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This note is concerned with the linear matrix equation 𝑋 = 𝐴𝑋
⊤
𝐵 + 𝐶, where the operator (⋅)⊤ denotes the transpose (⊤) of a

matrix. The first part of this paper sets forth the necessary and sufficient conditions for the unique solvability of the solution 𝑋.
The second part of this paper aims to provide a comprehensive treatment of the relationship between the theory of the generalized
eigenvalue problem and the theory of the linear matrix equation.The final part of this paper starts with a brief review of numerical
methods for solving the linear matrix equation. In relation to the computed methods, knowledge of the residual is discussed. An
expression related to the backward error of an approximate solution is obtained; it shows that a small backward error implies a
small residual. Just like the discussion of linear matrix equations, perturbation bounds for solving the linear matrix equation are
also proposed in this work.

1. Introduction

Our purpose of this work is to study the so-called ⊤-Stein
matrix equation

𝑋 = 𝐴𝑋
⊤
𝐵 + 𝐶, (1)

where 𝐴, 𝐵, 𝐶 ∈ R𝑛×𝑛 are known matrices and 𝑋 ∈ R𝑛×𝑛

is an unknown matrix to be determined. Our interest in
the ⊤-Stein equation originates from the study of completely
integrable mechanical systems, that is, the analysis of the ⊤-
Sylvester equation

𝐴𝑋 + 𝑋
⊤
𝐵 = 𝐶, (2)

where𝐴, 𝐵, and𝐶 are matrices inR𝑛×𝑛 [1, 2]. By means of the
generalized inverses or QZ decomposition [3], the solvability
conditions of (2) are studied in [1, 2, 4]. Suppose that the
matrix pencil𝐴−𝜆𝐵

⊤ is regular; that is, 𝑎𝐴+𝑏𝐵
⊤ is invertible

for some scalars 𝑎 and 𝑏. The ⊤-Sylvester equation (2) can be
written as

(𝑎𝐴 + 𝑏𝐵
⊤
)𝑋 + 𝑋

⊤
(𝑎𝐵 + 𝑏𝐴

⊤
) = 𝑎𝐶 + 𝑏𝐶

⊤
. (3)

Premultiplying both sides of (3) by (𝑎𝐴+𝑏𝐵
⊤
)
−1, we have

𝑋 + 𝑈𝑋
⊤
𝑉 = 𝐷, (4)

where 𝑈 = (𝑎𝐴 + 𝑏𝐵
⊤
)
−1, 𝑉 = 𝑎𝐵 + 𝑏𝐴

⊤, and 𝐷 =

(𝑎𝐴 + 𝑏𝐵
⊤
)
−1
(𝑎𝐶 + 𝑏𝐶

⊤
). This is of the form (1). In other

words, numerical approaches for solving (2) can be obtained
by transforming (2) into the form of (1) and then applying
numerical methods to (1) for the solution [4–6]. With this in
mind, in this note we are interested in the study of ⊤-Stein
matrix equation (1).

Our major purpose in this work can be divided into three
parts. First, we determine necessary and sufficient conditions
for the unique solvability of the solution to (1). In doing so,
Zhou et al. [7] transform (1) to the standard Stein equation

𝑊 = 𝐴𝐵
⊤
𝑊𝐴
⊤
𝐵 + 𝐴𝐶

⊤
𝐵 + 𝐶 (5)

with respect to the unknown matrix 𝑊 ∈ R𝑚×𝑛 and give the
following necessary condition:

𝜇] ̸= 1, ∀𝜇, ] ∈ 𝜎 (𝐴
⊤
𝐵) . (6)

Here, 𝜎(𝐴
⊤
𝐵) is the set of all eigenvalues of 𝐴

⊤
𝐵. Zhou

and his coauthors show that if (5) has a unique solution,
then (1) has a unique solution. However, a counterexample is
provided in [7] to show that the relation (6) is only a necessary
condition for the unique solvability of (1).
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In [4, 8], the periodic QZ (PQZ) decomposition [3] is
applied to consider the necessary and sufficient conditions of
the unique solvability of (1); conditions given in [8] ignore
the possibility of the existence of the unique solution, while 1
is a simple root of 𝜎(𝐴⊤𝐵). This condition is included in our
subsequent discussion and the following remark is provided
to support our observation.

Remark 1. Let 𝐴 = −1 and let 𝐵 = 1; that is, 𝜎(𝐴𝐵
⊤
) = {−1}.

