝑥

+ 4Re∫𝑦
1
(𝑥, 𝑡) 𝑢

𝑥
𝑑𝑥 − 2∫𝑓 (|𝑢|

2
) 𝑛 𝑑𝑥

+ 2∫𝑦
2
(𝑥, 𝑡) 𝑛 𝑑𝑥.

(47)

Dealing with the right hand side of inequality (47), by
Lemmas 3 and 4, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑖𝛾 ∫ (𝑢𝑢

𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ 2𝛾 ‖𝑢‖

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩 ⩽ 𝜌

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩 + 𝐶1

(𝜌) ,

(48)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−4Re∫ 𝑖𝛾𝑢𝑢

𝑥
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ 4𝛾 ‖𝑢‖

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩 ⩽ 𝜌

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩 + 𝐶2

(𝜌) , (49)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−2∫𝑓 (|𝑢|

2
) 𝑛𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶∫ |𝑢|
𝑝
|𝑛| 𝑑𝑥 + 𝐶∫ |𝑛| 𝑑𝑥
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⩽
1

2
𝜌‖𝑛‖

2
+ 𝐶 (𝜌)∫ |𝑢|

2𝑝
𝑑𝑥 +

1

2
𝜌‖𝑛‖

2
+ 𝐶 (𝜌)

⩽ 𝜌‖𝑛‖
2
+ 𝐶 (𝜌)

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

𝑝−1

‖𝑢‖
𝑝+1
+ 𝐶 (𝜌)

⩽ 𝜌‖𝑛‖
2
+ 𝜌
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶
3
(𝜌) ,

(50)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
4Re∫𝑦

2
𝑢
𝑥
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 4
󵄩󵄩󵄩󵄩𝑦1
󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;𝐻
1

per)

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩 ⩽ 𝜌

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩 + 𝐶4

(𝜌,
󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;𝐻
1

per)
) ,

(51)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ∫ 𝑦

2
𝑛 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 2
󵄩󵄩󵄩󵄩𝑦2
󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;𝐻
1

per)
‖𝑛‖ ⩽ 𝜌‖𝑛‖

2
+ 𝐶

5
(𝜌,
󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;𝐻
1

per)
) .

(52)

Therefore,

𝑑

𝑑𝑡
(‖𝑛‖

2
+ 𝑖 ∫ (𝑢𝑢

𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥) + 2𝛽‖𝑛‖

2

+ 𝑖𝛾∫ (𝑢𝑢
𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥

⩽ 2𝜌‖𝑛‖
2
+ 4𝜌
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶(𝜌,
󵄩󵄩󵄩󵄩𝑌0 (𝑥, 𝑡)

󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;Σ)
) .

(53)

Analogously, we can also deduce that

𝑑

𝑑𝑡
(‖𝑛‖

2
+ 𝑖 ∫ (𝑢𝑢

𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥) + 2𝛽‖𝑛‖

2

+ 𝑖𝛽∫ (𝑢𝑢
𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥

⩽ 2𝜌‖𝑛‖
2
+ 4𝜌
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶(𝜌,
󵄩󵄩󵄩󵄩𝑌0 (𝑥, 𝑡)

󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;Σ)
) .

(54)

Set 𝜖 = min{𝛾, 𝛽}, and

𝐸 =
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ ‖𝑛‖
2
+ ∫𝑛|𝑢|

2
𝑑𝑥 − ∫𝐺 (|𝑢|

2
) 𝑑𝑥

+ 2Re∫𝑦
1
𝑢𝑑𝑥 + 𝑖 ∫ (𝑢𝑢

𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥.

(55)

Then by (42) and (53) and (43) and (54) we can respectively
deduce that

𝑑

𝑑𝑡
𝐸 + 𝛾𝐸 + 𝛾

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝛽‖𝑛‖
2

⩽ 8𝜌
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 3𝜌‖𝑛‖
2
+ 𝐶(𝜌,

󵄩󵄩󵄩󵄩𝑌0 (𝑥, 𝑡)
󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;Σ)
) ,

𝑑

𝑑𝑡
𝐸 + 𝛽𝐸 + 𝛾

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝛽‖𝑛‖
2

⩽ 8𝜌
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 3𝜌‖𝑛‖
2
+ 𝐶(𝜌,

󵄩󵄩󵄩󵄩𝑌0 (𝑥, 𝑡)
󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;Σ)
) ,

(56)

which shows that if we set 𝜌 ⩽ min{𝛼/8, 𝛽/3}, we can deduce
that

𝑑

𝑑𝑡
𝐸 + 𝜖𝐸 ⩽ 𝐶

0
, ∀𝑡 ⩾ 𝑡

0
, (57)

where𝐶
0
= 𝐶(𝜌, ‖𝑌

0
(𝑥, 𝑡)‖

𝐿
2

𝑏
(R;Σ)
, ‖ℎ

1𝑡
(𝑥, 𝑡)‖

𝐿
2

𝑏
(R;Σ)
). By Gron-

wall lemma we have that

𝐸 (𝑡) ⩽ 𝐸 (𝑡
0
) 𝑒

−𝛾(𝑡−𝑡
0
)
+
𝐶

0

𝜖
, ∀𝑡 ⩾ 𝑡

0
. (58)

Similarly to (39), (40), (51), and (48), for 𝑡 ⩾ 𝑡
0
we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ 𝑛|𝑢|

2
𝑑𝑥 − ∫𝐺 (|𝑢|

2
) 𝑑𝑥 + 2Re∫𝑦

1
𝑢 𝑑𝑥

+𝑖 ∫ (𝑢𝑢
𝑥
− 𝑢

𝑥
𝑢) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝜌‖𝑛‖
2
+ 𝜌
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶(𝜌,
󵄩󵄩󵄩󵄩ℎ1 (𝑥, 𝑡)

󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;Σ)
) .

(59)

And then
󵄨󵄨󵄨󵄨𝐸 (𝑡0)

󵄨󵄨󵄨󵄨 ⩽
󵄩󵄩󵄩󵄩𝑢𝑥 (𝑡0)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑛 (𝑡0)

󵄩󵄩󵄩󵄩

2

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫ 𝑛 (𝑡

0
)
󵄨󵄨󵄨󵄨𝑢 (𝑡0)

󵄨󵄨󵄨󵄨

2

𝑑𝑥 − ∫𝐺 (
󵄨󵄨󵄨󵄨𝑢 (𝑡0)

󵄨󵄨󵄨󵄨

2

) 𝑑𝑥

+ 2Re∫𝑦
1
(𝑡

0
) 𝑢 (𝑡

0
) 𝑑𝑥

+𝑖 ∫ (𝑢 (𝑡
0
) 𝑢

𝑥
(𝑡

0
) − 𝑢

𝑥
(𝑡

0
) 𝑢 (𝑡

0
)) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝐶 (𝑅) ,

(60)

where 𝐶(𝑅) = 𝐶(𝜌, ‖𝑌
0
(𝑥, 𝑡)‖

𝐿
2

𝑏
(R;Σ)
, ‖ℎ

1𝑡
(𝑥, 𝑡)‖

𝐿
2

𝑏
(R;Σ)
, 𝑅)

when ‖𝑊
𝜏
‖
𝐻
1
×𝐻
⩽ 𝑅. Then by (58) we infer that

𝐸 (𝑡) ⩽ 𝐶 (𝑅) 𝑒
−𝛾(𝑡−𝑡

0
)
+
𝐶

0

𝜖
, ∀𝑡 ⩾ 𝑡

0
,

⩽
2𝐶

0

𝜖
, ∀𝑡 ⩾ 𝑡

∗
,

(61)

where 𝑡
∗
= inf{𝑡 | 𝑡 ⩾ 𝑡

0
and 𝐶(𝑅)𝑒−𝜖(𝑡∗−𝑡0) ⩽ 𝐶

0
/𝜖}. By (55),

(59) and (61) we infer that
󵄩󵄩󵄩󵄩𝑢𝑥(𝑡)

󵄩󵄩󵄩󵄩

2

+ ‖𝑛(𝑡)‖
2
⩽ 𝜌‖𝑛‖

2
+ 𝜌
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶
0
. (62)

Choosing 𝜌 = min{𝛾/8, 𝛽/3, 1/2}, we have
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ ‖𝑛 (𝑡)‖
2
⩽ 𝐶(

󵄩󵄩󵄩󵄩𝑌0 (𝑥, 𝑡)
󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;Σ)
,
󵄩󵄩󵄩󵄩ℎ1𝑡 (𝑥, 𝑡)

󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;Σ)
) ,

∀𝑡 ⩾ 𝑡
∗
,

(63)

which concludes the proof by using Lemma 4.

Lemma 6. Under assumptions of Lemma 5, if𝑊(𝜏) ∈ 𝐸
0
=

𝐻
2

𝑝𝑒𝑟
(Ω) × 𝐻

1

𝑝𝑒𝑟
(Ω), then solutions of problems (5)–(8) satisfy

‖𝑊(𝑡)‖
2

𝐸
0

⩽ 𝐶
2
, ∀𝑡 ⩾ 𝑡

3
, (64)

where 𝐶
2
= 𝐶(𝛾, 𝛽, 𝑓, 𝑔, 𝑌

0
, 𝑎

0𝑡
) and 𝑡

3
= 𝐶(𝛾, 𝛽, 𝑓, 𝑔, 𝑌

0
,

𝑎
0𝑡
, 𝑅), whenever ‖𝑊

𝜏
‖
𝐸
0

⩽ 𝑅.
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Proof. Taking the real part of the inner product of (5) with
𝑢
𝑥𝑥𝑡

in𝐻per(Ω), we have

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

− Re∫𝑛𝑢𝑢
𝑥𝑥𝑡
𝑑𝑥 + Re (𝑖𝛾𝑢, 𝑢

𝑥𝑥𝑡
)

+ Re∫𝑔 (|𝑢|2) 𝑢𝑢
𝑥𝑥𝑡
𝑑𝑥 − Re∫𝑦

1
(𝑥, 𝑡) 𝑢

𝑥𝑥𝑡
𝑑𝑥 = 0.

(65)

By (5) and (6), we have

− Re∫𝑛𝑢𝑢
𝑥𝑥𝑡
𝑑𝑥

= −
𝑑

𝑑𝑡
∫Re (𝑛𝑢𝑢

𝑥𝑥
) 𝑑𝑥

+ Re∫𝑛
𝑡
𝑢𝑢

𝑥
𝑥𝑑𝑥 + Re∫𝑛𝑢

𝑡
𝑢
𝑥𝑥
𝑑𝑥

= −
𝑑

𝑑𝑡
∫Re (𝑛𝑢𝑢

𝑥𝑥
) 𝑑𝑥

− Re∫𝑢𝑢
𝑥𝑥
(|𝑢|

2

𝑥
+ 𝛽𝑛 + 𝑓 (|𝑢|

2
) − 𝑦

2
) 𝑑𝑥

+ Re∫𝑛𝑢
𝑥𝑥
(−𝑖𝑛𝑢 − 𝛾𝑢 + 𝑖𝑔 (|𝑢|

2
) 𝑢 − 𝑖𝑦

1
) 𝑑𝑥.

