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A version of one-sided weighted Morrey space is introduced. The boundedness of some classical one-sided operators in harmonic
analysis and PDE on these spaces are discussed, including the Riemann-Liouville fractional integral.

1. Introduction

The reasons to study one-sided operators involve not only
the generalization of the theory of two-sided operators but
also the requirements of ergodic theory [1]. The well-known
Riemann-Liouville fractional integral can be viewed as the
one-sided version of Riesz potential (the solution of Laplace
equation) in harmonic analysis and PDE [2, 3]. The study of
weighted theory for one-sided operators was first introduced
by Sawyer [4] and many authors thereafter [5–10]. Many
of their results show that, for a class of smaller operators
(one-sided operators) and a class of wider weights (one-sided
weights), many of the famous findings of harmonic analysis
still hold.

The study of one-sided spaces emerged naturally along-
side the study of one-sided operators. In one previous study,
the authors studied one-sided BMO spaces associated with
one-sided sharp functions and their relationship to good
weights for the one-sided Hardy-Littlewood maximal func-
tions [9]. Aimar andCrescimbeni [11] further investigated the
structures of these one-sided regular functions and their basic
properties. Other classical works regarding one-sided spaces
have also been published [12–14].

A version of one-sidedweightedMorrey spaces andCam-
panato spaces is introduced in this paper. The boundedness
of some one-sided operators and its effects on these spaces
are investigated. First recall some definitions of the classical
Campanato spaces and Morrey spaces.

Let −1/𝑝 ≤ 𝛽 < 1 and 1 ≤ 𝑝 < ∞. Then the Campanato
spaceC𝑝,𝛽(R) can be defined using the following norm
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where 𝑓I = (1/|I|) ∫

I
𝑓(𝑥)𝑑𝑥, I denotes an interval

contained in R, and |I| is the Lebesgue measure of I. The
excellent structures of Campanato spaces render them useful
in the study of the regularity theory of PDEs. They allow the
user to determine an integral characterization of the spaces
of Hölder continuous functions. This allows generalization
of the classical Sobolev embedding theorems; see [15–17], for
example. It is also well known that C1,1/𝑝−1(R) is the dual
space of Hardy space 𝐻𝑝(R) when 0 < 𝑝 < 1 [18]. There has
been also a recent account of the theory onCampanato spaces
[19–21]. The original form of classical Morrey space was first
introduced byMorrey Jr. [22] to investigate the local behavior
of solutions to the second order elliptic PDEs,
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It is obvious that M𝑝,−1/𝑝(R) = 𝐿

𝑝
(R). Many properties of

solutions to PDEs are concerned with the boundedness of
some operators on Morrey type spaces. In fact, the better
inclusion between theMorrey and the Hölder spaces permits
obtaining higher regularity of the solutions to different elliptic
and parabolic boundary problems. In recent years, there has
been an explosion of interest in the study of the boundedness
of operators on Morrey type spaces [23–25].

The study of weighted estimates and their effects on
these spaces is important to harmonic analysis. Weighted
inequalities arise naturally in Fourier analysis, but their use
is best justified by the variety of applications in which they
appear. For example, the theory of weights plays an important
role in the study of boundary value problems inherent in
Laplace’s equations on Lipschitz domains. Many authors are
interested in the study of the events that occur when the
weight function belongs to one of the Muckenhoupt classes.
Let 1 < 𝑝 < ∞. The Muckenhoupt class 𝐴𝑝 [26] consists of
all positive locally integrable functions 𝑤 for which
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where 1/𝑝+1/𝑝 = 1.We say that𝑤 ∈ 𝐴1 if there is a constant
𝐶 > 0 such that 𝑀𝑤(𝑥) ≤ 𝐶𝑤(𝑥). Here 𝑀 is the Hardy-
Littlewood maximal operator
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The study of weights for one-sided operators is motivated
by their natural emergence in harmonic analysis. For exam-
ple, certainmeasures are requiredwhen the one-sidedHardy-
Littlewood maximal operators [4]
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arising in the ergodic maximal function are treated.The clas-
sical Dunford-Schwartz ergodic theorem can be considered
the first result regarding weights for these operators. In [4],
Sawyer introduced the one-sided𝐴𝑝 classes𝐴

+

𝑝
and𝐴

−

𝑝
; they

are defined by the following conditions:

𝐴

+

𝑝
: 𝐴

+

𝑝
(𝑤) := sup

𝑎<𝑏<𝑐

1

(𝑐 − 𝑎)

