
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 825293, 6 pages
http://dx.doi.org/10.1155/2013/825293

Research Article
Ulam-Hyers Stability Results for Fixed Point Problems via
𝛼-𝜓-Contractive Mapping in (𝑏)-Metric Space

Monica-Felicia Bota,1 Erdal KarapJnar,2 and Oana MleGniue1

1 Department of Mathematics, Babeş-Bolyai University, Kogălniceanu Street No. 1, 400084 Cluj-Napoca, Romania
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Correspondence should be addressed to Erdal Karapınar; erdalkarapinar@yahoo.com

Received 17 May 2013; Accepted 28 July 2013

Academic Editor: Janusz Brzdek

Copyright © 2013 Monica-Felicia Bota et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We will investigate some existence, uniqueness, and Ulam-Hyers stability results for fixed point problems via 𝛼-𝜓-contractive
mapping of type-(b) in the framework of b-metric spaces. The presented theorems extend, generalize, and unify several results
in the literature, involving the results of Samet et al. (2012).

1. Introduction and Preliminaries

Very recently, Samet et al. [1] introduced the notion of 𝛼-
𝜓-contractive type mapping and proved some fixed point
results for such mapping. The authors [1] also reported that
several fixed point theorems, including the celebrated Banach
contraction mapping principle, can be derived from their
main results.

The aim of this manuscript is to investigate the existence
and/or uniqueness of a fixed point of 𝛼-𝜓-contractive type
mapping in the context of a 𝑏-metric space, a generalization
of a usual metric space, which was introduced by Czerwik
[2, 3]. In fact, such general settings of metric spaces were
considered earlier, for example, by Bourbaki [4], Bakhtin [5],
and Heinonen [6]. Following these initial papers, 𝑏-metric
spaces and related fixed point theorems have been investi-
gated by a number of authors; see for example, Boriceanu
et al. [7], Boriceanu [8, 9], Bota [10], and Aydi et al. [11, 12].
As a subsidiary purpose, we consider Ulam-Hyers stability
of the observed results. The stability problem of functional
equations, originated from a question of Ulam [13], in 1940,
concerns the stability of group homomorphisms. The first
affirmative partial answer to the question of Ulam for Banach
spaces was given by Hyers [14] in 1941. Thereafter, this
type of stability is called the Ulam-Hyers stability and has
attracted attention of several authors. In particular, Ulam-
Hyers stability results in fixed point theory have been studied

densely; see for example, Bota-Boriceanu and Petruşel [15],
Lazăr [16], Rus [17, 18], and F. A. Tişe and I. C. Tişe [19].
Moreover, there are several remarkable results on the stability
of certain classes of functional equations via fixed point
approach. Most particularly and recently, Brzdęk et al. [20],
Brzdęk and Ciepliński [21, 22], and Cadariu [23] reported
some interesting results in this direction.

We recollect some essential definitions and fundamental
results. We first recall the definition of a 𝑏-metric space.

Definition 1 (Bakhtin [5], Czerwik [2]). Let 𝑋 be a set, and
let 𝑠 ≥ 1 be a given real number. A functional 𝑑 : 𝑋 ×

𝑋 → [0,∞) is said to be a 𝑏-metric space if the following
conditions are satisfied:

(1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),
(3) 𝑑(𝑥, 𝑧) ≤ 𝑠[𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)],

for all 𝑥, 𝑦, and 𝑧 ∈ 𝑋. A pair (𝑋, 𝑑) is called a 𝑏-metric space.

It is clear that 𝑏-metric turns into usual metric when we
take 𝑠 = 1. Hence, we conclude that the class of 𝑏-metric
spaces is larger than the class of usualmetric spaces. Formore
details and examples on 𝑏-metric spaces, see, for example,
[2–6, 24]. We state the following example for the sake of
completeness.
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Example 2. Let 𝑋 be a set with the cardinal card(𝑋) ≥ 3.
Suppose that 𝑋 = 𝑋

1
∪ 𝑋
2
is a partition of 𝑋 such that

card(𝑋
1
) ≥ 2. Let 𝑠 > 1 be arbitrary. Then, the functional

𝑑 : 𝑋 × 𝑋 → [0,∞) defined by

𝑑 (𝑥, 𝑦) :=

{
{

{
{

{

0, 𝑥 = 𝑦,

2𝑠, 𝑥, 𝑦 ∈ 𝑋
1
,

1, otherwise
(1)

is a 𝑏-metric on𝑋 with coefficient 𝑠 > 1.

