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A kind of parabolic equation was extended to the concept of fractional calculus. The resulting equation is, however, difficult to
handle analytically.Therefore, we presented the numerical solution via the explicit and the implicit schemes.We presented together
the stability and convergence of this time-fractional parabolic equation with two difference schemes. The explicit and the implicit
schemes in this case are stable under some conditions.

1. Introduction

A parabolic partial differential equation is a type of second-
order partial differential equations (PDEs), describing a wide
family of problems in science including heat diffusion and
ocean acoustic propagation, in physical or mathematical
systems with a time variable, which behave essentially like
heat diffusing through a solid [1–4].Thismathematicalmodel
is a simplified description of physical reality expressed in
mathematical terms. Thus, the investigation of the exact or
approximate solution helps us to understand the means of
these mathematical models. In most cases, it is difficult, or
infeasible, to find the analytical solution or good numerical
solution of the problems.Numerical solutions or approximate
analytical solutions become necessary. Numerical methods
typically yield approximate solutions to the governing equa-
tion through the discretization of space and time and can
relax the rigid idealized conditions of analytical models or
lumped-parametermodels.They can, therefore, bemore real-
istic and flexible for simulating field conditions. Within the
discredited problem domain, the variable internal properties,
boundaries, and stresses of the system are approximated. One
of the most important aspects of this numerical method is

the study of the stability and convergence of the numerical
method [5, 6].

The purpose of this work is to study the stability and
the convergence of the numerical scheme of the parabolic
equation of the following form:

𝜕
𝑡
V (𝑥, 𝑡) +

𝐶

0
𝐷
𝛼

𝑡
V (𝑥, 𝑡) − 𝑎 (𝑥, 𝑡) 𝜕

2

𝑥𝑥
V (𝑥, 𝑡) + 𝛿V (𝑥, 𝑡)

= 𝑓 (𝑥, 𝑡) , V (0, 𝑥) = 0,

0 ≤ 𝑥 ≤ 1, 0 < 𝛼 ≤ 1,

V (𝑥, 0) = V (0, 𝑡) , V
𝑥

(𝑡, 0) = V
𝑡
(𝑥, 0) ,

(1)

where 𝑓(𝑥, 𝑡) is sufficiently given smooth function and
𝑎(𝑥, 𝑡) ≥ 0. Here, 𝛿 is a sufficiently large positive constant.

2. Useful Tools for the Fractional Calculus

Definition 1 (see [7–17]). A real function 𝑓(𝑥), 𝑥 > 0, is said
to be in the space 𝐶

𝜇
, 𝜇 ∈ R, if there exists a real number

𝑝 > 𝜇, such that 𝑓(𝑥) = 𝑥
𝑝
ℎ(𝑥), where ℎ(𝑥) ∈ 𝐶[0, ∞), and

it is said to be in space 𝐶
𝑚

𝜇
if 𝑓
(𝑚)

∈ 𝐶
𝜇
, 𝑚 ∈ N.
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Definition 2 (see [7–16]). The Riemann-Liouville fractional
integral operator of order𝛼 ≥ 0, of a function𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1,

is defined as

𝐽
𝛼

𝑓 (𝑥) =
1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0, 𝑥 > 0,

𝐽
0
𝑓 (𝑥) = 𝑓 (𝑥) .

(2)

Properties of the operator can be found in [7–15]; we only
mention the following:

for 𝑓 ∈ 𝐶
𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, 𝛾 > −1,

𝐽
𝛼
𝐽
𝛽
𝑓 (𝑥) = 𝐽

𝛼+𝛽
𝑓 (𝑥) , 𝐽

𝛼
𝐽
𝛽
𝑓 (𝑥) = 𝐽

𝛽
𝐽
𝛼
𝑓 (𝑥) ,

𝐽
𝛼
𝑥
𝛾

=
Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥
𝛼+𝛾

.

(3)

Definition 3. The Caputo fractional-order derivative is given
as follows [7–10]:

𝐶

0
𝐷
𝛼

𝑥
(𝑓 (𝑥)) =

1

Γ (𝑛 − 𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1 𝑑

𝑛
𝑓 (𝑡)

𝑑𝑡𝑛
𝑑𝑡,

𝑛 − 1 ≤ 𝛼 ≤ 𝑛.

(4)

Definition 4. TheRiemann-Liouville fractional-order deriva-
tive is given as follows [8–16]:

𝐷
𝛼

𝑥
(𝑓 (𝑥)) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑓 (𝑡) 𝑑𝑡,

𝑛 − 1 ≤ 𝛼 ≤ 𝑛.

(5)

Definition 5. The Jumarie fractional-order derivative is given
as follows [16]:

𝐷
𝛼

𝑥
(𝑓 (𝑥)) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

{𝑓 (𝑡) − 𝑓 (0)} 𝑑𝑡,

𝑛 − 1 ≤ 𝛼 ≤ 𝑛.

(6)

Lemma 6. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N, and 𝑓 ∈ 𝐶
𝑚

𝜇
, 𝜇 ≥ −1,

then

𝐷
𝛼
𝐽
𝛼
𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽
𝛼
𝐷
𝛼

0
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
(𝑘)

(0
+
)

𝑥
𝑘

𝑘!
,

𝑥 > 0.