𝑝

× ∫

𝑏

𝑎

𝑤 (𝑥) 𝑑𝑥(∫

𝑐

𝑏

𝑤(𝑥)

1−𝑝


𝑑𝑥)

𝑝−1

< ∞,

𝐴

−

𝑝
: 𝐴

−

𝑝
(𝑤) := sup

𝑎<𝑏<𝑐

1

(𝑐 − 𝑎)

𝑝

× ∫

𝑐

𝑏

𝑤 (𝑥) 𝑑𝑥(∫

𝑏

𝑎

𝑤(𝑥)

1−𝑝


𝑑𝑥)

𝑝−1

< ∞,

(6)

when 1 < 𝑝 < ∞; also, for 𝑝 = 1,
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A function 𝐾 is called a one-sided Calderón-Zygmund
kernel (OCZK) if 𝐾 satisfies

















∫

𝑎<|𝑥|<𝑏

𝐾 (𝑥) 𝑑𝑥

















≤ 𝐶, 0 < 𝑎 < 𝑏, (9)

|𝐾 (𝑥)| ≤

𝐶

|𝑥|

, 𝑥 ̸= 0, (10)









𝐾 (𝑥 − 𝑦) − 𝐾 (𝑥)









≤

𝐶









𝑦









|𝑥|

2
, |𝑥| > 2









𝑦









> 0 (11)

with support in R− = (−∞, 0) or R+ = (0, +∞). Equation
(10) is also called the size condition for 𝐾 and (11) is the
continuous condition for𝐾. An example of such a kernel is

𝐾 (𝑥) =

sin (log |𝑥|)
(𝑥 log |𝑥|)

𝜒(−∞,0) (𝑥) , (12)

where 𝜒𝐸 denotes the characteristic function of a set 𝐸.
Aimar et al. [5] studied the one-sided Calderón-Zygmund
singular integrals which were defined by
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where the kernels𝐾 are OCZKs.
The one-sided 𝐴𝑝 classes not only control the bounded-

ness of one-sided Hardy-Littlewood maximal operators, but
also serve as the right weight classes for one-sided singular
integral operators. They also appear in PDEs [27].

Theorem 3 (see [5]). Let 1 < 𝑝 < ∞, and let 𝐾 be an OCZK
with support in R− = (−∞, 0). Then 𝑇

+ is bounded on 𝐿

𝑝
(𝑤)

if 𝑤 ∈ 𝐴

+

𝑝
.

Also, a result concerning the converse of Theorem 3 is
given in [5].

In addition to singular integral operators, fractional inte-
gral operators also play an important role in harmonic analy-
sis.The problem of fractional derivation was an early impetus
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to study fractional integrals [6]. In addition to their contri-
butions to harmonic analysis, fractional integrals also play an
essential role in many fields. The Hardy-Littlewood-Sobolev
inequality of fractional integral is still an indispensable tool
in the establishment of time-space estimates for the heat
semigroup of nonlinear evolution equations. Let 0 < 𝛼 < 1;
the one-sided fractional maximal operator and the one-sided
fractional integrals were defined by
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and the Weyl fractional integral operators. The boundedness
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for all 𝑎 < 𝑏 < 𝑐 ∈ R, 1 < 𝑝 < 𝑞 and 1/𝑝 − 1/𝑞 = 𝛼.
The one-sided Campanato space and one-sided Morrey

space can now be introduced.

Definition 5. Let −1/𝑝 ≤ 𝛽 < 1 and 1 ≤ 𝑝 < ∞. A
locally integrable function𝑓 is said to belong to the one-sided
weighted Campanato spaceC+
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which consists of certain classes of one-sided weighted BMO
functions, see also [11, 13].
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tions satisfying a weighted Lipschitz condition [13].

Case 𝛽 < 0 is addressed in the present work.
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sided weighted Morrey space is defined by the norm
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Section 2 outlines proof of the boundedness of some one-
sided operators mentioned above on M+
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(𝑤). In Section 3,

the results in Section 1 are extended to a one-sided sublinear
operator under specific size conditions, which were satisfied
by many one-sided operators, including𝑀+, 𝑇+,𝑀+

𝛼
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Throughout this paper, for 𝑥0 ∈ R and ℎ, 𝜆 > 0, unless
otherwise stated, we will always denote that 𝐼 = (𝑥0, 𝑥0 + ℎ),
𝐼

+
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𝐶 is a constant which may change from line to line.

2. Main Results

In this section, the boundedness of the one-sided operators
mentioned in Section 1 and its effects on one-sided Morrey
spaces are described. The primary results are formulated as
follows.