Let (𝑋, 𝑑) be a 𝑏-metric space. We consider next the
following families of subsets of

P (𝑋) := {𝑌 | 𝑌 ⊂ 𝑋 and𝑌 ̸= 0} . (2)

In this case 𝐷 is a generalized functional on a 𝑏-metric
space (𝑋, 𝑑) defined by

𝐷 : 𝑃 (𝑋) × 𝑃 (𝑋) → [0,∞) ∪ {+∞} ,

𝐷 (𝐴, 𝐵) =

{
{

{
{

{

inf {𝑑 (𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} , 𝐴 ̸= 0 ̸= 𝐵;

0, 𝐴 = 0 = 𝐵;

+∞, otherwise.

(3)

In particular, if 𝑥
0
∈ 𝑋, then𝐷(𝑥

0
, 𝐵) := 𝐷({𝑥

0
}, 𝐵).

The following basic lemmas will be useful in the proof of
the main results.

Lemma 3 (Czerwik [2]). Let (𝑋, 𝑑) be a 𝑏-metric space.Then,
ones has

𝐷 (𝑥, 𝐴) ≤ 𝑠 [𝑑 (𝑥, 𝑦) + 𝐷 (𝑦, 𝐴)] , ∀𝑥, 𝑦 ∈ 𝑋 and 𝐴 ⊂ 𝑋.

(4)

Lemma 4 (Czerwik [2]). Let (𝑋, 𝑑) be a 𝑏-metric space, and
let {𝑥
𝑘
}
𝑛

𝑘=0
⊂ 𝑋. Then

𝑑 (𝑥
𝑛
, 𝑥
0
) ≤ 𝑠𝑑 (𝑥

0
, 𝑥
1
) + ⋅ ⋅ ⋅ + 𝑠

𝑛−1
𝑑 (𝑥
𝑛−2
, 𝑥
𝑛−1
)

+ 𝑠
𝑛−1
𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) .

(5)

A mapping 𝜑 : [0,∞) → [0,∞) is called a comparison
function if it is increasing and𝜑𝑛(𝑡) → 0, 𝑛 → ∞, for any 𝑡 ∈
[0,∞). We denote byΦ the class of the comparison function
𝜑 : [0,∞) → [0,∞). For more details and examples, see,
for example, [25, 26]. Among them, we recall the following
essential result.

Lemma 5 (Berinde [26], Rus [25]). If 𝜑 : [0,∞) → [0,∞)

is a comparison function, then

(1) each iterate 𝜑𝑘 of 𝜑, 𝑘 ≥ 1, is also a comparison
function;

(2) 𝜑 is continuous at 0;
(3) 𝜑(𝑡) < 𝑡, for any 𝑡 > 0.

Later, Berinde [26] introduced the concept of (𝑐)-
comparison function in the following way.

Definition 6 (Berinde [26]). A function 𝜑 : [0,∞) → [0,∞)

is said to be a (𝑐)-comparison function if

(c
1
) 𝜑 is increasing,

(c
2
) there exist 𝑘

0
∈ N, 𝑎 ∈ (0, 1), and a convergent series

of nonnegative terms ∑∞
𝑘=1

V
𝑘
such that 𝜑𝑘+1(𝑡) ≤

𝑎𝜑
𝑘
(𝑡) + V

𝑘
, for 𝑘 ≥ 𝑘

0
and any 𝑡 ∈ [0,∞).

The notion of a (𝑐)-comparison function was improved as
a (𝑏)-comparison function by Berinde [27] in order to extend
some fixed point results to the class of 𝑏-metric space.

Definition 7 (Berinde [27]). Let 𝑠 ≥ 1 be a real number. A
mapping 𝜑 : [0,∞) → [0,∞) is called a (𝑏)-comparison
function if the following conditions are fulfilled:

(1) 𝜑 is monotonically increasing;
(2) there exist 𝑘

0
∈ N, 𝑎 ∈ (0, 1), and a convergent series

of nonnegative terms ∑∞
𝑘=1

V
𝑘
such that 𝑠𝑘+1𝜑𝑘+1(𝑡) ≤

𝑎𝑠
𝑘
𝜑
𝑘
(𝑡) + V

𝑘
, for 𝑘 ≥ 𝑘

0
and any 𝑡 ∈ [0,∞).