It is clear that the scalar equation 𝑋 = −𝑋
⊤

+ 𝐶 has a
unique solution 𝑋 = 𝐶/2. But condition (6) is not satisfied
by choosing 𝜇 = ] = −1.

It can also be observed from Remark 1 that even if (1) is
uniquely solvable, it does not imply that (5) (namely,𝑋 = 𝑋+

𝐶 − 𝐶) is uniquely solvable. Conditions in [4, Equation(4.6)]
provided those conditions for the unique solvability of the
solution to (1) via a structured algorithm. In our work,
through a complete analysis of square coefficient matrices in
terms of the analysis of the spectra of thematrix𝐴⊤𝐵, the new
approach to the condition of unique solvability of the⊤-Stein
equation (1) can be obtained.

Second, we present the invariant subspace method and,
more generally, the deflating subspace method to solve the
⊤-Stein equation. Our methods are based on the analysis of
the eigeninformations for a matrix pencil. We carry out a
thorough discussion to address the various eigeninformation
encountered in the subspace methods. These ideas can be
implemented in algorithms easily.

Finally, we take full account of the error analysis of
(1). Expressions and implications such as the residual, the
backward error, and perturbation bounds are derived in this
work. Note that for an approximate solution 𝑌 of (1), the
backward error tells us how much the matrices 𝐴, 𝐵, and 𝐶

must be perturbed. An important point found in Section 5
is that a small backward error indicates a small value for the
residual R = 𝑌 − 𝐴𝑌

⊤
𝐵 − 𝐶, but the reverse is not usually

true.
Beginning in Section 2, we formulate the necessary and

sufficient conditions for the existence of the solution of (1)
directly by means of the spectrum analysis. In Section 3
we provide a deflating subspace method for computing
the solution of (1). Numerical methods for solving (1) and
the related residual analysis are discussed in Section 4. The
associated error analysis of (1) is given in Section 5 and
concluding remarks are given in Section 6.

2. Solvability Conditions of
the Matrix Equation (1)

In order to formalize our discussion, let 𝐴 ⊗ 𝐵 be the
Kronecker product of matrices 𝐴 and 𝐵, let 𝐼

𝑛
be the 𝑛 × 𝑛

identity matrix, and let ‖ ⋅ ‖
𝐹
denote the Frobenius norm.

With the Kronecker product, (1) can be written as the
enlarged linear system:

(𝐼
𝑛
2 − (𝐵

⊤
⊗ 𝐴)P) vec (𝑋) = vec (𝐶) , (7)

where vec(𝑋) stacks the columns of 𝑋 into a column vector
andP is the Kronecker permutation matrix [9] which maps
vec(𝑋) into vec(𝑋⊤); that is,

P = ∑

1≤𝑖,𝑗≤𝑛
2

𝑒
𝑗
𝑒
⊤

𝑖
⊗ 𝑒
𝑖
𝑒
⊤

𝑗
, (8)

where 𝑒
𝑖
denotes the 𝑖th column of the 𝑛2 × 𝑛

2 identitymatrix
𝐼
𝑛
2 . Due to the specific structure of P, it has been shown in

[10, Corollary 4.3.10] that

P
⊤
(𝐵
⊤
⊗ 𝐴)P = 𝐴 ⊗ 𝐵

⊤
. (9)

It then follows that

((𝐵
⊤
⊗ 𝐴)P)

2

= (𝐵
⊤
⊗ 𝐴)PP

⊤
(𝐴 ⊗ 𝐵

⊤
) = 𝐵
⊤
𝐴 ⊗ 𝐴𝐵

⊤
,

(10)

since P2 = 𝐼
𝑛
2 and P = P⊤. Note that eigenvalues of

matrices𝐴⊤𝐵 and𝐴𝐵
⊤ are the same. By (10) and the property

of the Kronecker product [11, Theorem 4.8], we know that

𝜎 (((𝐵
⊤
⊗ 𝐴)P)

2

)

= {𝜆
𝑖
𝜆
𝑗
| 𝜆
𝑖
, 𝜆
𝑗
∈ 𝜎 (𝐴

⊤
𝐵) = {𝜆

1
, . . . , 𝜆

𝑛
} , 1 ≤ 𝑖, 𝑗 ≤ 𝑛} .