(7)

Definition 7 (partial derivatives of fractional order [7, 8, 11,
18]). Assume now that 𝑓(x) is a function of 𝑛 variables 𝑥

𝑖
,

𝑖 = 1, . . . , 𝑛, also of class 𝐶 on 𝐷 ∈ R
𝑛
. We define partial

derivative of order 𝛼 for 𝑓 in respect to the 𝑥
𝑖
the function as

follows:

𝑎𝜕
𝛼

x𝑓 =
1

Γ (𝑚 − 𝛼)
∫

𝑥𝑖

𝑎

(𝑥
𝑖
− 𝑡)
𝑚−𝛼−1

𝜕
𝑚

𝑥𝑖
𝑓 (𝑥
𝑗
)
𝑥𝑗=𝑡

𝑑𝑡, (8)

where 𝜕
𝑚

𝑥𝑖
is the usual partial derivative of integer order 𝑚.

3. Examination of the Numerical Solution via
Difference Schemes

This section is devoted to the discussion underpinning the
numerical simulation of the solution above (1) via the explicit
scheme [19–23] and the implicit scheme [23–30]. However,
before we present the numerical schemes, we must assume
that (1) has a unique and sufficiently smooth solution [23]. In
addition, to present the numerical schemes, we let 𝑥

𝑙
= 𝑙ℎ,

0 ≤ 𝑙 ≤ 𝑀, 𝑀ℎ = 𝐿, 𝑡
𝑘

= 𝑘𝜏, 0 ≤ 𝑘 ≤ 𝑁, and 𝑁𝜏 = 𝑇; ℎ

is the space step size, and 𝑀 and 𝑁 are grid points. We will
start with the implicit scheme.

3.1. Implicit Scheme for the Main Problem. It is important to
recall that the finite difference approximation for the second-
order spatial derivative is known as follows [23]:

𝜕
2V (𝑥
𝑙
, 𝑡
𝑘+1

)

𝜕𝑥2
=

V (𝑥
𝑙+1

, 𝑡
𝑘+1

) − 2V (𝑥
𝑙
, 𝑡
𝑘+1

) + V (𝑥
𝑙−1

, 𝑡
𝑘+1

)

ℎ2

+ 𝑂 (ℎ
2
) .

(9)

The discretization of the Caputo-type time-fractional-order
derivative can be presented as follows:

𝜕
𝛼V (𝑥
𝑙
, 𝑡
𝑘+1

)

𝜕𝑡𝛼

=
𝜏
−𝛼

Γ (2 − 𝛼)
(V (𝑥
𝑙
, 𝑡
𝑘+1

) − V (𝑥
𝑙
, 𝑡
𝑘
)

+

𝑘

∑

𝑗=1

[V (𝑥
𝑙
, 𝑡
𝑘+1−𝑗

) − V (𝑥
𝑙
, 𝑡
𝑘−𝑗

)]

× [(𝑗 + 1)
1−𝛼

− (𝑗)
1−𝛼

]) ,

𝜕V (𝑥
𝑙
, 𝑡
𝑘+1

)

𝜕𝑡
=
V (𝑥
𝑙
, 𝑡
𝑘+1

) − V (𝑥
𝑙
, 𝑡
𝑘
)

Δ𝑡
+ 𝑂 (Δ𝑡) .

(10)

Now, substituting (9) and (10) into (1), we obtained the follo-
wing expression:

V (𝑥
𝑙
, 𝑡
𝑘+1

) − V (𝑥
𝑙
, 𝑡
𝑘
)

Δ𝑡
+

𝜏
−𝛼

Γ (2 − 𝛼)

× (V (𝑥
𝑙
, 𝑡
𝑘+1

) − V (𝑥
𝑙
, 𝑡
𝑘
)

+

𝑘

∑

𝑗=1

[V (𝑥
𝑙
, 𝑡
𝑘+1−𝑗

) − V (𝑥
𝑙
, 𝑡
𝑘−𝑗

)]
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× [(𝑗 + 1)
1−𝛼

− (𝑗)
1−𝛼

])

− 𝑎
𝑘

𝑙
(
V (𝑥
𝑙+1

, 𝑡
𝑘+1

) − 2V (𝑥
𝑙
, 𝑡
𝑘+1

) + V (𝑥
𝑙−1

, 𝑡
𝑘+1

)

ℎ2
)

+ 𝛿V (𝑥
𝑙
, 𝑡
𝑘
) = 𝑓 (𝑥

𝑙
, 𝑡
𝑘
) .

(11)

For ease, let

V𝑘
𝑙

= V (𝑥
𝑙
, 𝑡
𝑘
) , 𝑓

𝑘

𝑙
= 𝑓 (𝑥

𝑙
, 𝑡
𝑘
) ,

𝑎 (𝑥
𝑙
, 𝑡
𝑘
) = 𝑎
𝑘

𝑙
, (𝑗 + 1)

1−𝛼

− (𝑗)
1−𝛼

= 𝑏
𝑗
.

(12)

Then, (11) can be rephrased as follows:

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
𝑘

𝑙

ℎ2
) V𝑘+1
𝑙

= (Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 𝛿) V𝑘

𝑙
+ 𝑎
𝑘

𝑙
V𝑘+1
𝑙+1

+ 𝑎
𝑘

𝑙
V𝑘+1
𝑙−1

−
𝜏
−𝛼

Γ (2 − 𝛼)

𝑘

∑

𝑗=1

[V𝑘−𝑗+1
𝑙

− V𝑘−𝑗
𝑙

] 𝑏
𝑗

+ 𝑓
𝑘

𝑙
.