We denote byΨ
𝑏
for the class of (𝑏)-comparison function

𝜑 : [0,∞) → [0,∞). It is evident that the concept of
(𝑏)-comparison function reduces to that of (𝑐)-comparison
function when 𝑠 = 1.

The following lemma has a crucial role in the proof of our
main result.

Lemma 8 (Berinde [24]). If 𝜑 : [0,∞) → [0,∞) is a (𝑏)-
comparison function, then ones has the following:

(1) the series ∑∞
𝑘=0

𝑠
𝑘
𝜑
𝑘
(𝑡) converges for any 𝑡 ∈ R

+
;

(2) the function 𝑏
𝑠
: [0,∞) → [0,∞) defined by 𝑏

𝑠
(𝑡) =

∑
∞

𝑘=0
𝑠
𝑘
𝜑
𝑘
(𝑡), 𝑡 ∈ [0,∞), is increasing and continuous

at 0.

We note that any (𝑏)-comparison function is a compari-
son function due to Lemma 8.

Next, we will present the definition of 𝛼-𝜓-contractive
and 𝛼-admissible mappings introduced by Samet et al. [1].

We denote by Ψ the family of nondecreasing functions
𝜓 : [0,∞) → [0,∞) such that ∑∞

𝑛=1
𝜓
𝑛
(𝑡) < ∞ for each

𝑡 > 0. It is clear that if Ψ ⊂ Φ (see, e.g., [28]) and, hence, by
Lemma 5 (14), for 𝜓 ∈ Ψ, we have 𝜓(𝑡) < 𝑡, for any 𝑡 > 0.

Definition 9 (Samet et al. [1]). Let (𝑋, 𝑑) be a metric space
and 𝑓 : 𝑋 → 𝑋 a given mapping. One says that 𝑓 is an 𝛼-𝜓-
contractive mapping if there exist two functions 𝛼 : 𝑋×𝑋 →

[0,∞) and 𝜓 ∈ Ψ such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋. (6)

Remark 10. If 𝑓 : 𝑋 → 𝑋 satisfies the Banach contraction
principle, then 𝑓 is an 𝛼-𝜓-contractive mapping, where
𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓(𝑡) = 𝑘𝑡 for all 𝑡 ≥ 0 and
some 𝑘 ∈ [0, 1).

Definition 11 (Samet et al. [1]). Let 𝑓 : 𝑋 → 𝑋 and 𝛼 : 𝑋 ×

𝑋 → [0,∞). One says that 𝑓 is 𝛼-admissible if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝛼 (𝑓 (𝑥) , 𝑓 (𝑦)) ≥ 1. (7)
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Let F
𝑓
(𝑋) be the class of fixed points of a self-mapping

𝑓 defined on a nonempty set 𝑋; that is, F
𝑓
(𝑋) = {𝑥 ∈ 𝑋 :

𝑓(𝑥) = 𝑥}.

Example 12 (Samet et al. [1]). Let 𝑋 = (0, +∞). Define 𝑓 :

𝑋 → 𝑋 and 𝛼 : 𝑋 × 𝑋 → [0,∞) by

(1) 𝑓(𝑥) = ln(𝑥), for all 𝑥 ∈ 𝑋, and

𝛼 (𝑥, 𝑦) = {

2, if 𝑥 ≥ 𝑦;
0, if 𝑥 < 𝑦.

(8)

Then 𝑓 is 𝛼-admissible.

(2) 𝑓(𝑥) = √𝑥, for all 𝑥 ∈ 𝑋, and

𝛼 (𝑥, 𝑦) = {

𝑒
𝑥−𝑦

, if 𝑥 ≥ 𝑦;
0, if 𝑥 < 𝑦.

(9)

Then 𝑓 is 𝛼-admissible.

Example 13. Let (𝑋, ⪯) be a partially ordered set and 𝑑 a
metric on 𝑋 such that (𝑋, 𝑑) is complete. Let 𝑇 : 𝑋 → 𝑋

be a nondecreasing mapping with respect to ⪯; that is, 𝑥, 𝑦 ∈
𝑋, 𝑥 ⪯ 𝑦 ⇒ 𝑇𝑥 ⪯ 𝑇𝑦. Suppose that there exists 𝑥

0
∈ 𝑋 such

that 𝑥
0
⪯ 𝑇𝑥
0
. Define the mapping 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

1, if 𝑥 ⪯ 𝑦 or 𝑥 ⪰ 𝑦,

0, otherwise.
(10)

Then, 𝑇 is 𝛼-admissible. Since there exists 𝑥
0
∈ 𝑋 such that

𝑥
0
⪯ 𝑇𝑥
0
, we have 𝛼(𝑥

0
, 𝑇𝑥
0
) ≥ 1. On the other hand, for all

𝑥, 𝑦 ∈ 𝑋, from the monotone property of 𝑇, we have

𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝑥 ⪰ 𝑦

or 𝑥 ⪯ 𝑦 ⇒ 𝑇𝑥 ⪰ 𝑇𝑦

or 𝑇𝑥 ⪯ 𝑇𝑦 ⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1.