(11)

That is, the eigenvalues of (𝐵
⊤

⊗ 𝐴)P are related to the
square roots of the eigenvalues of 𝜎(𝐴

⊤
𝐵), but from (10),

no more information can be used to decide the positivity or
nonnegativity of the eigenvalues of (𝐵⊤ ⊗ 𝐴)P. A question
immediately arises as to whether it is possible to obtain
the explicit expression of the eigenvalues of (𝐵

⊤
⊗ 𝐴)P,

provided the eigenvalues of 𝐴⊤𝐵 are given. In the following
two lemmas, we first review the periodic QZ decomposition
for two matrices and then apply it to discuss the eigenvalues
of (𝐵⊤ ⊗ 𝐴)P.

Lemma2 (see [3]). Let𝐴 and𝐵 be twomatrices inR𝑛×𝑛.Then,
there exist unitary matrices 𝑃,𝑄 ∈ C𝑛×𝑛 such that 𝑈

𝐴
:= 𝑃𝐴𝑄

and 𝑈
𝐵
:= 𝑄
𝐻
𝐵
⊤
𝑃
𝐻 are two upper triangular matrices.

Lemma 3. Let 𝐴 and 𝐵 be two matrices in R𝑚×𝑛. Then

(1) (𝐵⊤ ⊗ 𝐴)P = (𝑄 ⊗ 𝑃
𝐻
)(𝑈
𝐴
⊗ 𝑈
𝐵
)P(𝑄

𝐻
⊗ 𝑃),

(2) 𝜎((𝐵⊤ ⊗ 𝐴)P) = {𝜆
𝑖
, ±√𝜆

𝑖
𝜆
𝑗
| 𝜆
𝑖
, 𝜆
𝑗
∈ 𝜎(𝐴

⊤
𝐵) =

{𝜆
1
, . . . , 𝜆

𝑛
}, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.

Here,√𝑧 denotes the principal square root of a complex number
𝑧.

Proof. Part 1 follows immediately from Lemma 2 since 𝑈
𝐴
=

𝑃𝐴𝑄 and 𝑈
𝐵
= 𝑄
𝐻
𝐵
⊤
𝑃
𝐻 for some unitary matrices 𝑃 and 𝑄;

that is,

(𝐵
⊤
⊗ 𝐴)P = (𝑄 ⊗ 𝑃

𝐻
) (𝑈
𝐵
⊗ 𝑈
𝐴
) (𝑃 ⊗ 𝑄

𝐻
)P

= (𝑄 ⊗ 𝑃
𝐻
) (𝑈
𝐴
⊗ 𝑈
𝐵
)P (𝑄

𝐻
⊗ 𝑃) .

(12)
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Let the diagonal entries of 𝑈
𝐴
and 𝑈

𝐵
be denoted by {𝑎

𝑖𝑖
}

and {𝑏
𝑗𝑗
}, respectively. Then, 𝑈

𝐴
⊗ 𝑈
𝐵
is an upper triangular

matrix with given diagonal entries, specified by 𝑎
𝑖𝑖
and 𝑏
𝑗𝑗
.

After multiplying𝑈
𝐴

⊗ 𝑈
𝐵
byP from the right, the position

of the entry 𝑎
𝑖𝑖
𝑏
𝑗𝑗
is changed to be in the 𝑗+𝑛(𝑖−1) th row and

the 𝑖 + 𝑛(𝑗 − 1) th column of the matrix (𝑈
𝐴

⊗ 𝑈
𝐵
)P. They

are then reshuffled by a sequence of permutation matrices to
form a block upper triangular matrix with diagonal entries
arranged in the following order:

{𝑎
11
𝑏
11
, [

0 𝑎
11
𝑏
22

𝑎
22
𝑏
11

0
] , . . . , [

0 𝑎
11
𝑏
𝑛𝑛

𝑎
𝑛𝑛
𝑏
11

0
] ,

𝑎
22
𝑏
22
, [

0 𝑎
22
𝑏
33

𝑎
33
𝑏
22

0
] , . . . , [

0 𝑎
𝑛𝑛
𝑏
22

𝑎
22
𝑏
𝑛𝑛

0
] , . . . ,

[
0 𝑎

𝑛−1,𝑛−1
𝑏
𝑛𝑛

𝑎
𝑛𝑛
𝑏
𝑛−1,𝑛−1

0
] , 𝑎
𝑛𝑛
𝑏
𝑛𝑛
} .