(66)

Since

Re (𝑖𝑢, 𝑢
𝑥𝑥𝑡
) = Re∫ 𝑖𝑢𝑢

𝑡𝑥𝑥
𝑑𝑥 = −Re∫ 𝑖𝑢

𝑡
𝑢
𝑥𝑥
𝑑𝑥, (67)

we know that
Re (𝑖𝛾𝑢, 𝑢

𝑥𝑥𝑡
)

= 𝛾
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

− 𝛾Re∫𝑛𝑢𝑢
𝑥𝑥
𝑑𝑥

+ 𝛾Re∫𝑔 (|𝑢|2) 𝑢𝑢
𝑥𝑥
𝑑𝑥 − 𝛾Re∫𝑦

1
𝑢
𝑥𝑥
𝑑𝑥.

(68)

Multiply (5) by 𝑢 and take the real part, we find that

|𝑢|
2

𝑡
= 2Re (𝑖𝑢

𝑥𝑥
𝑢) − 2𝛾|𝑢|

2
− 2Re (𝑖𝑦

1
𝑢) . (69)

Therefore,

Re∫𝑔 (|𝑢|2) 𝑢𝑢
𝑥𝑥𝑡
𝑑𝑥

= −∫𝑔
󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥 − ∫𝑔 (|𝑢|

2
)
1

2

𝑑

𝑑𝑡

󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥

= −∫𝑔
󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥 −

1

2

𝑑

𝑑𝑡
∫𝑔 (|𝑢|

2
)
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ ∫𝑔
󸀠
(|𝑢|

2
)
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

(Re (𝑖𝑢
𝑥𝑥
𝑢) − 𝛾|𝑢|

2
− Re (𝑖𝑦

1
𝑢)) 𝑑𝑥.

(70)

Now we deal with (70) to get (78). Due to equalities

|𝑢|
2

𝑥
= 2Re (𝑢𝑢

𝑥
) ,

𝑑

𝑑𝑡
Re (𝑢𝑢

𝑥
) = Re (𝑢

𝑡
𝑢
𝑥
) + Re (𝑢𝑢

𝑥𝑡
) ,

(71)

we deduce that

∫𝑔
󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥

=
𝑑

𝑑𝑡
∫𝑔

󸀠
(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

− ∫𝑔
󸀠󸀠
(|𝑢|

2
) |𝑢|

2

𝑡
2Re (𝑢𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

− ∫𝑔
󸀠
(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)
𝑡
Re (𝑢𝑢

𝑥
) 𝑑𝑥

− ∫𝑔
󸀠
(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)Re (𝑢

𝑡
𝑢
𝑥
) 𝑑𝑥.

(72)

We take care of terms in (72) as follows

∫𝑔
󸀠󸀠
(|𝑢|

2
) |𝑢|

2

𝑡
2Re (𝑢𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

= 4∫𝑔
󸀠󸀠
(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

× (Re (𝑖𝑢
𝑥𝑥
𝑢) − 𝛾|𝑢|

2
− Re (𝑖𝑦

1
𝑢)) 𝑑𝑥,

(73)

∫𝑔
󸀠
(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)
𝑡
Re (𝑢𝑢

𝑥
) 𝑑𝑥

= ∫𝑔
󸀠
(|𝑢|

2
) 2Re (𝑢

𝑡
𝑢
𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

+ ∫𝑔
󸀠
(|𝑢|

2
) 2Re (𝑢𝑢

𝑥𝑡
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

= 2∫𝑔
󸀠
(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥
(𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛾𝑢 + 𝑔 (|𝑢|

2
) 𝑢 − 𝑦

1
)) 𝑑𝑥

+ ∫𝑔
󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥,

(74)

∫𝑔
󸀠
(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)Re (𝑢

𝑡
𝑢
𝑥
) 𝑑𝑥

= 2∫𝑔
󸀠
(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥
(𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛾𝑢 + 𝑔 (|𝑢|

2
) 𝑢 − 𝑦

1
)) 𝑑𝑥.

(75)

It follows from (72)–(75) that

− ∫𝑔
󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥

= −
𝑑

𝑑𝑡
∫𝑔

󸀠
(|𝑢|

2
) 2Re (𝑢𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

+ 4∫𝑔
󸀠󸀠
(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

× (Re (𝑖𝑢
𝑥𝑥
𝑢) − 𝛾|𝑢|

2
− Re (𝑖𝑦

1
𝑢)) 𝑑𝑥
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+ 4∫𝑔
󸀠
(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥
(𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛾𝑢 + 𝑔 (|𝑢|

2
) 𝑢 − 𝑦

1
)) 𝑑𝑥

+ ∫𝑔
󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥.

(76)

And then

− ∫𝑔
󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
Re (𝑢𝑢

𝑥𝑡
) 𝑑𝑥

= −
𝑑

𝑑𝑡
∫𝑔

󸀠
(|𝑢|

2
)Re (𝑢𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

+ 2∫𝑔
󸀠󸀠
(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

× (Re (𝑖𝑢
𝑥𝑥
𝑢) − 𝛾|𝑢|

2
− Re (𝑖𝑦

1
𝑢)) 𝑑𝑥

+ 2∫𝑔
󸀠
(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥
(𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛾𝑢 + 𝑔 (|𝑢|

2
) 𝑢 − 𝑦

1
)) 𝑑𝑥.

(77)

From (70) and (77) we have

Re∫𝑔 (|𝑢|2) 𝑢𝑢
𝑥𝑥𝑡
𝑑𝑥

= −
𝑑

𝑑𝑡
∫𝑔

󸀠
(|𝑢|

2
)Re (𝑢𝑢

𝑥
)Re (𝑢𝑢

𝑥
) 𝑑𝑥

−
1

2

𝑑

𝑑𝑡
∫𝑔 (|𝑢|

2
)
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ 2∫𝑔
󸀠󸀠
(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

× (Re (𝑖𝑢
𝑥𝑥
𝑢) − 𝛾|𝑢|

2
− Re (𝑖𝑦

1
𝑢)) 𝑑𝑥

+ 2∫𝑔
󸀠
(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥
(𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛾𝑢 + 𝑔 (|𝑢|

2
) 𝑢 − 𝑦

1
)) 𝑑𝑥

+ ∫𝑔
󸀠
(|𝑢|

2
)
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

× (Re (𝑖𝑢
𝑥𝑥
𝑢) − 𝛾|𝑢|

2
− Re (𝑖𝑦

1
𝑢)) 𝑑𝑥.

(78)

By (65), (66), (68), and (78) we conclude that

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

− 2Re∫𝑛𝑢𝑢
𝑥𝑥
− 2∫𝑔

󸀠
(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

−∫𝑔 (|𝑢|
2
) |𝑢|

2

𝑥
− 2Re∫𝑦

1
𝑢
𝑥𝑥
)

+ 2𝛾 (
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

− 2Re∫𝑛𝑢𝑢
𝑥𝑥
− 2∫𝑔

󸀠
(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

−∫𝑔 (|𝑢|
2
)
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

− 2Re∫𝑦
1
𝑢
𝑥𝑥
)

+ 2𝛾∫ 𝑛𝑢𝑢
𝑥𝑥
𝑑𝑥 + 4𝛾∫𝑔

󸀠
(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

𝑑𝑥

+ 2𝛾∫𝑔 (|𝑢|
2
)
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 2𝛾Re∫𝑦
1
𝑢
𝑥𝑥
𝑑𝑥

− 2Re∫𝑢𝑢
𝑥𝑥
(|𝑢|

2

𝑥
+ 𝛽𝑛 + 𝑓 (|𝑢|

2
) − 𝑦

2
) 𝑑𝑥

+ 2Re∫𝑛𝑢
𝑥𝑥
(−𝑖𝑛𝑢 − 𝛾𝑢 + 𝑖𝑔 (|𝑢|

2
) − 𝑖𝑦

1
) 𝑑𝑥

+ 2𝛾Re∫𝑔 (|𝑢|2) 𝑢𝑢
𝑥𝑥
𝑑𝑥

+ 4∫𝑔
󸀠󸀠
(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

(Re (𝑖𝑢
𝑥𝑥
𝑢) − 𝛾|𝑢|

2

− Re (𝑖𝑦
1
𝑢)) 𝑑𝑥

+ 4∫𝑔
󸀠
(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥
(𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛾𝑢 + 𝑔 (|𝑢|

2
) 𝑢 − 𝑦

1
)) 𝑑𝑥

+ 2∫𝑔
󸀠
(|𝑢|

2
)
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

× (Re (𝑖𝑢
𝑥𝑥
𝑢) − 𝛾|𝑢|

2
− Re (𝑖𝑦

1
𝑢)) 𝑑𝑥

+ 2Re∫𝑦
1𝑡
𝑢
𝑥𝑥
𝑑𝑥 = 0,

(79)

where ∫ ⋅ = ∫ ⋅ 𝑑𝑥.
For later purpose, we let

𝐹 (𝑢, 𝑛, 𝑦
1
) = −2Re∫𝑛𝑢𝑢

𝑥𝑥
𝑑𝑥 − 2∫𝑔

󸀠
(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

𝑑𝑥

− ∫𝑔 (|𝑢|
2
)
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥 − 2Re∫𝑦
1
𝑢
𝑥𝑥
𝑑𝑥,

(80)

− 𝐺 (𝑢, 𝑛, 𝑦
1
, 𝑦

2
)

= 2𝛾∫ 𝑛𝑢𝑢
𝑥𝑥
𝑑𝑥 + 4𝛾∫𝑔

󸀠
(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

𝑑𝑥
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+ 2𝛾∫𝑔 (|𝑢|
2
)
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 2𝛾Re∫𝑦
1
𝑢
𝑥𝑥
𝑑𝑥

− 2Re∫𝑢𝑢
𝑥𝑥
(|𝑢|

2

𝑥
+ 𝛽𝑛 + 𝑓 (|𝑢|

2
) − 𝑦

2
) 𝑑𝑥

+ 2Re∫𝑛𝑢
𝑥𝑥
(−𝑖𝑛𝑢 − 𝛾𝑢 + 𝑖𝑔 (|𝑢|

2
) − 𝑖𝑦

1
) 𝑑𝑥

+ 2𝛾Re∫𝑔 (|𝑢|2) 𝑢𝑢
𝑥𝑥
𝑑𝑥

+ 4∫𝑔
󸀠󸀠
(|𝑢|

2
) (Re (𝑢𝑢

𝑥
))

2

(Re (𝑖𝑢
𝑥𝑥
𝑢) − 𝛾|𝑢|

2

−Re (𝑖𝑦
1
𝑢)) 𝑑𝑥

+ 4∫𝑔
󸀠
(|𝑢|

2
)Re (𝑢𝑢

𝑥
)

× Re (𝑖𝑢
𝑥
(𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛾𝑢

+𝑔 (|𝑢|
2
) 𝑢 − 𝑦

1
)) 𝑑𝑥

+ 2∫𝑔
󸀠
(|𝑢|

2
)
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

× (Re (𝑖𝑢
𝑥𝑥
𝑢) − 𝛾|𝑢|

2
− Re (𝑖𝑦

1
𝑢)) 𝑑𝑥

+ 2Re∫𝑦
1𝑡
𝑢
𝑥𝑥
𝑑𝑥.