(11)

Thus 𝑇 is 𝛼-admissible.

Theorem 14 (Samet et al. [1]). Let (𝑋, 𝑑) be a complete metric
space and 𝑓 : 𝑋 → 𝑋 an 𝛼-𝜓-contractive mapping satisfying
the following conditions:

(i) 𝑓 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓(𝑥
0
)) ≥ 1;

(iii) 𝑓 is continuous.

Then, 𝑓 has a fixed point; that is, there exists 𝑥∗ ∈ F
𝑓
(𝑋).

Theorem 15 (Samet et al. [1]). Let (𝑋, 𝑑) be a complete metric
space and 𝑓 : 𝑋 → 𝑋 an 𝛼-𝜓-contractive mapping satisfying
the following conditions:

(i) 𝑓 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓(𝑥
0
)) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for

all 𝑛 and 𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛.

Then, 𝑓 has a fixed point; that is, there exists 𝑥∗ ∈ F
𝑓
(𝑋).

2. Main Results

First we give the following definition as a generalization of
Definition 9.

Definition 16. Let (𝑋, 𝑑) a 𝑏-metric space and 𝑓 : 𝑋 → 𝑋

be a given mapping. We say that 𝑓 is an 𝛼-𝜓-contractive
mapping of type-(𝑏) if there exist two functions 𝛼 : 𝑋×𝑋 →

[0,∞) and 𝜓 ∈ Ψ
𝑏
such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋. (12)

Our first main result is the following.

Theorem 17. Let (𝑋, 𝑑) be a complete 𝑏-metric space with
constant 𝑠 > 1. Let𝑓 : 𝑋 → 𝑋 be an 𝛼-𝜓-contractivemapping
of type-(𝑏) satisfying the following conditions:

(i) 𝑓 is 𝛼-admissible;

(ii) there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓(𝑥
0
)) ≥ 1;

(iii) 𝑓 is continuous.

Then the fixed point equation (29) has a solution; that is, there
exists 𝑥∗ ∈ F

𝑓
(𝑋).

Proof. Let 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓(𝑥
0
)) ≥ 1 (such a point

exists from condition (ii)). Define the sequence {𝑥
𝑛
} in𝑋 by

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
) , ∀𝑛 ∈ N ∪ {0} . (13)

If 𝑥
𝑛
= 𝑥
𝑛+1

for some 𝑛 ∈ N ∪ {0}, then 𝑥∗ = 𝑥
𝑛
is a fixed

point for 𝑓, and the proof finishes. Hence we assume that

𝑥
𝑛
̸= 𝑥
𝑛+1

∀𝑛 ∈ N ∪ {0} . (14)

Since 𝑓 is 𝛼-admissible, we have

𝛼 (𝑥
0
, 𝑥
1
) = 𝛼 (𝑥

0
, 𝑓 (𝑥
0
))

≥ 1 ⇒ 𝛼 (𝑓 (𝑥
0
) , 𝑓 (𝑥

1
))

= 𝛼 (𝑥
1
, 𝑥
2
) ≥ 1.

(15)

By induction, we get

𝛼 (𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1, ∀𝑛 ∈ N ∪ {0} . (16)

Applying the inequality (12) with 𝑥 = 𝑥
𝑛−1

and 𝑦 = 𝑥
𝑛
and

using (16), we obtain

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) = 𝑑 (𝑓 (𝑥

𝑛−1
) , 𝑓 (𝑥

𝑛
))

≤ 𝛼 (𝑥
𝑛−1
, 𝑥
𝑛
) 𝑑 (𝑓 (𝑥

𝑛−1
) , 𝑓 (𝑥

𝑛
))

≤ 𝜓 (𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)) .