(13)

It is important to inform that if 𝑘 = 0, then the term of the
sum of the right-hand side automatically vanished.Then, (13)
can be divided as follows:

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
1

𝑙

ℎ2
) V1
𝑙

− 𝑎
1

𝑙
V1
𝑙+1

− 𝑎
1

𝑙
V1
𝑙−1

= (Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 𝛿) V0

𝑙
+ 𝑓
0

𝑙
, 𝑘 = 0,

(14)

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
𝑘

𝑙

ℎ2
) V𝑘+1
𝑙

− 𝑎
𝑘

𝑙
V𝑘+1
𝑙+1

− 𝑎
𝑘

𝑙
V𝑘+1
𝑙−1

= (Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 𝛿) V𝑘

𝑙

−
𝜏
−𝛼

Γ (2 − 𝛼)

𝑘

∑

𝑗=1

[V𝑘−𝑗
𝑙

] 𝑑
𝑗

+ 𝑏
𝑘+1

V0
𝑗

+ 𝑓
𝑘

𝑙
,

(15)

where 𝑑
𝑗

= 𝑏
𝑗+1

− 𝑏
𝑗
.

The above equation can be written in matrix form as
follows:

(
(
(
(
(
(
(

(

Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
1

𝑙

ℎ2
−𝑎
𝑘

1
0 0 0 ⋅ ⋅ ⋅ 0

−𝑎
𝑘

2
Δ𝑡 +

𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
1

2

ℎ2

d
...

d 0 0

d 0 0

−𝑎
𝑘

𝑚−2
Δ𝑡 +

𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
1

𝑚−2

ℎ2
−𝑎
𝑘

𝑚−2

0

0 0 0 0 −𝑎
𝑘

𝑚−1
Δ𝑡 +

𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
1

𝑙

ℎ2

)
)
)
)
)
)
)

)

(
(
(
(
(
(
(
(

(

V𝑘+1
1

V𝑘+1
2

...

V𝑘+1
𝑚−1

V𝑘+1
𝑚−1

)
)
)
)
)
)
)
)

)

=

(
(
(
(
(
(

(

𝑓
𝑘

1
−

𝑎
𝑘

1

ℎ2
V (0, 𝑡
𝑘
)

𝑓
𝑘

2

...
𝑓
𝑘

𝑚−2

𝑓
𝑘

𝑚−1
−

𝑎
𝑘

𝑚−1

ℎ2
V (0, 𝑡
𝑘
)

)
)
)
)
)
)

)

.

(16)

3.1.1. Stability of the Implicit Difference Scheme. In this
subsection, we present the stability analysis of the implicit
difference scheme for solving the time-fractional parabolic
equation (1). To accomplish this, we let 𝜁

𝑘

𝑙
= V𝑘
𝑙

− 𝑉
𝑘

𝑙
, with

𝑉
𝑘

𝑙
being the approximate solution of the main problem at

the point (𝑥
𝑙
, 𝑡
𝑘
), 𝑘 = 1, . . . , 𝑁; 𝑙 = 1, . . . , 𝑀; in addition, 𝜁𝑘 is

the transpose of the matrix [𝜁
𝑘

1
, 𝜁
𝑘

2
, . . . , 𝜁

𝑘

𝑀
].

To analyze the stability, we exploit the Fourier method
[22], and the expression of 𝜁

𝑘 can be defined as follows:

𝜁
𝑘

(𝑥) =

{{{{

{{{{

{

𝜁
𝑘

𝑙
, if 𝑥

𝑙
−

ℎ

2
< 𝑥 ≤ 𝑥

𝑙
+

ℎ

2
,

𝑙 = 1, 2, . . . , 𝑀 − 1,

0, if 𝐿 −
ℎ

2
< 𝑥 ≤ 𝐿.

(17)
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Then, the function 𝜁
𝑘
(𝑥) can be expressed in Fourier series as

follows:

𝜁
𝑘

(𝑥) =

𝑚=∞

∑

𝑚=−∞

𝛿
𝑚

(𝑚) exp [
2𝑖𝜋𝑚𝑘

𝐿
] ,

𝛿
𝑘

(𝑥) =
1

𝐿
∫

𝐿

0

𝜌
𝑘

(𝑥) exp [
2𝑖𝜋𝑚𝑥

𝐿
] 𝑑𝑥.

(18)

It was proven in [22, 29, 30] that


𝜌
2

2

2
=

𝑚=∞

∑

𝑚=−∞

𝛿
𝑘

(𝑚)

2

. (19)

Let us now examine the stability of the implicit scheme of the
main problem

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
𝑘

𝑙

ℎ2
) 𝜁
𝑘+1

𝑙

= (Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 𝛿) 𝜁

𝑘

𝑙
+ 𝑎
𝑘

𝑙
𝜁
𝑘+1

𝑙+1
+ 𝑎
𝑘

𝑙
𝜁
𝑘+1

𝑙−1

−
𝜏
−𝛼

Γ (2 − 𝛼)

𝑘

∑

𝑗=1

[𝜁
𝑘−𝑗

𝑙
] 𝑑
𝑗

+ 𝑏
𝑘+1

𝜁
0

𝑗
+ 𝑓
𝑘

𝑙
,

𝑘 = 1, . . . , 𝑀.