Theorem 7. Let −1/𝑝 ≤ 𝛽 < 0 and 𝑤 ∈ 𝐴
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Theorem 7(a) is also true when C+
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(𝑤) is replaced by
M+
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(𝑤) (see proof ofTheorem 7). A corresponding substitu-
tion forTheorem 7(b) under certain assumption with respect
to 𝑝 is given in Section 3.

For the fractional case, the following is true.



4 Abstract and Applied Analysis

Theorem 8. Let 0 < 𝛼 < 1, 1/𝑞 = 1/𝑝−𝛼, −1/𝑝 ≤ 𝛽 < 0, and
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< ∞.

(21)

Therefore 𝑤𝑞 ∈ 𝐴

+

𝑞(1−𝛼)
.

(b) ⇒ (a). It is obvious by the reverse argument of (a) ⇒
(b).

If 𝑤(𝑥) ∈ 𝐴𝑝; then it is a doubling weight, that is, there
exists 𝐶 > 0 such that

∫

𝑎+2ℎ

𝑎−2ℎ

𝑤 ≤ 𝐶∫

𝑎+ℎ

𝑎−ℎ

𝑤

(22)

for all 𝑎 ∈ R and ℎ > 0. However, one-sided 𝐴𝑝 weights
do not satisfy this property. But the weights 𝐴+

𝑝
satisfy a one-

sided doubling condition.

Lemma 11 (see [29]). Let 𝑤(𝑥) ∈ 𝐴

+

𝑝
(𝑝 ≥ 1). Then there

exists a constant 𝐶 > 0 such that

∫

𝑎+ℎ

𝑎−ℎ

𝑤 ≤ 𝐶∫

𝑎+ℎ

𝑎

𝑤

(23)

for all 𝑎 ∈ R and ℎ > 0.

Like the one-sided doubling condition, the following
proposition also plays an important role in the present
arguments.

Proposition 12. Let 𝜆 > 0 and 𝑝, 𝑞 ≥ 1. Then
(a) if 𝑤 ∈ 𝐴

+

𝑝
, we have

𝑤 ((𝜆𝐼)

−
) ≤ 𝐶𝜆

𝑝
𝑤 (𝐼) ; (24)

(b) if 𝑤 ∈ 𝐴

+

(𝑝,𝑞)
, we have

𝑤 ((𝜆𝐼)

−
) ≤ 𝐶𝜆𝑤 (𝐼) . (25)

Proof. For the proof of (a), we first claim that

(𝑓𝐼)
𝑝
≤ 𝐶𝐴

+

𝑝
(𝑤) (

1

𝑤 (𝐼

−
)

∫

𝐼









𝑓 (𝑥)









𝑝
𝑤 (𝑥) 𝑑𝑥) . (26)

In fact, we can applyHölder’s inequalitywith exponents𝑝 and
𝑝

 to get

(

1

|𝐼|

∫

𝐼









𝑓 (𝑥)









𝑑𝑥)

𝑝

= (

1

|𝐼|

∫

𝐼

|𝑓(𝑥)|𝑤(𝑥)

1/𝑝
𝑤(𝑥)

−1/𝑝
𝑑𝑥)

𝑝

≤

1

|𝐼|

𝑝
(∫

𝐼









𝑓 (𝑥)









𝑝
𝑤 (𝑥) 𝑑𝑥)

× (∫

𝐼

𝑤(𝑥)

−𝑝

/𝑝
𝑑𝑥)

𝑝/𝑝


= (

1

𝑤 (𝐼

−
)

∫

𝐼









𝑓 (𝑥)









𝑝
𝑤 (𝑥) 𝑑𝑥)

× (

1

|𝐼|

∫

𝐼−
𝑤 (𝑥) 𝑑𝑥)

× (

1

|𝐼|

∫

𝐼

𝑤(𝑥)

−𝑝

/𝑝
𝑑𝑥)

𝑝−1

≤ 𝐶𝐴

+

𝑝
(𝑤) (

1

𝑤 (𝐼

−
)

∫

𝐼









𝑓 (𝑥)









𝑝
𝑤 (𝑥) 𝑑𝑥) .

(27)
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Applying (26) to the function 𝑓 = 𝜒𝐼 and putting 𝜆𝐼 in the
place of 𝐼 in (26), we obtain

𝑤 ((𝜆𝐼)

−
) ≤ 𝐴

+

𝑝
(𝑤) 𝜆

𝑝
𝑤 (𝐼) ≤ 𝐶𝜆

𝑝
𝑤 (𝐼) . (28)

The proof of (b) is a byproduct of (a) and the fact that
𝑤

𝑝
∈ 𝐴

+

𝑝
if 𝑤 ∈ 𝐴

+

(𝑝,𝑞)
.