(17)

By induction, we get

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ≤ 𝜓
𝑛
(𝑑 (𝑥
0
, 𝑥
1
)) , ∀𝑛 ∈ N ∪ {0} . (18)
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From (18) and using the triangular inequality, for all 𝑝 ≥ 1,
we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑝

) ≤ 𝑠𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑠
2
𝑑 (𝑥
𝑛+1
, 𝑥
𝑛+2
)

+ ⋅ ⋅ ⋅ + 𝑠
𝑝−2

𝑑 (𝑥
𝑛+𝑝−3

, 𝑥
𝑛+𝑝−2

)

+ 𝑠
𝑝−1

𝑑 (𝑥
𝑛+𝑝−2

, 𝑥
𝑛+𝑝−1

)

+ 𝑠
𝑝
𝑑 (𝑥
𝑛+𝑝−1

, 𝑥
𝑛+𝑝

)

≤ 𝑠𝜓
𝑛
(𝑑 (𝑥
0
, 𝑥
1
)) + 𝑠
2
𝜓
𝑛+1

(𝑑 (𝑥
0
, 𝑥
1
))

+ ⋅ ⋅ ⋅ + 𝑠
𝑝−2

𝜓
𝑛+𝑝−3

(𝑑 (𝑥
0
, 𝑥
1
))

+ 𝑠
𝑝−1

𝜓
𝑛+𝑝−2

(𝑑 (𝑥
0
, 𝑥
1
))

+ 𝑠
𝑝−1

𝜓
𝑛+𝑝−1

(𝑑 (𝑥
0
, 𝑥
1
))

=

1

𝑠
𝑛−1

[𝑠
𝑛
𝜓
𝑛
(𝑑 (𝑥
0
, 𝑥
1
))

+ 𝑠
𝑛+1
𝜓
𝑛+1

(𝑑 (𝑥
0
, 𝑥
1
))

+ ⋅ ⋅ ⋅ + 𝑠
𝑛+𝑝−2

𝜓
𝑛+𝑝−2

(𝑑 (𝑥
0
, 𝑥
1
))

+ 𝑠
𝑛+𝑝−1

𝜓
𝑛+𝑝−1

(𝑑 (𝑥
0
, 𝑥
1
))] .

(19)

Denoting 𝑆
𝑛
= ∑
𝑛

𝑘=0
𝑠
𝑘
𝜓
𝑘
(𝑑(𝑥
0
, 𝑥
1
)), 𝑛 ≥ 1, we obtain

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑝

) ≤

1

𝑠
𝑛−1

[𝑆
𝑛+𝑝−1

− 𝑆
𝑛−1
] , 𝑛 ≥ 1, 𝑝 ≥ 1. (20)

Due to the assumption (14) and Lemma 8, we conclude
that the series ∑𝑛

𝑘=0
𝑠
𝑘
𝜓
𝑘
(𝑑(𝑥
0
, 𝑥
1
)) is convergent. Thus there

exists 𝑆 = lim
𝑛→∞

𝑆
𝑛
∈ [0,∞). Regarding 𝑠 ≥ 1 and by (20),

we obtain that {𝑥
𝑛
}
𝑛≥0

is a Cauchy sequence in the 𝑏-metric
space (𝑋, 𝑑). Since (𝑋, 𝑑) is complete, there exists 𝑥∗ ∈ 𝑋

such that 𝑥
𝑛
→ 𝑥
∗ as 𝑛 → ∞. From the continuity of 𝑓,

it follows that 𝑥
𝑛+1

= 𝑓(𝑥
𝑛
) → 𝑓(𝑥

∗
) as 𝑛 → ∞. By the

uniqueness of the limit, we get 𝑥∗ = 𝑓(𝑥
∗
); that is, 𝑥∗ is a

fixed point of 𝑓.

In the following theorem, we are able to omit the conti-
nuity hypothesis of 𝑓 by adding a new condition.

Theorem 18. Let (𝑋, 𝑑) be a complete 𝑏-metric space with
constant 𝑠 > 1. Let𝑓 : 𝑋 → 𝑋 be an 𝛼-𝜓-contractivemapping
of type-(𝑏) satisfying the following conditions:

(i) 𝑓 is 𝛼-admissible;
(ii) there exists 𝑥

0
∈ 𝑋 such that 𝛼(𝑥

0
, 𝑓(𝑥
0
)) ≥ 1;

(iii) if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for

all 𝑛 and 𝑥
𝑛
→ 𝑥 ∈ 𝑋 as 𝑛 → ∞, then 𝛼(𝑥

𝑛
, 𝑥) ≥ 1

for all 𝑛.

Then the fixed point equation (29) has a solution.