(20)

We next assume that

𝜁
𝑘

𝑙
= 𝛿
𝑘
exp [𝑖𝜌𝑙𝑘] (21)

with 𝜌 being the real space wave number and 𝑖 = √−1. Then,
by replacing (21) into (20), we obtain the following:

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
)

𝑎
𝑘

𝑙

ℎ2
) 𝛿
𝑘+1

= (Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
) 𝛿 − 𝑑

1
) 𝛿
𝑘

−
𝜏
−𝛼

Γ (2 − 𝛼)

𝑘−1

∑

𝑗=1

[𝛿
𝑘−𝑗

] 𝑑
𝑗

+ 𝑏
𝑘+1

𝛿
0

+ 𝑓
𝑘

𝑙
,

𝑘 = 0, . . . , 𝑀 − 1.

(22)

Lemma 8. Assume that 𝛿
𝑘
(𝑘 = 0, . . . , 𝑀−1) verified (14) and

that for all (𝑙, 𝑘), 𝛿 ≤ 𝑎
𝑘

𝑙
/ℎ
2

+ 𝑑
1
(𝑙 = 1, . . . , 𝑁; 𝑘 = 1, . . . , 𝑀);

then, the following inequality is satisfied:
𝛿𝑘

 ≤
𝛿0

 , 𝑘 = 1, 2, . . . , 𝑀. (23)

Proof. To prove this lemma, we make use of the recursive
method on the natural number 𝑛 from (3) and (15), we have
that, for all 𝑙 = 1, . . . , 𝑁 and for 𝑘 = 0,

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
)

𝑎
0

𝑙

ℎ2
) 𝛿
1

= (Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
) 𝛿 − 𝑑

1
) 𝛿
0
.

(24)

And for 𝑘 ≥ 1, we have

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
)

𝑎
𝑘

𝑙

ℎ2
) 𝛿
𝑘+1

= (Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
) 𝛿 − 𝑑

1
) 𝛿
𝑘

−
𝜏
−𝛼

Γ (2 − 𝛼)

𝑘−1

∑

𝑗=1

[𝛿
𝑘−𝑗

] 𝑑
𝑗

+ 𝑏
𝑘+1

𝛿
0
.

(25)

Observe that 𝛿 ≤ 𝑎
0

𝑙
/ℎ
2

+ 𝑑
1
then, the following is obtained:

𝛿
1

=
(Δ𝑡 + 𝜏

−𝛼
/Γ (2 − 𝛼) + 2sin2 (𝜌ℎ/2) 𝛿 − 𝑑

1
)

(Δ𝑡 + 𝜏−𝛼/Γ (2 − 𝛼) + 2sin2 (𝜌ℎ/V) (𝑎0
𝑙
/ℎ2))

𝛿
0
. (26)

Applying the absolute value on both sides of (20), we have
𝛿1

 ≤
𝛿0

 . (27)

Now, let us assume that (18) is true for all 2 ≤ 𝑚 ≤ 𝑘; then,

𝛿
𝑘+1

= ( (Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
) 𝛿 − 𝑑

1
) 𝛿
𝑘

−
𝜏
−𝛼

Γ (2 − 𝛼)

𝑘−1

∑

𝑗=1

[𝛿
𝑘−𝑗

] 𝑑
𝑗

+ 𝑏
𝑘+1

𝛿
0
)

× (Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
)

𝑎
𝑘

𝑙

ℎ2
)

−1

.

(28)

Now, applying the absolute value on both sides of (28), and
making further use of the inequality theorem, we arrived at
the following:

𝛿𝑘+1
 ≤ (


Δ𝑡 +

𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
) 𝛿 − 𝑑

1



𝛿𝑘


+
𝜏
−𝛼

Γ (2 − 𝛼)

𝑘−1

∑

𝑗=1


𝛿
𝑘−𝑗


𝑑
𝑗

+ 𝑏
𝑘+1

𝛿0
)

× (



Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
)

𝑎
𝑘

𝑙

ℎ2



)

−1

.

(29)

Making use of the induction hypothesis and factorizing |𝛿
0
|,

we obtain

𝛿𝑘+1
 ≤ [

[

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
) 𝛿 − 𝑑

1

+
𝜏
−𝛼

Γ (2 − 𝛼)

𝑘−1

∑

𝑗=1

𝑑
𝑗

+ 𝑏
𝑘+1

)

×(



Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2sin2 (

𝜌ℎ

2
)

𝑎
𝑘

𝑙

ℎ2



)

−1

]

]

𝛿0
 .

(30)
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But we have that

𝑘−1

∑

𝑗=1

𝑑
𝑗

= 1 − 𝑏
𝑘+1

, 0 ≤ 𝑑
𝑗

≤ 1. (31)

Therefore,

𝛿𝑘+1
 ≤ [

Δ𝑡 + 𝜏
−𝛼

/Γ (2 − 𝛼) + 2sin2 (𝜌ℎ/2) 𝛿 − 𝑑
1

Δ𝑡 + 𝜏−𝛼/Γ (2 − 𝛼) + 2sin2 (𝜌ℎ/2) (𝑎𝑘
𝑙
/ℎ2)



]
𝛿0

 .