Proof of Theorem 7. The proof of (a) is given first. Because
M+
𝑝,𝛽

(𝑤) ⊆ C+
𝑝,𝛽

(𝑤) when 𝛽 < 0, it is sufficient to prove that
there exists 𝐶 > 0 such that

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0









𝑀

+
𝑓 (𝑥)









𝑝
𝑑𝑥)

1/𝑝

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

.

(29)

Decompose 𝑓 = 𝑓1 + 𝑓2 = 𝑓𝜒2𝐼 + 𝑓𝜒(2𝐼)
𝑐 to obtain

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0









𝑀

+
𝑓 (𝑥)









𝑝
𝑑𝑥)

1/𝑝

≤

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0









𝑀

+
𝑓1 (𝑥)









𝑝
𝑑𝑥)

1/𝑝

+

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0









𝑀

+
𝑓2 (𝑥)









𝑝
𝑑𝑥)

1/𝑝

=:

̃

𝐼 +

̃

𝐼𝐼.

(30)

UsingTheorem 1 and Lemma 11, the following is true:

̃

𝐼 =

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0









𝑀

+
𝑓1 (𝑥)









𝑝
𝑑𝑥)

1/𝑝

≤

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+2ℎ

𝑥0









𝑓 (𝑦)









𝑝
𝑑𝑦)

1/𝑝

≤ (

𝑤 (𝑥0 − 2ℎ, 𝑥0)

𝑤 (𝑥0 − ℎ, 𝑥0)

)

1/𝑝









𝑓







M+
𝑝,𝛽
(𝑤)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

.

(31)

Hölder’s inequality and Proposition 12(a) allow us to estimate
̃

𝐼𝐼 as

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0









𝑀

+
𝑓2 (𝑥)









𝑝
𝑑𝑥)

1/𝑝

≤

1

ℎ

𝛽

1

𝑤(𝑥0 − ℎ, 𝑥0)
1/𝑝

×

∞

∑

𝑗=1

(

1

2

𝑗
∫

𝑥0+2
𝑗+1
ℎ

𝑥0−2ℎ

|𝑓(𝑦)|

𝑝
𝑑𝑦)

1/𝑝

≤

∞

∑

𝑗=1

1

2

𝑗(1/𝑝−𝛽−1)









𝑓







M+
𝑝,𝛽
(𝑤)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

.

(32)

Theorem 7(b) can now be proven. Decomposing𝑓 = 𝑓1+

𝑓2 = 𝑓𝜒2𝐼 + 𝑓𝜒(2𝐼)
𝑐 shows that

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0











𝑇

+
𝑓 (𝑦) − (𝑇

+
𝑓)

(𝑥0 ,𝑥0+ℎ)











𝑝

𝑑𝑦)

1/𝑝

≤

2

ℎ

𝛽
(

1

𝑤 (𝑥0 − ℎ, 𝑥0)

×∫

𝑥0+ℎ

𝑥0









𝑇

+
𝑓 (𝑦) − 𝑇

+
𝑓2 (𝑥0 + 2ℎ)









𝑝
𝑑𝑦)

1/𝑝

≤

2

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0









𝑇

+
𝑓1 (𝑦)









𝑝
𝑑𝑦)

1/𝑝

+

2

ℎ

𝛽
(

1

𝑤 (𝑥0 − ℎ, 𝑥0)

×∫

𝑥0+ℎ

𝑥0









𝑇

+
𝑓2 (𝑦) − 𝑇

+
𝑓2 (𝑥0 + 2ℎ)









𝑝
𝑑𝑦)

1/𝑝

=: 𝐼 + 𝐼𝐼.

(33)

The fact that, if 𝑤 ∈ 𝐴

+

𝑝
, then 𝑇

+ is bounded on 𝐿

𝑝
(𝑤) allows

the following to be shown:

𝐼 ≤

𝐶

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+2ℎ

𝑥0









𝑓 (𝑦)









𝑝
𝑑𝑦)

1/𝑝

≤ 𝐶(

𝑤 (𝑥0 − 2ℎ, 𝑥0)

𝑤 (𝑥0 − ℎ, 𝑥0)

)

1/𝑝









𝑓







M+
𝑝,𝛽
(𝑤)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

.