(13)

Note that the reshuffling process is not hard to see, when 𝑛 =

2, 𝑈
𝐴
= [
𝑎
11
𝑎
12

0 𝑎
22
], and 𝑈

𝐵
= [
𝑏
11
𝑏
12

0 𝑏
22

], we have

(𝑈
𝐴
⊗ 𝑈
𝐵
)P =

[
[
[

[

𝑎
11
𝑏
11

𝑎
12
𝑏
11

𝑎
11
𝑏
12

𝑎
12
𝑏
12

0 0 𝑎
11
𝑏
22

𝑎
12
𝑏
22

0 𝑎
22
𝑏
11

0 𝑎
22
𝑏
12

0 0 0 𝑎
22
𝑏
22

]
]
]

]

. (14)

However, it is conceptually simple and regular but opera-
tionally tedious to reorder (𝑈

𝐴
⊗ 𝑈
𝐵
)P to show this result

even for 𝑛 = 3 and that will be left as an exercise.
By (13), it can be seen that

𝜎 ((𝐵
⊤
⊗ 𝐴)P) = {𝑎

𝑖𝑖
𝑏
𝑖𝑖
, ±√𝑎
𝑖𝑖
𝑎
𝑗𝑗
𝑏
𝑖𝑖
𝑏
𝑗𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑛}

= {𝜆
𝑖
, ±√𝜆

𝑖
𝜆
𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑛} ,

(15)

where 𝜆
𝑖
= 𝑎
𝑖𝑖
𝑏
𝑖𝑖
∈ 𝜎(𝐴

⊤
𝐵) for 1 ≤ 𝑖 ≤ 𝑛.

Before demonstrating the unique solvability conditions,
we need to define that a subset Λ = {𝜆

1
, . . . , 𝜆

𝑛
} of

complex numbers is said to be ⊤-reciprocal free if and only
if whenever 𝑖 ̸= 𝑗, 𝜆

𝑖
̸= 1/𝜆
𝑗
. This definition also regards 0 and

∞ as reciprocals of each other. Then, we have the following
solvability conditions of (1).

Theorem 4. The ⊤-Stein matrix equation (1) is uniquely
solvable if and only if the following conditions are satisfied:

(1) the set of 𝜎(𝐴⊤𝐵) \ {−1} is ⊤-reciprocal free;
(2) −1 can be an eigenvalue of the matrix𝐴⊤𝐵 but must be

simple.

Proof. From (7), we know that the ⊤-Stein matrix equation
(1) is uniquely solvable if and only if

1 ∉ 𝜎 ((𝐵
⊤
⊗ 𝐴)P) . (16)

By Lemma 3, if 𝜆 ∈ 𝜎(𝐴
⊤
𝐵), then 1/𝜆 ∉ 𝜎(𝐴

⊤
𝐵). Otherwise,

1 = √𝜆 ⋅ (1/𝜆) ∈ ((𝐵
⊤

⊗ 𝐴)P). On the other hand, if
−1 ∈ 𝜎(𝐴

⊤
𝐵) and −1 is not a simple eigenvalue, then 1 ∈

𝜎((𝐵
⊤
⊗𝐴)P). This verifies (16) and the proof of the theorem

is complete.

It is worthy noting that the condition (1) of Theorem 4 is
contained in the condition (6) (also appear in [7, Theorem
1]), which is the necessary and sufficient conditions for
the solvability of the solution to the Stein equation (5).
However, as mentioned before in Remark 1 or [7, Example
2], condition (1) is just a necessary condition for unique
solvability of the solution to (1). The ⊤-Stein matrix equation
(1) is uniquely solvable provided that both conditions (1) and
(2) of Theorem 4 are satisfying.

3. The Connection between Deflating
Subspace and (1)

The relationship between solution of matrix equations and
the matrix eigenvalue problems has been widely studied in
many applications. It is famous that solution of Riccati and
polynomial matrix equations can be found by computing
invariant subspaces of matrices and deflating subspaces of
matrix pencils [12]. This reality leads us to find some algo-
rithms for computing solution of (1) based on the numerical
computation of invariant or deflating subspaces.