(32)

Thus,

𝛿𝑘+1
 ≤

𝛿0
 . (33)

Theorem 9. The implicit difference scheme for the time-
fractional parabolic equation (1) is stable providing that, for
all (𝑙, 𝑘), 𝛿 ≤ 𝑎

𝑘

𝑙
/ℎ
2

+ 𝑑
1
(𝑙 = 1, . . . , 𝑁; 𝑘 = 1, . . . , 𝑀).

Proof. From (19) and Lemma 8, we obtain


𝜁
22

≤

𝜁
02

, (34)

and this proves that the implicit difference scheme for the
time-fractional parabolic equation (1) is stable.

Remark 10. It is observed that, fromTheorem9, the statement
of stability of implicit difference scheme for time-fractional
parabolic equation (1) depends on the evolution of the
function 𝑎(𝑥, 𝑡). It follows that the stability condition can
change in time advancement and space position.

3.1.2. Convergence Analysis of the Implicit Difference Scheme.
Assuming that V(𝑥

𝑙
, 𝑡
𝑘
) (𝑙 = 0, . . . , 𝑀 − 1; 𝑘 = 0, . . . , 𝑁 − 1) is

the exact solution of (1) at the point (𝑥
𝑙
, 𝑡
𝑘
), then, by defining,

𝛽
𝑘

𝑙
= V(𝑥

𝑙
, 𝑡
𝑘
) − V𝑘
𝑙
, and 𝛽

𝑘 is the transpose of the matrix
(𝛽
𝑘

1
, 𝛽
𝑘

2
, . . . , 𝛽

𝑘

𝑁
); here, 𝛽

0 is neglected because of being equal
to zero. Therefore, we have the following relation for the
implicit difference scheme for the time-fractional parabolic
equation (1) and from (13):

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
0

𝑙

ℎ2
) 𝛽
1

𝑙
− 𝑎
0

𝑙
𝛽
1

𝑙+1

− 𝑎
0

𝑙
𝛽
1

𝑙−1
− 𝑓
0

𝑙
= 𝑇
1

𝑙
, for 𝑘 = 0,

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
𝑘

𝑙

ℎ2
) 𝛽
𝑘+1

𝑙
− (Δ𝑡 +

𝜏
−𝛼

Γ (2 − 𝛼)
+ 𝛿) 𝛽

𝑘

𝑙

− 𝑎
𝑘

𝑙
𝛽
𝑘+1

𝑙+1
− 𝑎
𝑘

𝑙
𝛽
𝑘+1

𝑙−1
− 𝑓
𝑘

𝑙

= −
𝜏
−𝛼

Γ (2 − 𝛼)

𝑘−1

∑

𝑗=1

𝛽
𝑘−𝑗

𝑙
𝑏
𝑗

+ 𝑇
𝑘

𝑙
, for 𝑘 ≥ 1.

(35)

Here, 𝑇
𝑘+1

𝑙
is the truncate or the remainder term of the

approximation and has the following expression:

𝑇
𝑘+1

𝑙
= V (𝑥

𝑙
, 𝑡
𝑘+1

) +
𝜏
−𝛼

Γ (2 − 𝛼)

𝑘−1

∑

𝑗=1

𝛽
𝑘−𝑗

𝑙
𝑏
𝑗

+ 𝑎 (𝑥
𝑙
, 𝑡
𝑘
) [V (𝑥

𝑙+1
, 𝑡
𝑘+1

)

−2V (𝑥
𝑙
, 𝑡
𝑘+1

) + V (𝑥
𝑙−1

, 𝑡
𝑘+1

)]

+ (V (𝑥
𝑙
, 𝑡
𝑘+1

) − V (𝑥
𝑙
, 𝑡
𝑘
)) − 𝑓 (𝑥

𝑙
, 𝑡
𝑘
) + 𝛿V (𝑥

𝑙
, 𝑡
𝑘
) .

(36)

It follows from (3), (4), and (5) that,

𝜕
𝛼V (𝑥
𝑙
, 𝑡
𝑘+1

)

𝜕𝑡𝛼
+ 𝐷
1
𝜏

=
𝜏
−𝛼

Γ (2 − 𝛼)

× (V (𝑥
𝑙
, 𝑡
𝑘+1

) − V (𝑥
𝑙
, 𝑡
𝑘
)

+

𝑘−1

∑

𝑗=1

V (𝑥
𝑙
, 𝑡
𝑘−𝑗

) 𝑑
𝑗

+ 𝑑
𝑘+1

V (𝑥
𝑙
, 𝑡
0
)) ,

𝜕
2V (𝑥
𝑙
, 𝑡
𝑘+1

)

𝜕𝑥2
+ ℎ
2
𝐷
2

=
V (𝑥
𝑙+1

, 𝑡
𝑘+1

) − 2V (𝑥
𝑙
, 𝑡
𝑘+1

) + V (𝑥
𝑙−1

, 𝑡
𝑘+1

)

ℎ2
,

𝜕V (𝑥
𝑙
, 𝑡
𝑘+1

)

𝜕𝑡
+ Δ𝑡𝐷

3
=
V (𝑥
𝑙
, 𝑡
𝑘+1

) − V (𝑥
𝑙
, 𝑡
𝑘
)

Δ𝑡
.