(34)

Here, Lemma 11 is used in the last inequality.
For the term 𝐼𝐼, by (11) and Proposition 12(a), we can

derive the following:

𝐼𝐼 ≤

𝐶

ℎ

𝛽
𝑤(𝑥0 − ℎ, 𝑥0)

1/𝑝

× (∫

𝑥0+ℎ

𝑥0



















∫

∞

𝑥0+2ℎ

(𝐾 (𝑦 − 𝑧)

−𝐾 (𝑥0 + 2ℎ − 𝑧)) 𝑓 (𝑧) 𝑑𝑧



















𝑝

𝑑𝑦)

1/𝑝

≤

𝐶

ℎ

𝛽
𝑤(𝑥0 − ℎ, 𝑥0)

1/𝑝

× (∫

𝑥0+ℎ

𝑥0

(∫

∞

𝑥0+2ℎ





















𝑥0 + 2ℎ − 𝑦

(𝑧 − (𝑥0 + ℎ))

2
𝑓(𝑧)





















𝑑𝑧)

𝑝

𝑑𝑦)

1/𝑝
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≤ 𝐶

ℎ

1−𝛽

𝑤(𝑥0 − ℎ, 𝑥0)
1/𝑝

× (∫

𝑥0+ℎ

𝑥0

(

∞

∑

𝑗=1

∫

𝑥0+2
𝑗+1
ℎ

𝑥0+2
𝑗ℎ





















𝑓(𝑧)

(𝑧 − (𝑥0 + ℎ))

2





















𝑑𝑧)

𝑝

𝑑𝑦)

1/𝑝

≤ 𝐶

ℎ

1+1/𝑝−𝛽

𝑤(𝑥0 − ℎ, 𝑥0)
1/𝑝

×

∞

∑

𝑗=1

1

(ℎ (2

𝑗
− 1))

2
∫

𝑥0+2
𝑗+1
ℎ

𝑥0+2
𝑗ℎ









𝑓 (𝑧)









𝑑𝑧

≤ 𝐶

ℎ

1/𝑝−1−𝛽

𝑤(𝑥0 − ℎ, 𝑥0)
1/𝑝

×

∞

∑

𝑗=1

1

(2

𝑗
− 1)

2
(∫

𝑥0+2
𝑗+1
ℎ

𝑥0−ℎ









𝑓 (𝑧)









𝑝
𝑑𝑧)

1/𝑝

(2

𝑗
ℎ)

1/𝑝


≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

∞

∑

𝑗=1

1

2

𝑗(1/𝑝−𝛽)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

.

(35)

On account of the estimates for 𝐼 and 𝐼𝐼 given above, the
following can be proved:









𝑇

+
𝑓







C+
𝑝,𝛽
(𝑤)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

. (36)

Proof of Theorem 8. We begin with the proof for 𝑀+
𝛼
, which

is similar to that of Theorem 7(a). It is sufficient to show that
there exists constant 𝐶 > 0 such that

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞 ∫

𝑥0+ℎ

𝑥0









𝑀

+

𝛼
𝑓 (𝑦)









𝑞
𝑑𝑦)

1/𝑞

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

.

(37)

Decompose 𝑓 = 𝑓1 + 𝑓2 = 𝑓𝜒2𝐼 + 𝑓𝜒(2𝐼)
𝑐 to obtain

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞 ∫

𝑥0+ℎ

𝑥0









𝑀

+

𝛼
𝑓 (𝑥)









𝑞
𝑑𝑥)

1/𝑞

≤

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞 ∫

𝑥0+ℎ

𝑥0









𝑀

+

𝛼
𝑓1 (𝑥)









𝑞
𝑑𝑥)

1/𝑞

+

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞 ∫

𝑥0+ℎ

𝑥0









𝑀

+

𝛼
𝑓2 (𝑥)









𝑞
𝑑𝑥)

1/𝑞

=:

̃

𝐽 +

̃

𝐽𝐽.

(38)

ByTheorem 4 and Lemma 11,

̃

𝐽 =

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞 ∫

𝑥0+ℎ

𝑥0









𝑀

+

𝛼
𝑓 (𝑥)









𝑞
𝑑𝑥)

1/𝑞

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

.

(39)

By the same arguments as those of ̃𝐼𝐼,̃𝐽𝐽 can be estimated as

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞 ∫

𝑥0+ℎ

𝑥0









𝑀

+

𝛼
𝑓2 (𝑥)









𝑞
𝑑𝑥)

1/𝑞

≤

∞

∑

𝑗=1

1

2

𝑗(1/𝑞−𝛽−1)









𝑓







M+
𝑝,𝛽
(𝑤)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

.