(81)

Then from (79) we have

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐹) + 2𝛾 (
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐹) = 𝐺 (82)

or

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐹) + 𝛾 (
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐹) + 𝛼
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

= 𝐺 − 𝛾𝐹.

(83)

By Lemma 5 and Agmon inequality we have

‖𝑢(𝑡)‖
2

𝐻
1 + ‖𝑢(𝑡)‖

2

∞
+ ‖𝑛(𝑡)‖

2

𝐻
⩽ 2𝐶

2
, ∀𝑡 ⩾ 𝑡

2
. (84)

In the following, we denote 𝐶 = 𝐶(𝛼, 𝛽, 𝑓, 𝑔, 𝑌
0
, 𝑎

0𝑡
). By

Lemma 3 and (84) we estimate the size of |𝐺 − 𝛾𝐹| to get

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐹) + 𝛾 (
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐹) + 𝛾
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

⩽ 𝐶∫ |𝑛|
2 󵄨󵄨󵄨󵄨𝑢𝑥𝑥

󵄨󵄨󵄨󵄨 𝑑𝑥 + 𝐶∫
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑢𝑥𝑥
󵄨󵄨󵄨󵄨 𝑑𝑥

+ 𝐶∫
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

|𝑛𝑢| 𝑑𝑥 + 𝐶

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩 ‖𝑛‖

2

4

+ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

4
+ 𝐶‖𝑢‖

𝐿
∞ ‖𝑛‖

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

4
+ 𝐶

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

1/2

‖𝑛‖
3/2
+ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

3/2󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

3/2

+ 𝐶‖𝑢‖
𝐿
∞ ‖𝑛‖

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

7/4

‖𝑢‖
1/4
+ 𝐶

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

1/2

+ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

7/4

+ 𝐶

⩽
𝛾

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+
𝛽

2

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶.

(85)

Taking the inner product of (6) with 𝑛
𝑥𝑥

in 𝐻per(Ω), we see
that

−
1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ ∫ |𝑢|
2

𝑥
𝑛
𝑥𝑥
𝑑𝑥 − 𝛽

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ ∫𝑓 (|𝑢|
2
) 𝑛

𝑥𝑥
𝑑𝑥 − ∫𝑦

2
𝑛
𝑥𝑥
𝑑𝑥 = 0.

(86)

Since

∫ |𝑢|
2

𝑥
𝑛
𝑥𝑥
𝑑𝑥 = 2∫Re (𝑢𝑢

𝑥
𝑛
𝑥𝑥
) 𝑑𝑥

= −2∫Re (𝑢𝑢
𝑥𝑥
𝑛
𝑥
+
󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

𝑛
𝑥
) 𝑑𝑥,

(87)

by (86) we can deduce that

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 4∫Re (𝑢𝑢
𝑥𝑥
𝑛
𝑥
) 𝑑𝑥 + 4∫

󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

𝑛
𝑥
𝑑𝑥 + 2𝛽

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 2∫𝑓
󸀠
(|𝑢|

2
) (𝑢

𝑥
𝑢 + 𝑢𝑢

𝑥
) 𝑛

𝑥
𝑑𝑥 − 2∫𝑦

2𝑥
𝑛
𝑥
𝑑𝑥 = 0.

(88)

From (5) we know that

𝑖𝑢
𝑡𝑥
+ 𝑢

𝑥𝑥𝑥
− 𝑛

𝑥
𝑢 − 𝑛𝑢

𝑥
+ 𝑖𝛾𝑢

𝑥
+ 𝑔

󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
𝑢

+ 𝑔 (|𝑢|
2
) 𝑢

𝑥
− 𝑦

1𝑥
(𝑥, 𝑡) = 0.

(89)

Taking the real part of the inner product to (89) with 𝑢
𝑥𝑥

in
𝐻per(Ω), we have

Re∫ 𝑖𝑢
𝑡𝑥
𝑢
𝑥𝑥
− Re∫𝑛

𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥 − Re∫𝑛𝑢

𝑥
𝑢
𝑥𝑥
𝑑𝑥

+ Re∫ 𝑖𝛾𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥 + Re∫𝑔󸀠 (|𝑢|2) |𝑢|2

𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥

+ Re∫𝑔 (|𝑢|2) 𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥 − Re∫𝑦

1𝑥
𝑢
𝑥𝑥
𝑑𝑥 = 0.

(90)

Because of

𝑑

𝑑𝑡
Re∫ 𝑖𝑢

𝑥
𝑢
𝑥x𝑑𝑥 = 2Re∫ 𝑖𝑢𝑡𝑥𝑢𝑥𝑥𝑑𝑥, (91)
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it holds that

1

2

𝑑

𝑑𝑡
Re∫ 𝑖𝑢

𝑥
𝑢
𝑥𝑥
𝑑𝑥 − Re∫𝑛

𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥 − Re∫𝑛𝑢

𝑥
𝑢
𝑥𝑥
𝑑𝑥

+ Re∫ 𝑖𝛾𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥 + Re∫𝑔󸀠 (|𝑢|2) |𝑢|2

𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥

+ Re∫𝑔 (|𝑢|2) 𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥 − Re∫𝑦

1𝑥
𝑢
𝑥𝑥
𝑑𝑥 = 0.

(92)

By (92) and (88), we find that

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 2
𝑑

𝑑𝑡
Re∫ 𝑖𝑢

𝑥
𝑢
𝑥𝑥
𝑑𝑥 + 4∫

󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

𝑛
𝑥
𝑑𝑥

+ 2𝛽
󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 2∫𝑓
󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
𝑛
𝑥
𝑑𝑥 − 2∫𝑦

2𝑥
𝑛
𝑥
𝑑𝑥

− 4Re∫𝑛𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥 + 4𝛾Re∫ 𝑖𝑢

𝑥
𝑢
𝑥𝑥
𝑑𝑥

+ 4Re∫𝑔󸀠 (|𝑢|2) |𝑢|2
𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥

+ 4Re∫𝑔 (|𝑢|2) 𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥 − 4Re∫𝑦

1𝑥
𝑢
𝑥𝑥
𝑑𝑥 = 0.

(93)

That is,

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 2Re∫ 𝑖𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥)

+ 2𝛽 (
󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 2Re∫ 𝑖𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥)

= 4𝛽Re∫ 𝑖𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥 − 4∫

󵄨󵄨󵄨󵄨𝑢𝑥
󵄨󵄨󵄨󵄨

2

𝑛
𝑥
𝑑𝑥

− 2∫𝑓
󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
𝑛
𝑥
𝑑𝑥 + 2∫𝑦

2𝑥
𝑛
𝑥
𝑑𝑥

+ 4Re∫𝑛𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥 − 4𝛾Re∫ 𝑖𝑢

𝑥
𝑢
𝑥𝑥
𝑑𝑥

− 4Re∫𝑔󸀠 (|𝑢|2) |𝑢|2
𝑥
𝑢𝑢

𝑥𝑥
𝑑𝑥

− 4Re∫𝑔 (|𝑢|2) 𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥 + 4Re∫𝑦

1𝑥
𝑢
𝑥𝑥
𝑑𝑥.

(94)

For later use, we let

𝐹
1
(𝑢, 𝑛) =

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 2Re∫ 𝑖𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥, (95)

𝐺
1
(𝑢, 𝑛, 𝑦

1
, 𝑦

2
) = the right hand side of (94) . (96)

Then identity (94) as being equivalent to

𝑑

𝑑𝑡
𝐹
1
+ 2𝛽𝐹

1
= 𝐺

1
. (97)

Similarly to (85) we estimate each term in (94) and then we
get

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 2Re∫ 𝑖𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥)

+ 𝛽(
󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 2Re∫ 𝑖𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥) + 𝛽

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

⩽ 2𝛽Re∫ 𝑖𝑢
𝑥
𝑢
𝑥𝑥
𝑑𝑥 + 𝐶

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩 + 𝐶

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

4

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

+ 𝐶
󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩 + 𝐶

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩∞ ‖
𝑛‖
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩 + 𝐶

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

3/2󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

1/2 󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩 + 𝐶

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

+ 𝐶‖𝑢‖
1/4󵄩󵄩󵄩󵄩𝑢𝑥𝑥

󵄩󵄩󵄩󵄩

3/4

‖𝑛‖
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

⩽
𝛾

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+
𝛽

2

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶.

(98)

Let 𝜖 = min{𝛾, 𝛽}, and

𝐸 =
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐹 + 2Re∫ 𝑖𝑢
𝑥
𝑢
𝑥𝑥
𝑑x. (99)

By (85) and (98) we deduce that

𝑑

𝑑𝑡
𝐸 + 𝜖𝐸 ⩽ 𝐶, ∀𝑡 ⩾ 𝑡

2
, (100)

which has the same form with (57) in the proof of Lemma 5.
Similarly to the study of (57) we can derive that

𝐸 (𝑡
2
) ⩽ 𝐶 (𝑅

2
) , 𝐸 (𝑡) ⩽

2𝐶

𝜖
, ∀𝑡 ⩾ 𝑡

2∗
, (101)

where 𝑡
2∗
= inf{𝑡 | 𝑡 ⩾ 𝑡

2∗
, 𝐶(𝑅

2
)𝑒

−𝜖(𝑡
2∗

− 𝑡
0
)
⩽ 𝐶

0
/𝜖} and

𝐶(𝑅
2
) = 𝐶(𝛾, 𝛽, 𝑓, 𝑔, 𝑌

0
, ℎ

1𝑡
, 𝑅

2
) when ‖𝑊

𝜏
‖
𝐻
2
×𝐻
1 ⩽ 𝑅2

. By
(80) we deduce that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐹 + 2Re∫ 𝑖𝑢

𝑥
𝑢
𝑥𝑥
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 2‖𝑢‖
∞
‖𝑛‖
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

+ 𝐶‖𝑢‖
2

∞

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+ ‖𝑢‖
∞

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩𝐿2
𝑏
(R;Σ)

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩 + 2

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩 + 𝐶

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩 + 𝐶 ⩽

1

2

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐶,

(102)

and then by (99), (101), and (102), we deduce that

󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

⩽ 𝐶, ∀𝑡 ⩾ 𝑡
2∗
, (103)

which concludes the proof by Lemma 5.