(37)

Thus, from (36) and (37), we have the following:

𝑇
𝑘+1

𝑙
≤ 𝐷 (𝜏

1+𝛼
+ ℎ
2
𝜏
𝛼

+ Δ𝑡𝜏
𝛼
) , (38)

where 𝐷
1
, 𝐷
2
, 𝐷
3
, and 𝐷 are constant. The interested reader

can find the error analysis of the chosen fractional derivative
(the Caputo fractional derivative) in [29, 30].

Lemma 11. One has that ‖𝛽
𝑘
‖
∞

≤ 𝐷(𝑏
𝑘+1

)
−1

[𝜏
1+𝛼

+ 𝜏
𝛼
ℎ
2

+

Δ𝑡𝜏
𝛼
] is true for all 𝑘 = 0, 1, . . . , 𝑀 − 1.

Proof. Again we employ the induction method to achieve
this, so that, for 𝑘 = 0,

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
0

𝑙

ℎ2
)


𝛽
1

𝑙


− 𝑎
0

𝑙


𝛽
1

𝑙+1


− 𝑎
0

𝑙


𝛽
1

𝑙−1


≥


𝛽
1

𝑙


,

(39)


𝑇
1

𝑙


=



(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
0

𝑙

ℎ2
) 𝛽
1

𝑙
− 𝑎
0

𝑙
𝛽
1

𝑙+1
− 𝑎
0

𝑙
𝛽
1

𝑙−1



≥

𝛽
1

𝑙


,

𝐷(𝑏
1
)
−1

(𝜏
1+𝛼

+ ℎ
2
𝜏
𝛼

+ Δ𝑡𝜏
𝛼
) ≥


𝑇
1

𝑙


.

(40)
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Now, assuming that, for all 𝑗 = 0, . . . , 𝑀 − 2, ‖𝛽
𝑗
‖
∞

≤

𝐷(𝑏
𝑗+1

)
−1

[𝜏
1+𝛼

+ 𝜏
𝛼
ℎ
2

+ Δ𝑡𝜏
𝛼
], then,

(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
𝑘

𝑙

ℎ2
)


𝛽
𝑘+1

𝑙



− (Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 𝛿)


𝛽
𝑘

𝑙


− 𝑎
𝑘

𝑙


𝛽
𝑘+1

𝑙+1


− 𝑎
𝑘

𝑙


𝛽
𝑘+1

𝑙−1



≥

𝛽
𝑘+1

𝑙


,



(Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 2

𝑎
𝑘

𝑙

ℎ2
) 𝛽
𝑘+1

𝑙

− (Δ𝑡 +
𝜏
−𝛼

Γ (2 − 𝛼)
+ 𝛿) 𝛽

𝑘

𝑙
− 𝑎
𝑘

𝑙
𝛽
𝑘+1

𝑙+1
− 𝑎
𝑘

𝑙
𝛽
𝑘+1

𝑙−1



≥

𝛽
𝑘+1

𝑙


,



𝜏
−𝛼

Γ (2 − 𝛼)

𝑘−1

∑

𝑗=1

𝛽
𝑘−𝑗

𝑙
𝑏
𝑗

+ 𝑇
𝑘+1

𝑙



≥

𝛽
𝑘+1

𝑙


,

𝜏
−𝛼

Γ (2 − 𝛼)

𝑘−1

∑

𝑗=1


𝛽
𝑘−𝑗

𝑙


𝑏
𝑗

+ 𝑇
𝑘+1

𝑙
≥


𝛽
𝑘+1

𝑙


.

(41)

Making use of the induction hypothesis, we obtain the
following:

𝜏
−𝛼

Γ (2 − 𝛼)

𝑘−1

∑

𝑗=1


𝛽
𝑘−𝑗

𝑙

∞
𝑏
𝑗

+ [𝜏
1+𝛼

+ 𝜏
𝛼
ℎ
2

+ Δ𝑡𝜏
𝛼
] ≥


𝛽
𝑘+1

𝑙


,

(𝑏
0

+ 𝑏
𝑘+1

− 𝑏
𝑘+1

) (𝑏
𝑘+1

)

−1

× 𝐷 [𝜏
1+𝛼

+ 𝜏
𝛼
ℎ
2

+ Δ𝑡𝜏
𝛼
]

≥

𝛽
𝑘+1

𝑙


,

(𝑏
𝑘+1

)
−1

× 𝐷 [𝜏
1+𝛼

+ 𝜏
𝛼
ℎ
2

+ Δ𝑡𝜏
𝛼
] ≥


𝛽
𝑘+1

𝑙


.

(42)

This completes the proof.

Theorem 12. The implicit difference scheme of the time-
fractional parabolic equation (1) is convergent, and there exists
a constant 𝐷 such that,


V (𝑥
𝑙
, 𝑡
𝑘
) − V𝑘
𝑙


≤ 𝐷 (𝜏

1+𝛼
+ 𝜏
𝛼
ℎ
2

+ Δ𝑡𝜏
𝛼
) ,

𝑓𝑜𝑟 (𝑙 = 0, . . . , 𝑁 − 1; 𝑘 = 0, . . . , 𝑀 − 1) .