Given a pair of 𝑛 × 𝑛 matrices 𝐴 and 𝐵, recall that the
function𝐴−𝜆𝐵 in the variable 𝜆 is said to be thematrix pencil
related to the pair (𝐴, 𝐵). For a 𝑘-dimensional subspaceX ∈

C𝑛 is called a deflating subspace for the pencil𝐴−𝜆𝐵 if there
exists a 𝑘-dimensional subspaceY ∈ C𝑛 such that

𝐴X ⊆ Y, 𝐵X ⊆ Y; (17)

that is,

𝐴𝑋 = 𝑌𝑇
1
, 𝐵𝑋 = 𝑌𝑇

2
, (18)

where𝑋,𝑌 ∈ C𝑛×𝑘 are two full rank matrices whose columns
span the spacesX andY, respectively, and matrices 𝑇

1
, 𝑇
2
∈

C𝑘×𝑘. In particular, if in (18), 𝑋 = 𝑌 and 𝐵 = 𝑇
2
= 𝐼 for an

𝑛 × 𝑛 identity matrix 𝐼, then we have the simplified formula

𝐴𝑋 = 𝑋𝑇
1
. (19)

Here, the spaceX spanned by the columns of the matrix𝑋 is
called an invariant subspace for 𝐴 and satisfies

𝐴X ⊆ X. (20)

One strategy to analyze the eigeninformation is to transform
one matrix pencil to its simplified and equivalent form. That
is, two matrix pencils 𝐴 − 𝜆𝐵 and 𝐴 − 𝜆𝐵 are said to be
equivalent if and only if there exist two nonsingular matrices
𝑃 and 𝑄 such that

𝑃 (𝐴 − 𝜆𝐵)𝑄 = 𝐴 − 𝜆𝐵. (21)

In the subsequent discussion, we will use the notion ∼ to
describe this equivalence relation; that is, 𝐴 − 𝜆𝐵 ∼ 𝐴 − 𝜆𝐵.

Our task in this section is to identify eigenvectors of
problem (18) and then associate these eigenvectors (left and
right) with the solution of (1). We begin this analysis by
studying the eigeninformation of two matrices 𝐴 and 𝐵,
where 𝐴 − 𝜆𝐵 is a regular matrix pencil.
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Note that for the ordinary eigenvalue problem, if the
eigenvalues are different, then the eigenvectors are linearly
independent. This property is also true for every regular
matrix pencil and is demonstrated as follows. For a detailed
proof, the reader is referred to [13, Theorem 7.3] and [14,
Theorem 4.2].

Theorem5. Given a pair of 𝑛 × 𝑛matrix𝐴 and𝐵, if thematrix
pencil 𝐴 − 𝜆𝐵 is regular, then its Jordan chains corresponding
to all finite and infinite eigenvalues carry the full spectral
information about the matrix pencil and consist of 𝑛 linearly
independent vectors.

Lemma 6. Let 𝐴 − 𝜆𝐵 ∈ C𝑛×𝑛 be a regular matrix pencil.
Assume that matrices 𝑋

𝑖
, 𝑌
𝑖
∈ C𝑛×𝑛𝑖 , 𝑖 = 1, 2, are full rank

and satisfy the following equations:

𝐴𝑋
𝑖
= 𝑌
𝑖
𝑅
𝑖
, (22a)

𝐵𝑋
𝑖
= 𝑌
𝑖
𝑆
𝑖
, (22b)

where 𝑅
𝑖
and 𝑆

𝑖
, 𝑖 = 1, 2, are square matrices of size 𝑛

𝑖
× 𝑛
𝑖
.

Then

(i) 𝑅
𝑖
− 𝜆𝑆
𝑖
∈ C𝑛𝑖×𝑛𝑖 are regular matrix pencils for 𝑖 = 1, 2,

(ii) if 𝜎(𝑅
1
− 𝜆𝑆
1
) ∩ 𝜎(𝑅

2
− 𝜆𝑆
2
) = 𝜙, then the matrix

[𝑋
1

𝑋
2
] ∈ R𝑛×(𝑛1+𝑛2) is full rank.

We also need the following useful lemma.

Lemma 7. Given two regular matrix pencils𝐴
𝑖
−𝜆𝐵
𝑖
∈ C𝑛𝑖×𝑛𝑖 ,

1 ≤ 𝑖 ≤ 2, consider the following equations with respect to
𝑈,𝑉 ∈ C𝑛1×𝑛2

𝐴
1
𝑈 = 𝑉𝐴

2
, (23a)

𝐵
1
𝑈 = 𝑉𝐵

2
. (23b)

Then, if 𝜎(𝐴
1
− 𝜆𝐵
1
) ∩ 𝜎(𝐴

2
− 𝜆𝐵
2
) = 𝜙, (23a) has the unique

solution 𝑈 = 𝑉 = 0.