Proof. Following the proof of Theorem 17, we know that {𝑥
𝑛
}

is a Cauchy sequence in the complete 𝑏-metric space (𝑋, 𝑑).

Then, there exists 𝑥∗ ∈ 𝑋 such that 𝑥
𝑛
→ 𝑥
∗ as 𝑛 → ∞. On

the other hand, from (16) and the hypothesis (iii), we have

𝛼 (𝑥
𝑛
, 𝑥
∗
) ≥ 1, ∀𝑛 ∈ N. (21)

Now, using the triangular inequalities, (12) and (21), we get

𝑑 (𝑓 (𝑥
∗
) , 𝑥
∗
)

≤ 𝑠 [𝑑 (𝑓 (𝑥
∗
) , 𝑓 (𝑥

𝑛
)) + 𝑑 (𝑥

𝑛+1
, 𝑥
∗
)]

≤ 𝑠 [𝛼 (𝑥
𝑛
, 𝑥
∗
) 𝑑 (𝑓 (𝑥

∗
) , 𝑓 (𝑥

𝑛
)) + 𝑑 (𝑥

𝑛+1
, 𝑥
∗
)]

≤ 𝑠 [𝜓 (𝑑 (𝑥
𝑛
, 𝑥
∗
)) + 𝑑 (𝑥

𝑛+1
, 𝑥
∗
)] .

(22)

Letting 𝑛 → ∞, since 𝜓 is continuous at 𝑡 = 0, we obtain
𝑑(𝑓(𝑥

∗
), 𝑥
∗
) = 0; that is, 𝑥∗ = 𝑓(𝑥∗).

To assure the uniqueness of the fixed point, we will
consider the following hypothesis:

∀𝑥, 𝑦 ∈ 𝑋, there exists 𝑧 ∈ 𝑋

such that 𝛼 (𝑥, 𝑧) ≥ 1, 𝛼 (𝑦, 𝑧) ≥ 1.

(𝐻)

Theorem 19. Adding condition (𝐻) to the hypotheses of
Theorem 17 (resp., Theorem 18) one obtains uniqueness of the
fixed point of 𝑓.

Proof. Suppose that𝑥∗ and𝑦∗ are two fixed points of𝑓. From
(𝐻), there exists 𝑧 ∈ 𝑋 such that

𝛼 (𝑥
∗
, 𝑧) ≥ 1, 𝛼 (𝑦

∗
, 𝑧) ≥ 1. (23)

Since 𝑓 is 𝛼-admissible, from (23), we get

𝛼 (𝑥
∗
, 𝑓
𝑛
(𝑧)) ≥ 1, 𝛼 (𝑦

∗
, 𝑓
𝑛
(𝑧)) ≥ 1. (24)

Using (24) and (12), we have

𝑑 (𝑥
∗
, 𝑓
𝑛
(𝑧)) = 𝑑 (𝑓 (𝑥

∗
) , 𝑓 (𝑓

𝑛−1
(𝑧)))

≤ 𝛼 (𝑥
∗
, 𝑓
𝑛−1

(𝑧)) 𝑑 (𝑓 (𝑥
∗
) , 𝑓 (𝑓

𝑛−1
(𝑧)))

≤ 𝜓 (𝑑 (𝑥
∗
, 𝑓
𝑛−1

(𝑧))) .

(25)

This implies that

𝑑 (𝑥
∗
, 𝑓
𝑛
(𝑧)) ≤ 𝜓

𝑛
(𝑑 (𝑥
∗
, 𝑧)) , ∀𝑛 ∈ N. (26)

Then, letting 𝑛 → ∞, we have

𝑓
𝑛
(𝑧) → 𝑥

∗
. (27)

Similarly, using (24) and (12), we get

𝑓
𝑛
(𝑧) → 𝑦

∗ as 𝑛 → ∞. (28)

Using (27) and (28), the uniqueness of the limit gives us 𝑥∗ =
𝑦
∗. This finishes the proof.