To study the AIM for the system, we construct the
following higher order estimate.
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Lemma 7. Under the assumptions of (9) and (10) and
Assumption 1, for each𝑊

𝜏
∈ 𝐻

3

𝑝𝑒𝑟
(Ω) × 𝐻

1

𝑝𝑒𝑟
(Ω), solutions of

(5)–(8) satisfy

sup
𝜏⩽𝑡⩽𝑇

󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩 + sup

𝜏⩽𝑡⩽𝑇

‖𝑢‖
𝐻
3

𝑝𝑒𝑟

⩽ 𝐶, ∀𝑇 > 𝜏,

󵄩󵄩󵄩󵄩𝑛𝑡𝑥
󵄩󵄩󵄩󵄩 ⩽ 𝐶1

, ∀𝑡 > 𝑡
0
,

(104)

where 𝐶 = 𝐶(𝑇, ‖𝑢
𝜏
‖
𝐻
3

𝑝𝑒𝑟

, ‖𝑛
𝜏
‖
𝐻
1

𝑝𝑒𝑟

, 𝐶
0
), 𝐶

1
= 𝐶(𝐶

0
).

Proof. Taking the partial derivative of (6) with respect to 𝑥,
by (9) and (10) we have

󵄩󵄩󵄩󵄩𝑛𝑡𝑥
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
−𝛽𝑛

𝑥
− |𝑢|

2

𝑥𝑥
− 𝑓

󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
+ ℎ

2𝑥

󵄩󵄩󵄩󵄩󵄩

⩽ 𝐶‖𝑛‖
𝐻
1

per
+ 𝐶‖𝑢‖

𝐻
2

per

+
󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩𝐿∞
𝑏
(𝜏,∞;H1per)

⩽ 𝐶
1
.

(105)

Taking the partial derivatives of (5) with respect to 𝑥 and 𝑡,
we have that

𝑖𝑢
𝑡𝑡𝑥
+ 𝑢

𝑥𝑥𝑥𝑡
− (𝑛

𝑥𝑡
𝑢 + 𝑛

𝑡
𝑢
𝑥
+ 𝑛

𝑥
𝑢
𝑡
+ 𝑛𝑢

𝑥𝑡
) + 𝑖𝛾𝑢

𝑥𝑡

+ 𝑔
󸀠󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
|𝑢|

2

𝑡
𝑢 + 𝑔

󸀠
(|𝑢|

2
) |𝑢|

2

𝑥𝑡
𝑢

+ 𝑔
󸀠
(|𝑢|

2
) |𝑢|

2

𝑡
𝑢
𝑥
+ 𝑔

󸀠
(|𝑢|

2
) |𝑢|

2

𝑥
𝑢
𝑡
+ 𝑔 (|𝑢|

2
) 𝑢

𝑥𝑡
= ℎ

1𝑥𝑡
.

(106)

Taking the inner product of (106) with 𝑢
𝑥𝑡

and taking the
imaginary part, we get

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩

2

+ 𝛾
󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩

2

⩽ ∫
󵄨󵄨󵄨󵄨(𝑛𝑥𝑡𝑢 + 𝑛𝑡𝑢𝑥 + 𝑛𝑥𝑢𝑡) 𝑢𝑥𝑡

󵄨󵄨󵄨󵄨 𝑑𝑥

+ ∫
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠󸀠
(|𝑢|

2
) 𝑢𝑢

𝑥𝑡

× (𝑢
𝑥
𝑢
𝑡
𝑢
2
+ 𝑢

𝑥
𝑢
𝑡
|𝑢|

2
+ 𝑢

𝑥
𝑢
𝑡
|𝑢|

2
+ 𝑢

𝑥
𝑢
2

𝑡
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

+ ∫
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠
(|𝑢|

2
) 𝑢𝑢

𝑥𝑡

× (𝑢
𝑡𝑥
𝑢 + 𝑢

𝑥
𝑢
𝑡
+ 𝑢

𝑥
𝑢
𝑡
+ 𝑢𝑢

𝑡𝑥
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

+ ∫
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠
(|𝑢|

2
) 𝑢

𝑥
𝑢
𝑥𝑡
(𝑢

𝑡
𝑢 + 𝑢

𝑡
𝑢)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

+ ∫
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠
(|𝑢|

2
) 𝑢

𝑡
𝑢
𝑥𝑡
(𝑢

𝑥
𝑢 + 𝑢

𝑥
𝑢)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

+ ∫
󵄨󵄨󵄨󵄨ℎ1𝑥𝑡𝑢𝑥𝑡

󵄨󵄨󵄨󵄨 𝑑𝑥.

(107)

Since

∫
󵄨󵄨󵄨󵄨𝑛𝑥𝑢𝑡𝑢𝑥𝑡

󵄨󵄨󵄨󵄨 𝑑𝑥 ⩽
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩𝐿∞(Ω)

∫
󵄨󵄨󵄨󵄨𝑛𝑥𝑢𝑥𝑡

󵄨󵄨󵄨󵄨 𝑑𝑥

⩽
󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩𝐻1per
‖𝑛‖

𝐻
1

per

󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩

2

+ 𝐶,

∫
󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠
(|𝑢|

2
) 𝑢𝑢

𝑥𝑡
𝑢
𝑡𝑥
𝑢
󵄨󵄨󵄨󵄨󵄨
𝑑𝑥 ⩽ 𝐶‖𝑢‖

2

𝐿
∞
(Ω)

󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩

2

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩

2

,

(108)

dealing with each term in (107) in the same way, we deduce
that

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩

2

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩

2

+ 𝐶. (109)

By Gronwall lemma and (5) it follows that

sup
𝜏⩽𝑡⩽𝑇

󵄩󵄩󵄩󵄩𝑢𝑥𝑡
󵄩󵄩󵄩󵄩 + sup

𝜏⩽𝑡⩽𝑇

‖𝑢‖
𝐻
3

per
⩽ 𝐶, ∀𝑇 > 𝜏, (110)

where 𝐶 = 𝐶(𝑇, ‖𝑢
𝜏
‖
𝐻
3 , ‖𝑛𝜏‖𝐻1), which completes the proof.

4. Unique Existence of the Solution

In this section, we show the unique existence theorem of
the solutions. Since uniform a priori estimates have been
established in the former section, one can readily get the
existence of the solution by Galërkin’s method (see [9, 14, 16,
19]) or operator semigroup method (see [6]). We show the
theorem and prove it briefly for readers’ convenience.

Theorem 8. Under assumptions of Lemma 6, for each 𝑊
𝜏
∈

𝐸
0
, systems (5)–(8) has a unique global solution 𝑊(𝑥, 𝑡) ∈

𝐿
∞
(𝜏, 𝑇; 𝐸

0
), for all 𝑇 > 𝜏.

Proof. We prove this theorem briefly by two steps.

Step 1. Existence.ByGalërkin’smethod,we apply the following
approximate solution

𝑊
𝑙
(𝑥, 𝑡) =

𝑙

∑

𝑗=1

𝑤
𝑙

𝑗
(𝑡) 𝜂

𝑗
(𝑥) (111)

to approach𝑊(𝑥, 𝑡) and the solution of the problems (5)–(8),
where {𝜂

𝑗
}
∞

𝑗=1
is a orthogonal basis of𝐻(Ω) satisfying −Δ𝜂

𝑗
=

𝜆
𝑗
𝜂
𝑗
(𝑗 = 1, 2, . . .). And𝑊𝑙

(𝑥, 𝑡) satisfies, 𝑗 = 1, 2, . . . , 𝑙,

(𝑖𝑢
𝑙

𝑡
+ 𝑢

𝑙

𝑥𝑥
− 𝑛

𝑙
𝑢
𝑙
+ 𝑖𝛼𝑢

𝑙
+ 𝑔 (

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑙󵄨󵄨󵄨󵄨󵄨

2

) 𝑢
𝑙
− 𝑎, 𝜂

𝑗
) = 0,

(𝑛
𝑙

𝑡
+ 𝛽𝑛

𝑙
+
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑙󵄨󵄨󵄨󵄨󵄨

2

𝑥
+ 𝑓(

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑙󵄨󵄨󵄨󵄨󵄨

2

) − 𝑏, 𝜂
𝑗
) = 0,

(𝑊
𝑙
(𝑥, 𝜏) , 𝜂

𝑗
) = (𝑊

𝜏
, 𝜂

𝑗
) , 𝑊

𝑙
|
𝜕Ω
= 0.

(112)

It is easy to see that system (112) is an initial boundary
value problem of ODE for the unknown coefficients (𝑢𝑙

𝑗
, 𝑛

1

𝑗
);
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the solution of which is known to be unique. Like [19], by the
a priori estimates in Section 3we know that {𝑊𝑙

}
∞

𝑙=1
converges

(weakly star) to a𝑊(𝑥, 𝑡) which solves (5)–(8).

Step 2. Uniqueness. Suppose𝑊
1
and𝑊

2
are two solutions of

the problems (5)–(8). Let𝑊 = 𝑊
1
−𝑊

2
; then𝑊(𝑥, 𝑡) satisfies

𝑖𝑢
𝑡
+ 𝑢

𝑥𝑥
− 𝑛

1
𝑢
1
+ 𝑛

2
𝑢
2
+ 𝑖𝛼𝑢

+ 𝑔 (
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

) 𝑢
1
− 𝑔 (

󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

2

) 𝑢
2
= 0,

𝑛
𝑡
+ 𝛽𝑛 +

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

𝑥
−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

2

𝑥
+ 𝑓 (

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

) − 𝑓 (
󵄨󵄨󵄨󵄨󵄨
𝑢
2

2

󵄨󵄨󵄨󵄨󵄨
) = 0,

𝑊|
𝑡=𝜏
= 0, 𝑊|

𝜕Ω
= 0,

(113)

which has nothing to do with symbols. Similarly to [19–21],
we can deduce that ‖𝑊‖ = 0, which concludes the proof.

Similarly to [16], by Lemma 7wenote that systems (5)–(8)
has an unique global smooth solution in𝐻3

per(Ω) × 𝐻
1

per(Ω),
and, moreover, it follows the following lemma.