(40)

The proof of (b) is a reprise of the argument given in the
proof of Theorem 7(b). Set 𝑓 = 𝑓1 + 𝑓2 = 𝑓𝜒2𝐼 + 𝑓𝜒(2𝐼)

𝑐 to
obtain

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞

×∫

𝑥0+ℎ

𝑥0











𝐼

+

𝛼
𝑓 (𝑦) − (𝐼

+

𝛼
𝑓)

(𝑥0 ,𝑥0+ℎ)











𝑞

𝑑𝑦)

1/𝑞

≤

2

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞

×∫

𝑥0+ℎ

𝑥0









𝐼

+

𝛼
𝑓 (𝑦) − 𝐼

+

𝛼
𝑓2 (𝑥0 + 2ℎ)









𝑞
𝑑𝑦)

1/𝑞

≤

2

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞 ∫

𝑥0+ℎ

𝑥0









𝐼

+

𝛼
𝑓1 (𝑦)









𝑞
𝑑𝑦)

1/𝑞

+

2

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞

×∫

𝑥0+ℎ

𝑥0









𝐼

+

𝛼
𝑓2 (𝑦) − 𝐼

+

𝛼
𝑓2 (𝑥0 + 2ℎ)









𝑞
𝑑𝑦)

1/𝑞

=: 𝐽 + 𝐽𝐽.

(41)

Theorem 4 and Lemma 11 allow us to estimate 𝐽 as

𝐽 ≤

𝐶

ℎ

𝛽

1

𝑤 (𝑥0 − ℎ, 𝑥0)

(∫

𝑥0+2ℎ

𝑥0









𝑓 (𝑦)









𝑝
𝑑𝑦)

1/𝑝

≤ 𝐶(

𝑤 (𝑥0 − 2ℎ, 𝑥0)

𝑤 (𝑥0 − ℎ, 𝑥0)

)









𝑓







M+
𝑝,𝛽
(𝑤)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

.

(42)
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In view of








𝐼

+

𝛼
𝑓2 (𝑦) − 𝐼

+

𝛼
𝑓2 (𝑥0 + 2ℎ)









≤ ∫

∞

𝑥0+2ℎ





















1









𝑧 − 𝑦









1−𝛼
−

1









𝑧 − (𝑥0 + 2ℎ)









1−𝛼





















×









𝑓 (𝑧)









𝑑𝑧

≤ 𝐶∫

∞

𝑥0+2ℎ









𝑥0 + 2ℎ − 𝑦

















𝑧 − (𝑥0 + 2ℎ)









2−𝛼









𝑓 (𝑧)









𝑑𝑧,

(43)

we obtain by Hölder’s inequality and Proposition 12(b) that

𝐽𝐽 ≤ 𝐶

ℎ

1+1/𝑞−𝛽

𝑤 (𝑥0 − ℎ, 𝑥0)

∞

∑

𝑗=1

∫

𝑥0+2
𝑗+1
ℎ

𝑥0+2
𝑗ℎ









𝑓 (𝑧)









(𝑧 − (𝑥0 + ℎ))

2−𝛼
𝑑𝑧

≤ 𝐶

ℎ

1+1/𝑞−𝛽

𝑤 (𝑥0 − ℎ, 𝑥0)

∞

∑

𝑗=1

1

(ℎ (2

𝑗
− 1))

2−𝛼

× ∫

𝑥0+2
𝑗+1
ℎ

𝑥0−ℎ









𝑓 (𝑧)









𝑑𝑧

≤ 𝐶

ℎ

𝛼+1/𝑞−1−𝛽

𝑤 (𝑥0 − ℎ, 𝑥0)

×

∞

∑

𝑗=1

1

(2

𝑗
− 1)

2
(∫

𝑥0+2
𝑗+1
ℎ

𝑥0−ℎ









𝑓 (𝑧)









𝑝
𝑑𝑧)

1/𝑝

(2

𝑗
ℎ)

1/𝑝


≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

∞

∑

𝑗=1

1

2

𝑗(1/𝑝−𝛼−𝛽)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

.

(44)

We have thus provedTheorem 8.

3. Boundedness of One-Sided
Sublinear Operators

Themethod used in the proof ofTheorem 7(b) depends heav-
ily on the convolution of the kernel function. However, there
are some other one-sided operators with nonconvoluted
kernels. Such operators appear inmany places and PDEs.The
one-sided oscillatory singular integral operators that were
first introduced by the authors of this paper in a previous
study are one such example [7].