Remark 20. Theorem 14 (resp., Theorem 15) can be derived
from Theorem 17 (resp., Theorem 18) by taking 𝑠 = 1. Con-
sequently, all results in [1] can be considered as corollaries of
our main results.
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3. Ulam-Hyers Stability Results through the
Fixed Point Problems

Definition 21. Let (𝑋, 𝑑) be a metric space and 𝑓 : 𝑋 → 𝑋

an operator. By definition, the fixed point equation

𝑥 = 𝑓 (𝑥) (29)

is called generalized Ulam-Hyers stability if and only if there
exists𝜓 : R

+
→ R
+
which is increasing, continuous at 0 and

𝜓(0) = 0 such that for every 𝜀 > 0 and for each 𝑤∗ ∈ 𝑋 an 𝜀-
solution of the fixed point equation (29), that is, 𝑤∗, satisfies
the inequality

𝑑 (𝑤
∗
, 𝑓 (𝑤

∗
)) ≤ 𝜀. (30)

There exists a solution 𝑥∗ ∈ 𝑋 of (29) such that

𝑑 (𝑤
∗
, 𝑥
∗
) ≤ 𝜓 (𝜀) . (31)

If there exists 𝑐 > 0 such that 𝜓(𝑡) = 𝑐 ⋅ 𝑡, for each 𝑡 ∈ R
+
,

then the fixed point equation (29) is said to be Ulam-Hyers
stability.

For Ulam-Hyers stability results in the case of fixed point
problems see Bota-Boriceanu, Petruşel [15], Lazăr [16], and
Rus [17, 18].

Regarding the Ulam-Hyers stability problem the ideas
given in Petru et al. [29] allow us to obtain the following
result.

Theorem 22. Let (𝑋, 𝑑) be a complete 𝑏-metric space with
constant 𝑠 > 1. Suppose that all the hypotheses of Theorem 19
hold and additionally that the function 𝛽 : [0,∞) → [0,∞),
𝛽(𝑟) := 𝑟 − 𝑠𝜓(𝑟) is strictly increasing and onto. Then the
following hold.

(a) The fixed point equation (29) is generalized Ulam-
Hyers stability.

(b) Fix(𝑓) = {𝑥
∗
} and if 𝑥

𝑛
∈ 𝑋, 𝑛 ∈ N are such that

𝑑(𝑥
𝑛
, 𝑓(𝑥
𝑛
)) → 0, as 𝑛 → ∞, then 𝑥

𝑛
→ 𝑥
∗, as

𝑛 → ∞; that is, the fixed point equation (29) is well
posed.

(c) If 𝑔 : 𝑋 → 𝑋 is such that there exists 𝜂 ∈ [0,∞) with

𝑑 (𝑓 (𝑥) , 𝑔 (𝑥)) ≤ 𝜂, ∀𝑥 ∈ 𝑋, (32)

then

𝑦
∗
∈ Fix (𝑔) ⇒ 𝑑 (𝑥

∗
, 𝑦
∗
) ≤ 𝛽
−1
(𝑠 ⋅ 𝜂) . (33)

Proof. (a) Since 𝑓 : 𝑋 → 𝑋 is a Picard operator, so Fix(𝑓) =
{𝑥
∗
}. Let 𝜀 > 0 and 𝑤∗ ∈ 𝑋 be a solution of (30); that is,

𝑑 (𝑤
∗
, 𝑓 (𝑤

∗
)) ≤ 𝜀. (34)

Since𝑓 is𝛼-𝜓-contractivemapping of type-(𝑏) and since𝑥∗ ∈
Fix(𝑓), from (𝐻), there exists 𝑤∗ ∈ 𝑋 such that 𝛼 (𝑥∗, 𝑤∗) ≥
1; we obtain

𝑑 (𝑥
∗
, 𝑤
∗
) = 𝑑 (𝑓 (𝑥

∗
) , 𝑤
∗
)

≤ 𝑠 [𝑑 (𝑓 (𝑥
∗
) , 𝑓 (𝑤

∗
)) + 𝑑 (𝑓 (𝑤

∗
) , 𝑤
∗
)]

≤ 𝑠 [𝛼 (𝑥
∗
, 𝑤
∗
) 𝑑 (𝑓 (𝑥

∗
) , 𝑓 (𝑤

∗
)) + 𝜀]

≤ 𝑠 [𝜓 (𝑑 (𝑥
∗
, 𝑤
∗
)) + 𝜀] .

(35)

Therefore,

𝛽 (𝑑 (𝑥
∗
, 𝑤
∗
)) := 𝑑 (𝑥

∗
, 𝑤
∗
) − 𝑠𝜓 (𝑑 (𝑥

∗
, 𝑤
∗
))

≤ 𝑠 ⋅ 𝜀 ⇒ 𝑑 (𝑥
∗
, 𝑤
∗
)

≤ 𝛽
−1
(𝑠 ⋅ 𝜀) .