Lemma9. Under the assumptions of Lemma 7, for each𝑊
𝜏
∈

𝐻
3

𝑝𝑒𝑟
(Ω) × 𝐻

1

𝑝𝑒𝑟
(Ω), problems (5)–(8) have a unique global

solution 𝑊(𝑥, 𝑡) ∈ 𝐿∞(𝜏, 𝑇;𝐻3

𝑝𝑒𝑟
× 𝐻

1

𝑝𝑒𝑟
), for all 𝑇 > 𝜏,

satisfying

‖𝑊(𝑡)‖
2

𝐻
3

𝑝𝑒𝑟
×𝐻
1

𝑝𝑒𝑟

⩽ 𝐶, ∀𝑡 ⩾ 𝑡
1
, (114)

where 𝐶 relies on the data and 𝑡
1
relies on the data and 𝑅

whenever ‖𝑊
𝜏
‖
𝐻
3

𝑝𝑒𝑟
×𝐻
1

𝑝𝑒𝑟

⩽ 𝑅.

5. Existence of the Compact Uniform Attractor

In this section, we derive the existence of the compact
uniform attractor for the system applying Ball’s idea (see
[16, 17]).That is, first we construct the weak uniform attractor
(the convergences are taken in the sense of weak topology),
and then we show that the weak uniform attractor is actually
the strong one.

First we recall the following facts. Each solution trajectory
for systems (5)–(8) satisfie

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐹) + 2𝛼 (
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐹) = 𝐺, (115)

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑛x
󵄩󵄩󵄩󵄩

2

+ 𝐹
1
) + 2𝛽 (

󵄩󵄩󵄩󵄩𝑛𝑥
󵄩󵄩󵄩󵄩

2

+ 𝐹
1
) = 𝐺

1
, (116)

where 𝐹, 𝐺, 𝐹
1
, and 𝐺

1
are given by (80), (81), (95), and (96),

respectively. Moreover, by the uniform boundedness and the
compactness embedding𝐻𝑘

(Ω) 󳨅→ 𝐻
𝑘−1
(Ω) (for all 𝑘 ∈ Z

+
)

we have that 𝐹,𝐺 and 𝐹
1
,𝐺

1
are all weakly continuous in 𝐸

0
×

Σ.
Since we have uniformly estimated the size of solutions

by Lemma 6 and shown the unique existence of the solution
by Theorem 8, following the method of [8, 15] we have the
following theorem.

Theorem 10. Under assumptions of Theorem 8, the family of
processes {𝑈

𝜎
(𝑡, 𝜏)}

𝜎∈Σ
generated by systems (5)–(8) is weakly

(𝐸
0
× Σ, 𝐸

0
)-continuous and it admits a weakly compact

uniform attractorA
Σ
in 𝐸

0
= 𝐻

2

𝑝𝑒𝑟
(Ω) × 𝐻

1

𝑝𝑒𝑟
(Ω).

Proof. Since by Lemma 6 we know there exists a bounded
uniform absorbing set, it suffices to prove that {𝑈

𝜎
(𝑡, 𝜏)}

𝜎∈Σ
is

weakly (𝐸
0
×Σ, 𝐸

0
)-continuous and the existence of the weak

uniform attractor follows.
For any fixed 𝑡

1
⩾ 𝜏 ∈ R, let

(𝑊
𝜏𝑘
, 𝜎

𝑘
) ⇀ (𝑊

𝜏
, 𝜎) in 𝐸

0
× Σ, (117)

we will complete the proof if we deduce that

𝑊
𝜎
𝑘

(𝑡
1
) ⇀ 𝑊

𝜎
(𝑡

1
) in 𝐸

0
, (118)

where 𝑊
𝜎
𝑘

(𝑡
1
) = (𝑢

𝑘
(𝑡

1
), 𝑛

𝑘
(𝑡

1
)) = 𝑈

𝜎
𝑘

(𝑡
1
, 𝜏)𝑊

𝜏𝑘
, and

𝑊
𝜎
(𝑡

1
) = (𝑢(𝑡

1
), 𝑛(𝑡

1
)) = 𝑈

𝜎
(𝑡

1
, 𝜏)𝑊

𝜏
.

By (117) andTheorem 8 we get the boundedness
󵄩󵄩󵄩󵄩𝑊𝜏𝑘

󵄩󵄩󵄩󵄩𝐸
0

⩽ 𝐶, (119)

sup
𝑡∈[𝜏,𝑇]

󵄩󵄩󵄩󵄩󵄩
𝑊

𝜎
𝑘

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐸
0

⩽ 𝐶. (120)

By Agmon inequality ‖V‖
∞
⩽ 𝐶‖V‖

𝐻
1 we see that

󵄩󵄩󵄩󵄩󵄩
𝑊

𝜎
𝑘

(𝑡)
󵄩󵄩󵄩󵄩󵄩∞
⩽ 𝐶, ∀𝜏 ⩽ 𝑡 ⩽ 𝑇. (121)

Note that

𝑖𝑢
𝑘𝑡
= −𝑢

𝑘𝑥𝑥
+ 𝑛

𝑘
𝑢
𝑘
− 𝑖𝛾𝑢

𝑘
− 𝑔 (

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2

) 𝑢
𝑘
+ 𝑦

1𝑘
(𝑥, 𝑡) ,

(122)

𝑛
𝑘𝑡
= −
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2

𝑥
− 𝛽𝑛

𝑘
− 𝑓 (

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2

) + 𝑦
2𝑘
(𝑥, 𝑡) , (123)

and 𝜎
𝑘
= (𝑦

1𝑘
(𝑥, 𝑡), 𝑦

2𝑘
(𝑥, 𝑡)) ∈ Σ. By (120) and (121) we find

that 𝜕
𝑡
𝑊

𝜎
𝑘

(𝑡) ∈ 𝐿
∞
(𝜏, 𝑇;𝐻) and

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑡
𝑊

𝜎
𝑘

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐿∞(𝜏,𝑇;𝐻)

⩽ 𝐶. (124)

Due toTheorem 8 and (124) we know that there exists 𝑊̃(𝑡) ≜
(𝑢̃(𝑡), 𝑛(𝑡)) ∈ 𝐿

∞
(𝜏, 𝑇; 𝐸

0
) and subsequences of {𝑊

𝜎
𝑘

(𝑡)},
which are still denoted by {𝑊

𝜎
𝑘

(𝑡)}, such that

𝑊
𝜎
𝑘
(𝑡)

∗

⇀ 𝑊̃ (𝑡) in 𝐿∞ (𝜏, 𝑇; 𝐸
0
) , (125)

𝜕
𝑡
𝑊

𝜎
𝑘
(𝑡)

∗

⇀ 𝜕
𝑡
𝑊̃ (𝑡) in 𝐿∞ (𝜏, 𝑇;𝐻) . (126)

Besides, for all 𝑡
1
∈ [𝜏.𝑇], by (120) we know that there exists

𝑊
0
≜ (𝑢

0
, 𝑛

0
) ∈ 𝐸

0
such that

𝑊
𝜎𝑘
(𝑡

1
) ⇀ 𝑊

0 in 𝐸
0
. (127)

By (125) and a compactness embedding theorem, we claim
that

𝑢
𝑘
(𝑡) 󳨀→ 𝑢̃ (𝑡) strongly in 𝐿2 (0, 𝑇;𝐻) . (128)
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In the following, we will show that 𝑊̃(𝑡) is a solution of
problems (5)–(8).

For all V ∈ 𝐻, ∀𝜓 ∈ 𝐶∞

0
(𝜏, 𝑇), by (122) we find that

∫

𝑇

𝜏

(𝑖𝑢
𝑘𝑡
, 𝜓 (𝑡) V) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑢
𝑘𝑥𝑥
, 𝜓 (𝑡) V) 𝑑𝑡

− ∫

𝑇

𝜏

(𝑛
𝑘
𝑢
𝑘
, 𝜓 (𝑡) V) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑖𝛾𝑢
𝑘
, 𝜓 (𝑡) V) 𝑑𝑡

+ ∫

𝑇

𝜏

(𝑔 (
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2

) 𝑢
𝑘
, 𝜓 (𝑡) V) 𝑑𝑡 − ∫

𝑇

𝜏

(𝑦
1𝑘
(𝑥, 𝑡) , 𝜓 (𝑡) V) 𝑑𝑡

= 0.

(129)

Due to

∫

𝑇

𝜏

(𝑛
𝑘
𝑢
𝑘
, 𝜓 (𝑡) V) 𝑑𝑡 − ∫

𝑇

𝜏

(𝑛𝑢̃, 𝜓 (𝑡) V) 𝑑𝑡

= ∫

𝑇

𝜏

((𝑢
𝑘
− 𝑢̃) 𝑛

𝑘
, 𝜓 (𝑡) V) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑢̃ (𝑛
𝑘
− 𝑛) , 𝜓 (𝑡) V) 𝑑𝑡,

(130)

and by (121), (128), and (125)

∫

𝑇

𝜏

((𝑢
𝑘
− 𝑢̃) 𝑛

𝑘
, 𝜓 (𝑡) V) 𝑑𝑡 ⩽ sup

0⩽𝑡⩽𝑇

󵄩󵄩󵄩󵄩𝑛𝑘 (𝑡)
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩𝜓 (𝑡) V
󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻)

×
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢̃

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻)
󳨀→ 0,

∫

𝑇

𝜏

(𝑢̃ (𝑛
𝑘
− 𝑛) , 𝜓 (𝑡) V) 𝑑𝑡

= ∫

𝑇

𝜏

((𝑛
𝑘
− 𝑛) , 𝜓 (𝑡) V𝑢̃) 𝑑𝑡 󳨀→ 0,

(131)

we have

∫

𝑇

𝜏

(𝑛
𝑘
𝑢
𝑘
, 𝜓 (𝑡) V) 𝑑𝑡 󳨀→ ∫

𝑇

𝜏

(𝑛𝑢̃, V) 𝜓 (𝑡) 𝑑𝑡. (132)

Taking care of other terms of (129) in similar methods and
taking the limit, we have

∫

𝑇

𝜏

(𝑖𝑢̃
𝑡
, V) 𝜓 (𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑢̃
𝑥𝑥
, V) 𝜓 (𝑡) 𝑑𝑡

− ∫

𝑇

𝜏

(𝑛𝑢̃, V) 𝜓 (𝑡) 𝑑𝑡 + ∫
𝑇

𝜏

(𝑖𝛾𝑢̃, V) 𝜓 (𝑡) 𝑑𝑡

+ ∫

𝑇

𝜏

(𝑔 (|𝑢̃|
2
) 𝑢̃, V) 𝜓 (𝑡) 𝑑𝑡 − ∫

𝑇

𝜏

(𝑦
1
(𝑥, 𝑡) , V) 𝜓 (𝑡) 𝑑𝑡

= 0.