A class of more general one-sided operators that do not
necessarily have convolution kernels can now be studied. Let
𝐷𝑘 = 2

𝑘
𝐼 and 𝐴𝑘 = 𝐷𝑘 \ 𝐷𝑘−1 for 𝑘 ∈ 𝑍. In this section,

a definition made in a previous study [30] can be adopted
to introduce a one-sided sublinear operator satisfying the
following size condition:









T
+
𝑓 (𝑥)









≤

𝐶

2

𝑘
ℎ









𝑓







𝐿1(𝐴𝑘)
,

(45)

where supp𝑓 ⊆ 𝐴𝑘 and 0 ≤ 𝑥0 < 𝑥 ≤ 𝑥0 + 2

𝑘−1
ℎ with 𝑘 ∈ 𝑍.

For the fractional case, the corresponding size condition
can be introduced:









T
+

𝛼
𝑓 (𝑥)









≤

𝐶

(2

𝑘
ℎ)

1−𝛼









𝑓







𝐿1(𝐴𝑘)
, 0 < 𝛼 < 1, (46)

where supp𝑓 ⊆ 𝐴𝑘 and 0 ≤ 𝑥0 < 𝑥 ≤ 𝑥0 + 2

𝑘−1
ℎ with 𝑘 ∈ 𝑍.

It is easy to confirm that the condition (45) is satisfied
by 𝑀

+, 𝑇+ and the one-sided oscillatory singular integral
operators and both𝑀

+

𝛼
and 𝐼

+

𝛼
satisfy (46).

Theorem 13. Let −1/𝑝 ≤ 𝛽 < 0, 1 < 𝑝 < 1/(1 + 𝛽), 𝑤 ∈ 𝐴

+

𝑝
,

and the one-sided sublinear operator T+ satisfy (45). Then if
T+ is bounded on 𝐿

𝑝
(𝑤),T+ is bounded onM+

𝑝,𝛽
(𝑤).

Theorem 14. Let 0 < 𝛼 < 1, −1/𝑞 ≤ 𝛽 < 0, 1/𝑞 = 1/𝑝−𝛼, 𝑝 <

𝑞 < 1/(1+𝛽),𝑤 ∈ 𝐴

+

(𝑝,𝑞)
, and the one-sided sublinear operator

T+
𝛼
satisfy (46). IfT+

𝛼
is bounded from 𝐿

𝑝
(𝑤

𝑝
) to 𝐿𝑞(𝑤𝑞), then

T+
𝛼
is bounded fromM+

𝑝,𝛽
(𝑤

𝑝
) toM+

𝑞,𝛽
(𝑤

𝑞
).

Theorems 13 and 14 agreewithTheorems 7(a) and 8(a) but
are different fromTheorems 7(b) and 8(b). The conditions of
the kernel functions in Theorems 13 and 14 are weaker than
those of Theorems 7(b) and 8(b), respectively, in that only
the size conditions are used there. For this reason, Theorems
13 and 14 can be seen as an extension of Theorems 7 and
8, respectively. However, the present study was conducted
under the assumptions that 1 < 𝑝 < 1/(1 + 𝛽) and 𝑝 <

𝑞 < 1/(1 + 𝛽). These conditions are stronger than those of
Theorems 7(b) and 8(b).

Proof of Theorem 13. It is sufficient to show that there exists
𝐶 > 0 such that

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0









T
+
𝑓 (𝑥)









𝑝
𝑑𝑥)

1/𝑝

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

.

(47)

𝑓 = 𝑓1 + 𝑓2 = 𝑓𝜒2𝐼 + 𝑓𝜒(2𝐼)
𝑐 is decomposed to produce

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0









T
+
𝑓 (𝑥)









𝑝
𝑑𝑥)

1/𝑝

≤

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0









T
+
𝑓1 (𝑥)









𝑝
𝑑𝑥)

1/𝑝

+

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+ℎ

𝑥0









T
+
𝑓2 (𝑥)









𝑝
𝑑𝑥)

1/𝑝

=: 𝐾 + 𝐾𝐾.