(36)

Consequently, the fixed point equation (29) is generalized
Ulam-Hyers stability.

(b) Since 𝑓 is 𝛼-𝜓-contractive mapping of type-(𝑏) and
since 𝑥∗ ∈ Fix(𝑓), from (𝐻), there exists 𝑥

𝑛
∈ 𝑋 such that

𝛼(𝑥
∗
, 𝑥
𝑛
) ≥ 1; we obtain

𝑑 (𝑥
𝑛
, 𝑥
∗
) ≤ 𝑠 [𝑑 (𝑥

𝑛
, 𝑓 (𝑥
𝑛
)) + 𝑑 (𝑓 (𝑥

𝑛
) , 𝑥
∗
)]

= 𝑠 [𝑑 (𝑥
𝑛
, 𝑓 (𝑥
𝑛
)) + 𝑑 (𝑓 (𝑥

𝑛
) , 𝑓 (𝑥

∗
))]

≤ 𝑠 [𝑑 (𝑥
𝑛
, 𝑓 (𝑥
𝑛
)) + 𝛼 (𝑥

𝑛
, 𝑥
∗
) 𝑑 (𝑓 (𝑥

𝑛
) , 𝑓 (𝑥

∗
))]

≤ 𝑠 [𝑑 (𝑥
𝑛
, 𝑓 (𝑥
𝑛
)) + 𝜓 (𝑑 (𝑥

𝑛
, 𝑥
∗
))] .

(37)

Therefore

𝛽 (𝑑 (𝑥
𝑛
, 𝑥
∗
)) := 𝑑 (𝑥

𝑛
, 𝑥
∗
) − 𝑠𝜓 (𝑑 (𝑥

𝑛
, 𝑥
∗
))

≤ 𝑠𝑑 (𝑥
𝑛
, 𝑓 (𝑥
𝑛
)) → 0 as 𝑛 → ∞

⇒ 𝑑 (𝑥
𝑛
, 𝑥
∗
) → 0 as 𝑛 → ∞

⇒ 𝑥
𝑛
→ 𝑥
∗
, as 𝑛 → ∞.

(38)

So, the fixed point equation (29) is well posed.
(c) Since 𝑓 is 𝛼-𝜓-contractive mapping of type-(𝑏) and

since 𝑥∗ ∈ Fix(𝑓), from (𝐻), there exists 𝑥 ∈ 𝑋 such that
𝛼(𝑥
∗
, 𝑥) ≥ 1; we obtain

𝑑 (𝑥, 𝑥
∗
) ≤ 𝑠 [𝑑 (𝑥, 𝑓 (𝑥)) + 𝑑 (𝑓 (𝑥) , 𝑥

∗
)]

= 𝑠 [𝑑 (𝑥, 𝑓 (𝑥)) + 𝑑 (𝑓 (𝑥) , 𝑓 (𝑥
∗
))]

≤ 𝑠 [𝑑 (𝑥, 𝑓 (𝑥)) + 𝛼 (𝑥, 𝑥
∗
) 𝑑 (𝑓 (𝑥) , 𝑓 (𝑥

∗
))]

≤ 𝑠 [𝑑 (𝑥, 𝑓 (𝑥)) + 𝜓 (𝑑 (𝑥, 𝑥
∗
))] .

(39)

Therefore

𝛽 (𝑑 (𝑥, 𝑥
∗
)) := 𝑑 (𝑥, 𝑥

∗
) − 𝑠𝜓 (𝑑 (𝑥, 𝑥

∗
))

≤ 𝑠 ⋅ 𝑑 (𝑥, 𝑓 (𝑥)) .

(40)
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So, we have the following estimation:

𝑑 (𝑥, 𝑥
∗
) ≤ 𝛽
−1
(𝑠 ⋅ 𝑑 (𝑥, 𝑓 (𝑥))) . (41)

Writing (41) for 𝑥 := 𝑦∗ we get

𝑑 (𝑥
∗
, 𝑦
∗
) ≤ 𝛽
−1
(𝑠 ⋅ 𝑑 (𝑦

∗
, 𝑓 (𝑦
∗
)))

= 𝛽
−1
(𝑠 ⋅ 𝑑 (𝑠 (𝑦

∗
) , 𝑓 (𝑦

∗
))) ⇒ 𝑑 (𝑥

∗
, 𝑦
∗
)

≤ 𝛽
−1
(𝑠 ⋅ 𝜂) .

(42)
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