(133)

Therefore, in the sense of distributions it holds that

𝑖𝑢̃
𝑡
+ 𝑢̃

𝑥𝑥
− 𝑢̃𝑛 + 𝑖𝛾𝑢̃ + 𝑔 (|𝑢̃|

2
) 𝑢̃ = 𝑦

1
(𝑥, 𝑡) , (134)

which shows that (𝑢̃, 𝑛, 𝑦
1
(𝑡)) satisfies (5).

For all V ∈ 𝐻 and for all 𝜓 ∈ 𝐶∞

0
(𝜏, 𝑇) with 𝜓(𝑇) = 0,

𝜓(𝜏) = 1, by (122) we find that

− ∫

𝑇

𝜏

(𝑖𝑢
𝑘
, V) 𝜓

󸀠
(𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑢
𝑘𝑥𝑥
, V) 𝜓 (𝑡) 𝑑𝑡

− ∫

𝑇

𝜏

(𝑛
𝑘
𝑢
𝑘
, V) 𝜓 (𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑖𝛾𝑢
𝑘
, V) 𝜓 (𝑡) 𝑑𝑡

+ ∫

𝑇

𝜏

(𝑔 (
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2

) 𝑢
𝑘
, V) 𝜓 (𝑡) 𝑑𝑡 − ∫

𝑇

𝜏

(𝑦
1𝑘
(𝑥, 𝑡) , V) 𝜓 (𝑡) 𝑑𝑡

= 𝑖 (𝑢
𝑘
(𝜏) , V) .

(135)

Assumption (117) implies that

𝑢
𝑘
(𝜏) = 𝑢

𝜏𝑘
⇀ 𝑢

𝜏
in 𝐻. (136)

Then taking the limit of (135), by (136) we have

− ∫

𝑇

𝜏

(𝑖𝑢̃, V) 𝜓
󸀠
(𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑢̃
𝑥𝑥
, V) 𝜓 (𝑡) 𝑑𝑡

− ∫

𝑇

𝜏

(𝑛𝑢̃, V) 𝜓 (𝑡) 𝑑𝑡 + ∫
𝑇

𝜏

(𝑖𝛾𝑢̃, V) 𝜓 (𝑡) 𝑑𝑡

+ ∫

𝑇

𝜏

(𝑔 (|𝑢̃|
2
) 𝑢̃, V) 𝜓 (𝑡) 𝑑𝑡 − ∫

𝑇

𝜏

(𝑦
1
(𝑥, 𝑡) , V) 𝜓 (𝑡) 𝑑𝑡

= 𝑖 (𝑢
𝜏
, V) .

(137)

While from (134) we know that

− ∫

𝑇

𝜏

(𝑖𝑢̃, V) 𝜓
󸀠
(𝑡) 𝑑𝑡 + ∫

𝑇

𝜏

(𝑢̃
𝑥𝑥
, V) 𝜓 (𝑡) 𝑑𝑡

− ∫

𝑇

𝜏

(𝑛𝑢̃, V) 𝜓 (𝑡) 𝑑𝑡 + ∫
𝑇

𝜏

(𝑖𝛾𝑢̃, V) 𝜓 (𝑡) 𝑑𝑡

+ ∫

𝑇

𝜏

(𝑔 (|𝑢̃|
2
) 𝑢̃, V) 𝜓 (𝑡) 𝑑𝑡 − ∫

𝑇

𝜏

(𝑦
1
(𝑥, 𝑡) , V) 𝜓 (𝑡) 𝑑𝑡

= 𝑖 (𝑢̃ (𝜏) , V) .

(138)

It come from (137) and (138) that

(𝑢
𝜏
, V) = (𝑢̃ (𝜏) , V) , ∀V ∈ 𝐻, (139)

and then

𝑢̃ (𝜏) = 𝑢
𝜏
. (140)

Equations (134) and (140) imply that

𝑢̃ (𝑡) = 𝑢 (𝑡) . (141)

For all V ∈ 𝐻, ∀𝜓 ∈ 𝐶∞

0
(𝜏, 𝑡

1
), with 𝜓(𝜏) = 0, 𝜓(𝑡

1
) = 1. Then

repeating the procedure of the proofs of (135)–(138), by (127)
we deduce that

𝑢
0
= 𝑢̃ (𝑡

1
) . (142)
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It comes from (127), (141), and (142) that

𝑢
𝑘
(𝑡

1
) ⇀ 𝑢 (𝑡

1
) in 𝐻2

per (Ω) . (143)

Similarly, we can also deduce that

𝑛
𝑘
(𝑡

1
) ⇀ 𝑛 (𝑡

1
) in 𝐻1

per (Ω) , (144)

which together with (143) proves (118) and then the theorem.

To prove the strong compactness of the attractorA
Σ
, we

recall the following two lemmas.

Lemma 11. Let (𝑋, ‖ ⋅ ‖
𝑋
) be a uniform convex Banach space

(particularly, a Hilbert space) and let {𝑥
𝑘
}
𝑘⩾0

be a sequence in
𝑋. If 𝑥

𝑘
⇀ 𝑥

0
and ‖𝑥

𝑘
‖
𝑋
→ ‖𝑥

0
‖
𝑋
, then 𝑥

𝑘
→ 𝑥

0
.

Lemma 12. Let {𝑥
𝑘
}
𝑘⩾0

be a sequence in 𝐵∗ space 𝑋. If 𝑥
𝑘
⇀

𝑥
0
, then

sup
𝑘⩾1

󵄩󵄩󵄩󵄩𝑥𝑘
󵄩󵄩󵄩󵄩𝑋
< ∞,

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩𝑋
⩽ lim inf

𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘
󵄩󵄩󵄩󵄩𝑋
. (145)

Theorem 13. Under assumptions of Theorem 8, the weak
uniform attractor A

Σ
in Theorem 10 is actually the strong one

for the system in 𝐸
0
.

Proof. Since a point (𝑤,𝑚) belongs to the weak uniform
attractor A

Σ
if and only if there exist two sequences

{𝑤
0

𝑘
, 𝑚

0

𝑘
}
∞

𝑘=1
and {𝑡

𝑘
}
∞

𝑘=1
such that for all 𝜎(𝑡) ∈ Σ, it uniformly

holds that

𝑈
𝜎
(𝑡

𝑘
, 𝜏) (𝑤

0

𝑘
, 𝑚

0

𝑘
) ⇀ (𝑤,𝑚) in 𝐸

0
, 𝑘 󳨀→ ∞, (146)

where 𝑡
𝑘
→ ∞ as 𝑘 → ∞. The theorem is concluded if the

weak convergence is strong.
For each 𝑆 > 𝜏 fixed, since 𝑡

𝑘
→ ∞, we can consider

it as 𝑆 < 𝑡
𝑘
− 2𝜏, 𝑘 ∈ 𝑁

+
. By Lemma 6 we know 𝑈

𝜎
(𝑡

𝑘
−

𝑆, 𝜏)(𝑤
0

𝑘
, 𝑚

0

𝑘
) is bounded in𝐸

0
, and then there exists a (V, 𝑝) ∈

𝐸
0
and a subsequence of 𝑈

𝜎
(𝑡

𝑘
− 𝑆, 𝜏)(𝑤

0

𝑘
, 𝑚

0

𝑘
), which is still

denoted by 𝑈
𝜎
(𝑡

𝑘
− 𝑆, 𝜏)(𝑤

0

𝑘
, 𝑚

0

𝑘
), such that

𝑈
𝜎
(𝑡

𝑘
− 𝑆, 𝜏) (𝑤

0

𝑘
, 𝑚

0

𝑘
) ⇀ (V, 𝑝) in 𝐸

0
. (147)

Let

(𝑤
𝑘
(𝑡) , 𝑚

𝑘
(𝑡))

= 𝑈
𝑇(𝑡
𝑘
−𝑆−𝜏)𝜎

(𝑡, 𝜏) 𝑈
𝜎
(𝑡

𝑘
− 𝑆, 𝜏) (𝑤

0

𝑘
, 𝑚

0

𝑘
)

= 𝑈
𝜎
(𝑡 + 𝑡

𝑘
− 𝑆 − 𝜏, 𝑡

𝑘
− 𝑆)𝑈

𝜎
(𝑡

𝑘
− 𝑆, 𝜏) (𝑤

0

𝑘
, 𝑚

0

𝑘
)

= 𝑈
𝜎
(𝑡 + 𝑡

𝑘
− 𝑆 − 𝜏, 𝜏) (𝑤

0

𝑘
, 𝑚

0

𝑘
) ,

(148)

where 𝑇(⋅) is the translation operator on Σ. Since 𝜎(𝑡) is
quasiperiodic, there exists a 𝜎∗ ∈ Σ such that

𝑇 (𝑡
𝑘
− 𝑆 − 𝜏) 𝜎

∗

⇀ 𝜎
∗ in Σ. (149)

Therefore, by (147) and (148) and the weak (𝐸×Σ)-continuity
of 𝑈

𝜎∈Σ
(𝑡, 𝜏) we see that

(𝑤
𝑘
(𝑡) , 𝑚

𝑘
(𝑡)) ⇀ 𝑈

𝜎
∗ (𝑡, 𝜏) (V, 𝑝) in 𝐸

0
, ∀𝑡 > 𝜏, (150)

and by taking 𝑡 = 𝑆 + 𝜏,

(𝑤,𝑚) = 𝑈
𝜎
∗ (𝑆 + 𝜏, 𝜏) (V, 𝑝) . (151)

From the first equality of (148) we can consider
(𝑤

𝑘
(𝑡), 𝑚

𝑘
(𝑡)) as the solution trajectory, starting at 𝑈

𝜎
(𝑡

𝑘
−

𝑆, 𝜏)(𝑤
0

𝑘
, 𝑚

0

𝑘
), created by 𝑈

𝑇(𝑡
𝑘
−𝑆−𝜏)𝜎

(𝑡, 𝜏). Hence, by (115) and
from the boundedness that ‖𝑈

𝜎
(𝑡

𝑘
− 𝑆, 𝜏)𝑤

0

𝑘
‖
2

𝐻
2

per
⩽ 𝐶 we find

that
󵄩󵄩󵄩󵄩𝑤𝑘
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐻
2

per
+ 𝐹 (𝑤

𝑘
(𝑡) , 𝑚

𝑘
(𝑡))

= 𝑒
−2𝛼(𝑡−𝜏)

(
󵄩󵄩󵄩󵄩󵄩
𝑈

𝜎
(𝑡

𝑘
− 𝑆, 𝜏)𝑤

0

𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

per

+ 𝐹 (𝑈
𝜎
(𝑡

𝑘
− 𝑆, 𝜏)𝑤

0

𝑘
, 𝑈

𝜎
(𝑡

𝑘
− 𝑆, 𝜏)𝑚

0

𝑘
))

+ ∫

𝑡

𝜏

𝑒
−2𝛼(𝑡−𝜏)

𝐺 (𝑤
𝑘
(𝑠) , 𝑚

𝑘
(𝑠)) 𝑑𝑠

⩽ 𝑒
−2𝛼(𝑡−𝜏)

(𝐶 + 𝐹 (𝑈
𝜎
(𝑡

𝑘
− 𝑆, 𝜏)𝑤

0

𝑘
, 𝑈

𝜎
(𝑡

𝑘
− 𝑆, 𝜏)𝑚

0

𝑘
))

+ ∫

𝑡

𝜏

𝑒
−2𝛼(𝑡−𝜏)

𝐺 (𝑤
𝑘
(𝑠) , 𝑚

𝑘
(𝑠)) 𝑑𝑠.