(48)



8 Abstract and Applied Analysis

Using the fact thatT+ is bounded on 𝐿

𝑝
(𝑤),

𝐾 ≤

𝐶

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)

∫

𝑥0+2ℎ

𝑥0









𝑓 (𝑦)









𝑝
𝑑𝑦)

1/𝑝

≤ 𝐶(

𝑤 (𝑥0 − 2ℎ, 𝑥0)

𝑤 (𝑥0 − ℎ, 𝑥0)

)

1/𝑝









𝑓







M+
𝑝,𝛽
(𝑤)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

(49)

can be found easily.
In view of (45), the following is true:









T
+
𝑓2 (𝑥)









≤ 𝐶

∞

∑

𝑘=1

1

2

𝑘
ℎ

∫

𝑥0+2
𝑘+1
ℎ

𝑥0+2
𝑘ℎ









𝑓 (𝑦)









𝑑𝑦

≤ 𝐶

∞

∑

𝑘=1

1

2

𝑘
ℎ

(∫

𝑥0+2
𝑘+1
ℎ

𝑥0−ℎ









𝑓 (𝑦)









𝑝
𝑑𝑦)

1/𝑝

× (2

𝑘
ℎ)

1/𝑝


≤ 𝐶

∞

∑

𝑘=1

𝑤(𝑥0 − 2

𝑘+1
ℎ, 𝑥0)

1/𝑝

(2

𝑘
ℎ)

1/𝑝−𝛽









𝑓







M+
𝑝,𝛽
(𝑤)

.

(50)

Using Proposition 12, 𝐾𝐾 can be estimated as

𝐾𝐾 ≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

×

∞

∑

𝑘=1

ℎ

1/𝑝−𝛽

(2

𝑘
ℎ)

1/𝑝−𝛽
(

𝑤(𝑥0 − 2

𝑘+1
ℎ, 𝑥0 − ℎ)

𝑤(𝑥0 − ℎ, 𝑥0)

)

1/𝑝

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

∞

∑

𝑘=1

1

2

𝑘(1/𝑝−𝛽−1)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤)

.

(51)

Proof of Theorem 14. An argument similar to that used in the
proof of Theorem 13 can be used to produce

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞 ∫

𝑥0+ℎ

𝑥0









T
+

𝛼
𝑓 (𝑥)









𝑞
𝑑𝑥)

1/𝑞

≤

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞

×∫

𝑥0+ℎ

𝑥0









T
+

𝛼
𝑓1 (𝑥)









𝑞
𝑑𝑥)

1/𝑞

+

1

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑞

×∫

𝑥0+ℎ

𝑥0









T
+

𝛼
𝑓2 (𝑥)









𝑞
𝑑𝑥)

1/𝑞

=: 𝐿 + 𝐿𝐿.

(52)

Estimating the term 𝐿, using Lemma 11 and the fact thatT+
𝛼

is bounded from 𝐿

𝑝
(𝑤

𝑝
) to 𝐿

𝑞
(𝑤

𝑞
) produce

𝐿 ≤

𝐶

ℎ

𝛽
(

1

𝑤(𝑥0 − ℎ, 𝑥0)
𝑝
∫

𝑥0+2ℎ

𝑥0









𝑓 (𝑦)









𝑝
𝑑𝑦)

1/𝑝

≤ 𝐶(

𝑤 (𝑥0 − 2ℎ, 𝑥0)

𝑤 (𝑥0 − ℎ, 𝑥0)

)









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

.

(53)

The term 𝐿𝐿 (46) facilitates the production of









T
+

𝛼
𝑓2 (𝑥)









≤ 𝐶

∞

∑

𝑘=1

1

(2

𝑘
ℎ)

1−𝛼
∫

𝑥0+2
𝑘+1
ℎ

𝑥0+2
𝑘ℎ









𝑓 (𝑦)









𝑑𝑦

≤ 𝐶

∞

∑

𝑘=1

1

(2

𝑘
ℎ)

1−𝛼

× (∫

𝑥0+2
𝑘+1
ℎ

𝑥0−ℎ









𝑓 (𝑦)









𝑝
𝑑𝑦)

1/𝑝

× (2

𝑘
ℎ)

1/𝑝


≤ 𝐶

∞

∑

𝑘=1

𝑤(𝑥0 − 2

𝑘+1
ℎ, 𝑥0 − ℎ)

(2

𝑘
ℎ)

1/𝑝−𝛽−𝛼

×









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

.

(54)

Therefore,

𝐿𝐿 ≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

×

∞

∑

𝑘=1

ℎ

1/𝑞−𝛽

(2

𝑘
ℎ)

1/𝑞−𝛽
(

𝑤(𝑥0 − 2

𝑘+1
ℎ, 𝑥0 − ℎ)

𝑤 (𝑥0 − ℎ, 𝑥0)

)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

∞

∑

𝑘=1

1

2

𝑘(1/𝑞−𝛽−1)

≤ 𝐶









𝑓







M+
𝑝,𝛽
(𝑤𝑝)

,

(55)

where we have used Propositions 10 and 12.
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