(43)

3.2. Explicit Difference Scheme for Time-Fractional Parabolic
Equation. It is important to recall that the finite-difference
approximation for the second-order spatial derivative is
known as follows:

𝜕
2V (𝑥
𝑙
, 𝑡
𝑘
)

𝜕𝑥2
=
V (𝑥
𝑙+1

, 𝑡
𝑘
) − 2V (𝑥

𝑙
, 𝑡
𝑘
) + V (𝑥

𝑙−1
, 𝑡
𝑘
)

ℎ2
+ 𝑂 (ℎ

2
) .

(44)

The discretization of the Caputo-type time-fractional-order
derivative can be presented as follows:

𝜕
𝛼V (𝑥
𝑙
, 𝑡
𝑘+1

)

𝜕𝑡𝛼

=
𝜏
−𝛼

Γ (2 − 𝛼)
(V (𝑥
𝑙
, 𝑡
𝑘+1

) − V (𝑥
𝑙
, 𝑡
𝑘
)

+

𝑘

∑

𝑗=1

[V (𝑥
𝑙
, 𝑡
𝑘+1−𝑗

) − V (𝑥
𝑙
, 𝑡
𝑘−𝑗

)]

× [(𝑗 + 1)
1−𝛼

− (𝑗)
1−𝛼

]) ,

𝜕V (𝑥
𝑙
, 𝑡
𝑘
)

𝜕𝑡
=
V (𝑥
𝑙+1

, 𝑡
𝑘
) − V (𝑥

𝑙
, 𝑡
𝑘
)

Δ𝑡
+ 𝑂 (Δ𝑡) .

(45)

Now, substituting (44) and (45) into (1), we obtained the
following expression:

V (𝑥
𝑙+1

, 𝑡
𝑘
) − V (𝑥

𝑙
, 𝑡
𝑘
)

Δ𝑡

+
𝜏
−𝛼

Γ (2 − 𝛼)
(V (𝑥
𝑙
, 𝑡
𝑘+1

) − V (𝑥
𝑙
, 𝑡
𝑘
)

+

𝑘

∑

𝑗=1

[V (𝑥
𝑙
, 𝑡
𝑘+1−𝑗

) − V (𝑥
𝑙
, 𝑡
𝑘−𝑗

)]

× [(𝑗 + 1)
1−𝛼

− (𝑗)
1−𝛼

])

− 𝑎
𝑘

𝑙
(
V (𝑥
𝑙+1

, 𝑡
𝑘
) − 2V (𝑥

𝑙
, 𝑡
𝑘
) + V (𝑥

𝑙−1
, 𝑡
𝑘
)

ℎ2
)

+ 𝛿V (𝑥
𝑙
, 𝑡
𝑘
) = 𝑓 (𝑥

𝑙
, 𝑡
𝑘
) .

(46)

For simplicity, let

V𝑘
𝑙

= V (𝑥
𝑙
, 𝑡
𝑘
) , 𝑓

𝑘

𝑙
= 𝑓 (𝑥

𝑙
, 𝑡
𝑘
) ,

𝑎 (𝑥
𝑙
, 𝑡
𝑘
) = 𝑎
𝑘

𝑙
, (𝑗 + 1)

1−𝛼

− (𝑗)
1−𝛼

= 𝑏
𝑗
.

(47)

Then, (37) can be rewritten as follows

V𝑘+1
𝑙

= V𝑘
𝑙

[𝐵
1

+ 1 − 𝑟
𝑘

𝑙
− 𝛿] + V𝑘

𝑙+1
[𝑟
𝑘

𝑙
−𝐵
1
]

+ 𝑟
𝑘

𝑙
V𝑘
𝑙−1

+ 𝐵
1
𝑓
𝑘

𝑙
−

𝑘

∑

𝑗=1

[V𝑘+1−𝑗
𝑙

− V𝑘−𝑗
𝑙

] 𝑏
𝑗
,

(48)

where 𝐵
1

= Γ(2 − 𝛼)𝜏
𝛼 and 𝑟

𝑘

𝑙
= (Γ(2 − 𝛼)𝜏

𝛼
/ℎ
2
)𝑎
𝑘

𝑙
.

3.2.1. Stability of the Explicit Difference Scheme of the Time-
Fractional Parabolic Equation. Following the discussion pre-
sented earlier for the analysis of the implicit scheme, we
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obtain the following roundoff error equation from explicit
scheme equation (1):

𝛽
𝑘+1

𝑙
= 𝛽
𝑘

𝑙
[𝐵
1

+ 1 − 𝑟
𝑘

𝑙
− 𝛿] + 𝛽

𝑘

𝑙+1
[𝑟
𝑘

𝑙
−𝐵
1
]

+ 𝑟
𝑘

𝑙
𝛽
𝑘

𝑙−1
+ 𝐵
1
𝑓
𝑘

𝑙
−

𝑘

∑

𝑗=1

[𝛽
𝑘−𝑗

𝑙
] 𝑑
𝑗

− 𝑑
𝑘+1

𝛽
0
,

for 𝑘 = 1, . . . , 𝑀 − 1,

(49)

where

𝑑
𝑗

= 𝑏
𝑗+1

− 𝑏
𝑗
. (50)

Again, we suppose that 𝛽
𝑘

𝑙
in (39) can be given in exponential

form as follows:

𝛽
𝑘

𝑙
= 𝛿
𝑘
𝑒
(−𝑖𝜎𝑙𝑘)

. (51)

Then, replacing this form into (49), we arrive at the following
expression:

𝛿
𝑘+1

= 𝛿
𝑘

[𝐵
1

+ 1 − sin2 (𝜎ℎ

2
) 𝑟
𝑘

𝑙
− 𝛿]

−

𝑘−1

∑

𝑗=1

𝛿
𝑘−𝑗

𝑑
𝑗

+ 𝛿
0
𝑑
𝑘+1

, for 𝑘 = 0, . . . , 𝑀 − 1.