(152)

Since 𝐹 and 𝐺 are weakly continuous in 𝐸
0
, by taking 𝑡 =

𝑆 + 𝜏 in (152), from (148), (147), (150), (151), and the Lebesgue
dominated convergence theorem we get that

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑈

𝜎
(𝑡

𝑘
, 𝜏)𝑤

0

𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

per
+ 𝐹 (𝑈

𝜎
∗ (𝑆 + 2𝜏, 𝜏) (V, 𝑝))

⩽ 𝑒
−2𝛼𝑆
(𝐶 + 𝐹 (V, 𝑝))

+ ∫

𝑆+𝜏

𝜏

𝑒
−2𝛼𝑆
𝐺 (𝑈

𝜎
∗ (𝑠 + 𝜏, 𝜏) (V, 𝑝)) 𝑑𝑠.

(153)

While (𝑤,𝑚) = 𝑈
𝜎
∗(𝑆+𝜏, 𝜏)(V, 𝑝), we can consider (𝑤,𝑚)

as the solution at 𝑆 + 𝜏 corresponding to the initial data (V, 𝑝)
and the symbol 𝜎∗. Similarly to (152) we have

‖𝑤‖
2

𝐻
2

per
+ 𝐹 (𝑤,𝑚)

= 𝑒
−2𝛼𝑆
(‖V‖

2

𝐻
2

per
+ 𝐹 (V, 𝑝))

+ ∫

𝑆+𝜏

𝜏

𝑒
−2𝛼𝑆
𝐺 (𝑈

𝜎
∗ (𝑠 + 𝜏, 𝜏) (V, 𝑝)) 𝑑𝑠.

(154)

Deducting (154) from (153), we see that

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑈

𝜎
(𝑡

𝑘
, 𝜏)𝑤

0

𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

per

⩽ ‖𝑤‖
2

𝐻
2

per
+ 𝐶𝑒

−2𝛼𝑆
− 𝑒

−2𝛼𝑆
‖V‖

2

𝐻
2

per

⩽ ‖𝑤‖
2

𝐻
2

per
+ 𝐶𝑒

−2𝛼𝑆
.

(155)
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Since 𝑆 is fixed arbitrarily, let 𝑆 → ∞; we conclude that

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑈

𝜎
(𝑡

𝑘
, 𝜏)𝑤

0

𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

per
⩽ ‖𝑤‖

2

𝐻
2

per
. (156)

On the other hand, by Lemma 12, the weak convergence
𝑈

𝜎
(𝑡

𝑘
, 𝜏)𝑤

0

𝑘
⇀ 𝑤 implies that

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑈

𝜎
(𝑡

𝑘
, 𝜏)𝑤

0

𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

per
⩾ ‖𝑤‖

2

𝐻
2

per
. (157)

It follows from the previous two inequalities that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑈

𝜎
(𝑡

𝑘
, 𝜏)𝑤

0

𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

per
= ‖𝑤‖

2

𝐻
2

per
. (158)

Similarly to the previous arguments, by using (116) we can
derive that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑈

𝜎
(𝑡

𝑘
, 𝜏)𝑚

0

𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝐻
2

per
= ‖𝑚‖

2

𝐻
2

per
. (159)

By (146), (158), and (159) and Lemma 11, we conclude that
𝑈

𝜎
(𝑡

𝑘
, 𝜏)(𝑤

0

𝑘
, 𝑚

0

𝑘
) → (𝑤,𝑚) in 𝐸

0
, which completes the

proof.

Remark 14. We remark that up to this point the quasiperiod-
icity of the forces is not essentially necessary.We have actually
used the uniform boundedness and the weak compactness
of the symbol space in 𝐻, which can be totally satisfied
by translation bounded external forces. In other words, if
ℎ
𝑖
(𝑥, 𝑡)(𝑖 = 1, 2) are relaxed to be translation bounded: ℎ

𝑖
∈

𝐿
2

𝑏
(𝜏,∞;𝐻

1

per(Ω)), then all the results here still hold.

6. Approximate Inertial Manifolds for (5)–(8)
6.1. Extending and Splitting the Phase Space. From
Theorem 13 we know the systems (5)–(8) create a family
of processes {𝑈

𝜎∈Σ
(𝑡, 𝜏)}, which admit a compact uniform

attractor in 𝐸
0
. Then from phase plane extension formula in

[18], there is a semigroup {𝑆(𝑡)}, where

𝑆 (𝑡) (𝑊
0
, 𝜔

0
) = (𝑈

𝜔
0
(𝑡, 0)𝑊

0
, 𝑇 (𝑡) 𝜔

0
) ,

𝑊
0
∈ 𝐸

0
, 𝜔

0
∈ 𝑇

𝑘
, 𝑡 ⩾ 0,

(160)

which is created by the following autonomous system:

𝑖𝑢
𝑡
+ 𝑢

𝑥𝑥
− 𝑛𝑢 + 𝑖𝛾𝑢 + 𝑔 (|𝑢|

2
) 𝑢 = 𝐻

1
(𝑥, 𝜔

1
(𝑡)) , (161)

𝑛
𝑡
+ 𝛽𝑛 + |𝑢|

2

𝑥
+ 𝑓 (|𝑢|

2
) = 𝐻

2
(𝑥, 𝜔

2
(𝑡)) , (162)

𝜕𝜔
𝑖
(𝑡)

𝜕𝑡
= 𝛼

𝑖
(𝑖 = 1, 2) , (163)

(𝑊 (𝑥, 0) , 𝜔 (𝑥, 0)) = (𝑊
0
(𝑥) , 𝜔

0
(𝑥)) . (164)

Let 𝐵(𝑢, 𝑛) = 𝑢𝑛 be a bilinear operator:𝐻2
× 𝐻

1
→ 𝐻

1,
𝐻(𝑢) = |𝑢|

2

𝑥
a nonlinear operator:𝐻2

→ 𝐻
1, and 𝐴 = −𝜕

𝑥𝑥
.

Equations (161)–(163) can be transformed into the following
abstract differential form

𝑖𝑢
𝑡
− 𝐴𝑢 − 𝐵 (𝑛, 𝑢) + 𝑖𝛾𝑢 + 𝑔 (|𝑢|

2
) 𝑢 = 𝐻

1
(𝑥, 𝜔

1
(𝑡)) ,

𝑛
𝑡
+ 𝐻 (𝑢) + 𝛽𝑛 + 𝑓 (|𝑢|

2
) = 𝐻

2
(𝑥, 𝜔

2
(𝑡)) ,

𝜕𝜔
𝑖
(𝑡)

𝜕𝑡
= 𝛼

𝑖
(𝑖 = 1, 2) .

(165)

Since 𝐴 is an unbounded self-conjugate compact operator,
there is a complete orthogonal set {𝜂

𝑗
}
∞

𝑗=1
of eigenfunctions

of 𝐴 such that 𝐴𝜂
𝑗
= 𝜆

𝑗
𝜂
𝑗
, and

0 ⩽ 𝜆
1
⩽ 𝜆

2
⩽ ⋅ ⋅ ⋅ ⩽ 𝜆

𝑗
󳨀→ +∞, 𝑗 󳨀→ +∞. (166)

For all𝑚 > 0, we let 𝑃 : 𝐻 → 𝐻
𝑚
:= span{𝜂

1
, . . . , 𝜂

𝑚
} be

a projective operator and let 𝑄 := 𝐼 − 𝑃 : 𝐻 → 𝐻
⊥

𝑚
. Taking

the projection of (165) we get

𝑖
𝑑𝑦

𝑑𝑡
− 𝐴𝑦 − 𝑃𝐵 (𝑢, 𝑛) + 𝑖𝛾𝑦 + 𝑃 (𝑔 (|𝑢|

2
) 𝑢)

= 𝑃𝐻
1
(𝑥, 𝜔

1
(𝑥)) ,

(167)

𝑖
𝑑𝑧

𝑑𝑡
− 𝐴𝑧 − 𝑄𝐵 (𝑢, 𝑛) + 𝑖𝛾𝑧 + 𝑄 (𝑔 (|𝑢|

2
) 𝑢)

= 𝑄𝐻
1
(𝑥, 𝜔

1
(𝑥)) ,

(168)

𝑑𝑝

𝑑𝑡
+ 𝑃𝐻 (𝑢) + 𝛽𝑝 + 𝑃𝑓 (|𝑢|

2
) = 𝑃𝐻

2
(𝑥, 𝜔

2
(𝑡)) , (169)

𝑑𝑞

𝑑𝑡
+ 𝑄𝐻 (𝑢) + 𝛽𝑞 + 𝑄𝑓 (|𝑢|

2
) = 𝑄𝐻

2
(𝑥, 𝜔

2
(𝑡)) , (170)

where 𝑦 = 𝑃𝑢, 𝑧 = 𝑄𝑢, 𝑝 = 𝑃𝑛, and 𝑞 = 𝑄𝑛.
By Parseval’s formula we can get the following propo

sition.

Proposition 15. For all V ∈ 𝐻, there is the following
expansion:

V =
∞

∑

𝑗=1

⟨V, 𝜂
𝑗
⟩ 𝜂

𝑗
, (171)

and if V ∈ 𝐻1,

‖V‖2 =
∞

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
⟨V, 𝜂

𝑗
⟩
󵄨󵄨󵄨󵄨󵄨

2

, ‖∇V‖2 =
∞

∑

𝑗=1

𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
⟨V, 𝜂

𝑗
⟩
󵄨󵄨󵄨󵄨󵄨

2

. (172)

Moreover, because of (166), it holds that

‖∇(𝑄V)‖
2
⩾ 𝜆

𝑚+1
‖𝑄V‖2, ‖∇(𝑃V)‖

2
⩽ 𝜆

𝑚
‖𝑃V‖2. (173)

From Lemma 9, Proposition 15 and Agmon inequality
‖V‖

∞
⩽ ‖V‖

𝐻
1 , we can deduce the following lemma.
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Lemma 16. If assumptions of Lemma 9 are satisfied, the
solution (𝑢, 𝑛) satisfies

‖𝑢‖
𝐻
3 , ‖𝑛‖

𝐻
1 , ‖𝑛‖

∞
, ‖𝑢‖

∞
⩽ 𝐶,

‖𝐴𝑧‖ ,
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑧
󵄩󵄩󵄩󵄩󵄩
, ‖𝑧‖ ,

󵄩󵄩󵄩󵄩𝑧𝑡
󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑞𝑡
󵄩󵄩󵄩󵄩 ⩽ 𝐶𝜆

−1/2

𝑚+1
,

∀𝑡 ⩾ 𝑡
1
.

(174)

6.2. Constructing the AIM. Now we are in the position to
show the AIM for (5)–(8).

Set Φ : 𝐻
𝑚
× 𝐻

𝑚
× 𝑇

𝑘
→ 𝐻

⊥

𝑚
× 𝐻

⊥

𝑚
,

Φ(𝑦, 𝑝, 𝜔) = (𝜓
1
, 𝜓

2
) , ∀ (𝑦, 𝑝, 𝜔) ∈ 𝐻

𝑚
× 𝐻

𝑚
× 𝑇

𝑘
,

(175)

where (𝜓
1
, 𝜓

2
) satisfies

− 𝐴𝜓
1
− 𝑄𝐵 (𝑦, 𝑝) + 𝑖𝛾𝜓

1
+ 𝑄 (𝑔 (

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2

) 𝑦)

= 𝑄𝐻
1
(𝑥, 𝜔

1
(𝑡)) ,

(176)

𝑄𝐻(𝑦) + 𝛽𝜓
2
+ 𝑄𝑓 (

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2

) = 𝑄𝐻
2
(𝑥, 𝜔

2
(𝑡)) . (177)

Let Π
1
: 𝐻 × 𝐻 × 𝑇

𝑘
→ 𝐻 ×𝐻,Π

2
: 𝐻 × 𝐻 × 𝑇

𝑘
→ 𝑇

𝑘 be
orthogonal projection mappings.

The following theorem shows that Graph(Φ), the graph of
mapping Φ, is just an AIM for the autonomous system (165)
and Π

1
Graph(Φ) is for problems (5)–(8), which concludes

this paper.

Theorem 17. Under assumptions of Lemma 9, it holds that

dist
𝐻
2
×𝐻
1 ((𝑊, 𝜔) ,Graph (Φ)) ⩽ 𝐶𝜆−1/2

𝑚+1
, 𝑡 ⩾ 𝑡

1
, (178)

where Graph(Φ) = ((𝑦, 𝑝, 𝜔), (𝜓
1
, 𝜓

2
)) is the graph of Φ and

𝐶 depends only on the data. Moreover,

dist
𝐻
2
×𝐻
1 (𝑊(𝑡) ,∏

1

Graph (Φ)) ⩽ 𝐶𝜆−1/2
𝑚+1
, 𝑡 ⩾ 𝑡

1
,

(179)

which shows that Π
1
Graph(Φ) is an approximate inertial

manifold for problems (5)–(8).

Proof. From (176) and (168) we deduce that

𝐴𝜓
1
− 𝐴𝑧 = 𝑄 (𝐵 (𝑢, 𝑛) − 𝐵 (𝑦, 𝑝)) + 𝑖𝛾 (𝜓

1
− 𝑧)

+ 𝑄 (𝑔 (|𝑢|
2
) 𝑢) − 𝑄 (𝑔 (

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2

) 𝑦) − 𝑖𝑧
𝑡

= 𝑄 (𝐵 (𝑢, 𝑛) − 𝐵 (𝑦, 𝑛) + 𝐵 (𝑦, 𝑛) − 𝐵 (𝑦, 𝑝))

+ 𝑖𝛾 (𝜓
1
− 𝑧) + 𝑔 (|𝑢|

2
) 𝑧 − 𝑖𝑧

𝑡

= 𝑄 (𝐵 (𝑧, 𝑛) + 𝐵 (𝑦, 𝑞)) + 𝑖𝛾 (𝜓
1
− 𝑧)

+ 𝑔 (|𝑢|
2
) 𝑧 − 𝑖𝑧

𝑡

= 𝑄 (𝑛𝑧 + 𝑞𝑦) + 𝑖𝛾 (𝜓
1
− 𝑧) + 𝑔 (|𝑢|

2
) 𝑧 − 𝑖𝑧

𝑡
,

(180)

which implies that
󵄩󵄩󵄩󵄩𝐴𝜓1 − 𝐴𝑧

󵄩󵄩󵄩󵄩 ⩽ ‖𝑛‖∞ ‖𝑧‖ +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩

+ 𝛾
󵄩󵄩󵄩󵄩𝜓1 − 𝑧

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑔(|𝑢|

2
)
󵄩󵄩󵄩󵄩󵄩∞
‖𝑧‖ +

󵄩󵄩󵄩󵄩𝑧𝑡
󵄩󵄩󵄩󵄩 .

(181)

Since
󵄩󵄩󵄩󵄩𝜓1 − 𝑧

󵄩󵄩󵄩󵄩 ⩽ 𝜆
−1

𝑚+1

󵄩󵄩󵄩󵄩𝐴𝜓1 − 𝐴𝑧
󵄩󵄩󵄩󵄩 ,

(182)

from (181) and Lemma 16, we get
󵄩󵄩󵄩󵄩𝐴𝜓1 − 𝐴𝑧

󵄩󵄩󵄩󵄩 ⩽ 𝐶𝜆
−1/2

𝑚+1
+ 𝛾𝜆

−1

𝑚+1

󵄩󵄩󵄩󵄩𝐴𝜓1 − 𝐴𝑧
󵄩󵄩󵄩󵄩 .

(183)

Because 𝜆
𝑗
→ +∞ (𝑗 → ∞), there exists𝑚

0
> 0 such that

for all𝑚 > 𝑚
0
,
󵄩󵄩󵄩󵄩𝐴𝜓1 − 𝐴𝑧

󵄩󵄩󵄩󵄩 ⩽ 𝐶𝜆
−1/2

𝑚+1
, 𝑡 ⩾ 𝑡

1
. (184)

From (177) and (170) we see that

𝛽𝜓
2
− 𝛽𝑞 = 𝑄 (𝐻 (𝑢) − 𝐻 (𝑦))

+ 𝑄 (𝑓 (|𝑢|
2
) − 𝑓 (

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2

)) + 𝑞
𝑡
.

(185)

While 𝑢 = 𝑃𝑢 + 𝑄𝑢 = 𝑦 ⊕ 𝑧,

𝐻(𝑢) − 𝐻 (𝑦) = |𝑢|
2

𝑥
−
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2

𝑥
= |𝑧|

2

𝑥
,

𝑓 (|𝑢|
2
) − 𝑓 (

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2

) = 𝑓
󸀠
(
󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

2

) (|𝑢|
2
−
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

2

)

= 𝑓
󸀠
(
󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

2

) |𝑧|
2
,

(186)

where 𝜁 ∈ 𝐻2 and |𝑦|2 ⩽ |𝜁|2 ⩽ |𝑢|2. Then from (185), we see
that
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(𝜓

2
− 𝑞)
󵄩󵄩󵄩󵄩󵄩

⩽ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝐴|𝑧|

2󵄩󵄩󵄩󵄩󵄩
+ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(𝑓

󸀠
(
󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

2

) |𝑧|
2
)
󵄩󵄩󵄩󵄩󵄩
+ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑞
𝑡

󵄩󵄩󵄩󵄩󵄩
.

(187)

By Lemma 16 we can deduce that
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(𝑓

󸀠
(
󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

2

) |𝑧|
2
)
󵄩󵄩󵄩󵄩󵄩

⩽
󵄩󵄩󵄩󵄩󵄩
(𝐴

1/2
𝑓

󸀠
(
󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

2

)) |𝑧|
2󵄩󵄩󵄩󵄩󵄩
+ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
|𝑧|

2󵄩󵄩󵄩󵄩󵄩

⩽ 𝐶
󵄩󵄩󵄩󵄩󵄩
|𝑧|

2
𝐴

1/2󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

2󵄩󵄩󵄩󵄩󵄩
+ 𝐶
󵄩󵄩󵄩󵄩𝑧𝑥
󵄩󵄩󵄩󵄩∞ ‖
𝑧‖

⩽ 𝐶
󵄩󵄩󵄩󵄩󵄩
|𝑧|

2󵄩󵄩󵄩󵄩󵄩
+ 𝐶 ‖𝑧‖ ⩽ 𝐶𝜆

−1/2

𝑚+1
.

(188)

While from Lemma 6 we know that

‖𝐴𝑧‖ ⩽ 𝐶𝜆
−1/2

𝑚+1
,

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑧
󵄩󵄩󵄩󵄩󵄩
⩽ 𝐶𝜆

−1/2

𝑚+1
,

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑞
𝑡

󵄩󵄩󵄩󵄩󵄩
⩽ 𝐶𝜆

−1/2

𝑚+1
.

(189)

Therefore,
󵄩󵄩󵄩󵄩󵄩
𝐴|𝑧|

2󵄩󵄩󵄩󵄩󵄩
⩽ 𝐶‖𝑧‖

∞
‖𝐴𝑧‖ + 𝐶

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑧
󵄩󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑧
󵄩󵄩󵄩󵄩󵄩
⩽ 𝐶𝜆

−1/2

𝑚+1
.

(190)
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By (187), (188), (189), and (190), we get

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(𝜓

2
− 𝑞)
󵄩󵄩󵄩󵄩󵄩
⩽ 𝐶𝜆

−1/2

𝑚+1
. (191)

Then from (184) and (191) we can conclude that

dist
𝐻
2
×𝐻
1 ((𝑊, 𝜔) ,Graph (Φ)) ⩽ 𝐶𝜆−1/2

𝑚+1
, 𝑡 ⩾ 𝑡

1
. (192)

The estimate (179) follows from

dist(𝑊(𝑡) ,∏
1

Graph (Φ))

= dist(𝑈
𝜔
(𝑡, 𝜏)𝑊

𝜏
,∏

1

Graph (Φ))

= dist(∏
1

𝑆 (𝑡) (𝑊
0
, 𝜔

0
) ,∏

1

Graph (Φ))

⩽ dist(∏
1

𝑆 (𝑡) (𝑊
0
, 𝜔

0
) ,∏

1

Graph (Φ))

+ dist(∏
2

𝑆 (𝑡) (𝑊
0
, 𝜔

0
) ,∏

2

Graph (Φ))

= dist (𝑆 (𝑡) (𝑊
0
, 𝜔

0
) ,Graph (Φ))

= dist ((𝑊, 𝜔) ,Graph (Φ)) ⩽ 𝐶𝜆−1/2
𝑚+1
,

(193)

and we complete the proof.
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