(52)

Lemma 13. Suppose that 𝛿
𝑘
is the solution of (40) for all (𝑙 =

0, . . . , 𝑁−1; 𝑘 = 0, . . . , 𝑀−1), 𝑟𝑘
𝑙

≤ 1−𝛿+𝐵
1
, and 𝑟

𝑘

𝑙
≥ 𝐵
1
−𝛿,

then, the following inequality holds:
𝛿𝑘

 ≤
𝛿0

 , 𝑓𝑜𝑟 𝑘 ≥ 1. (53)

Proof. To prove this, wemake use of the recurrence technique
on the natural number 𝑘, and we will examine first the case
for 𝑘 = 1. Therefore, if 𝑘 = 1, we have that

𝛿
1

= 𝛿
0

[𝐵
1

+ 1 − sin2 (𝜎ℎ

2
) 𝑟
0

𝑙
− 𝛿] . (54)

Since 𝑟
0

𝑙
≤ 1 − 𝛿 + 𝐵

1
and 𝑟
0

𝑙
≥ 𝐵
1

− 𝛿, then, we have
𝛿1

 ≤
𝛿0

 . (55)

We next assume that, for all 𝑗 = 1, . . . , 𝑘, |𝛿
𝑘
| ≤ |𝛿
0
|; then

𝛿𝑘+1
 =



𝛿
𝑘

[𝐵
1

+ 1 − sin2 (𝜎ℎ

2
) 𝑟
𝑘

𝑙
− 𝛿]

−

𝑘−1

∑

𝑗=1

𝛿
𝑘−𝑗

𝑑
𝑗

+ 𝛿
0
𝑑
𝑘+1



.

(56)

Now, making use of the triangular inequality, we arrive at the
following inequality:

𝛿𝑘+1
 ≤


𝛿
𝑘

[𝐵
1

+ 1 − sin2 (𝜎ℎ

2
) 𝑟
𝑘

𝑙
− 𝛿]



+

𝑘−1

∑

𝑗=1


𝛿
𝑘−𝑗


𝑑
𝑗

+
𝛿0

 𝑑
𝑘+1

.

(57)

Now,making use of the induction hypothesis, we arrive at the
following:

𝛿𝑘+1
 ≤



[𝐵
1

+ 1 − sin2 (𝜎ℎ

2
) 𝑟
𝑘

𝑙
− 𝛿] +

𝑘−1

∑

𝑗=1

𝑑
𝑗

+ 𝑑
𝑘+1



𝛿0
 .

(58)

And this produces, since ∑
𝑘−1

𝑗=1
𝑑
𝑗

+ 𝑑
𝑘+1

= 1,

𝛿𝑘+1
 ≤


[𝐵
1

+ 1 − sin2 (𝜎ℎ

2
) 𝑟
𝑘

𝑙
− 𝛿]



𝛿0
 ≤

𝛿0
 . (59)

This completes the proof.

Theorem 14. The explicit difference scheme of time-fractional
parabolic equation (1) is stable under the condition that, for all
(𝑙 = 0, 1, . . . , 𝑁 − 1; 𝑘 = 0, . . . , 𝑀 − 1), 𝑟

𝑘

𝑙
≤ 1 − 𝛿 + 𝐵

1
and

𝑟
𝑘

𝑙
≥ 𝐵
1

− 𝛿.

Proof. It is straightforward from (11) and Lemma 13, that,

𝜁
22

≤

𝜁
02

(60)

and this proves that the explicit difference scheme for the
time-fractional parabolic equation (3) is stable.

3.2.2. Convergence Analysis of the Explicit Scheme

Theorem 15. The explicit scheme is convergent if, for all (𝑙 =

0, 1, . . . , 𝑁−1; 𝑘 = 0, . . . , 𝑀−1), 𝑟𝑘
𝑙

≤ 1−𝛿+𝐵
1
and 𝑟
𝑘

𝑙
≥ 𝐵
1
−𝛿

and there exists a constant 𝐷 such that

V𝑘
𝑙

− V (𝑥
𝑙
, 𝑡
𝑘
)

≤ 𝐷 (𝜏 + ℎ

2
+ Δ𝑡) . (61)

Using the same method in implicit difference, the above
theorem can be proven.

4. Conclusions

Partial differential equations are sometimes very difficult to
be solved analytically. It is, therefore, sometimes easy to solve
them via numerical techniques. In this paper, we solve the
time-fractional parabolic equation (1) via the implicit and
explicit difference schemes. We study the stability and the
convergence of implicit and explicit difference schemes.
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