Proof. For 𝑛
2
= 1, we get

𝐴
1
𝑢 = 𝑎
2
V,

𝐵
1
𝑢 = 𝑏
2
V,

(24)

where 𝑎
2
, 𝑏
2

∈ C, 𝑢, V ∈ C𝑛1×1. We may without loss of
generality assume that 𝑏

2
̸= 0; then𝐴

1
𝑢 = (𝑎

2
/𝑏
2
)𝐵
1
𝑢 and thus

𝑢 = V = 0. Now, for any 𝑛
2

> 1, consider the generalized
Schur decomposition of 𝐴

2
− 𝜆𝐵
2
. We can assume that 𝐴

2
=

[𝑎
𝑖𝑗
] and 𝐵

2
= [𝑏
𝑖𝑗
] are upper triangular matrices (i.e., 𝑎

𝑖𝑗
=

𝑏
𝑖𝑗
= 0, 1 ≤ 𝑗 < 𝑖 ≤ 𝑛

2
). Denote that the 𝑖th columns of 𝑈 and

𝑉 are 𝑢
𝑖
and V
𝑖
, respectively. Thus,

𝐴
1
𝑢
𝑖
=

𝑖

∑

𝑘=1

𝑎
𝑘𝑖
V
𝑘
, (25a)

𝐵
1
𝑢
𝑖
=

𝑖

∑

𝑘=1

𝑏
𝑘𝑖
V
𝑘
, (25b)

for 𝑖 = 1, 2, . . . , 𝑛
2
.

If 𝑖 = 1, we obtained 𝑢
1

= V
1

= 0 from the above
discussion. Given an integer 𝑖 such that 1 ≤ 𝑖 < 𝑛

2
and assume

that 𝑢
𝑘
= V
𝑘
= 0 for 1 ≤ 𝑘 ≤ 𝑖, we claim 𝑢

𝑖+1
= V
𝑖+1

= 0,
indeed, from (25a) and (25b), we have

𝐴
1
𝑢
𝑖+1

= 𝑎
𝑖+1,𝑖+1

V
𝑖+1

,

𝐵
1
𝑢
𝑖+1

= 𝑏
𝑖+1,𝑖+1

V
𝑖+1

.

(26)

Again, the case 𝑘 = 𝑖 + 1 is following the special case 𝑛
2
= 1.

By using mathematical induction, we prove this lemma.

Corollary 8. Given𝐴 ∈ C𝑛×𝑛 andΛ ∈ C𝑘×𝑘, if 𝜎(𝐴)∩𝜎(Λ) =

𝜙, then the equation with respect to 𝑈 ∈ C𝑛×𝑘

𝐴𝑈 = 𝑈Λ (27)

has the unique solution 𝑈 = 0.

Now we have enough tools to analyze the solution of (1)
associated with some deflating spaces. We first establish an
important matrix pencil; let the matrix pencil M − 𝜆L be
defined as

M − 𝜆L := [
𝐵𝐴
⊤

0

−𝐶𝐴
⊤

𝐼
𝑛

] − 𝜆 [
𝐼
𝑛

0

𝐴𝐶
⊤

𝐴𝐵
⊤] ∈ R

2𝑛×2𝑛
;

(28)

it is clear that

𝜎 (M − 𝜆L) = 𝜎 (𝐵𝐴
⊤
) ∪ 𝜎 (𝐼

𝑛
− 𝜆𝐴𝐵

⊤
) ; (29)

a direct calculation shows that𝑋 is a solution of the (1) if and
only if

M [
𝐼
𝑛

𝑋𝐴
⊤] = [

𝐼
𝑛

𝐴𝑋
⊤]𝐵𝐴

⊤
,

L [
𝐼
𝑛

𝑋𝐴
⊤] = [

𝐼
𝑛

𝐴𝑋
⊤]

(30)

or if and only if its dual form is

[−𝐴𝑋
⊤

𝐼
𝑛
]M = [−𝑋𝐴

⊤
𝐼
𝑛
] ,

[−𝐴𝑋
⊤

𝐼
𝑛
]L = 𝐴𝐵

⊤
[−𝑋𝐴

⊤
𝐼
𝑛
] .

(31)

Armed with the property given in Theorem 5 and
Lemma 7, we can now tackle the problemof determining how
the deflating subspace is related to the solution of (1).

Theorem 9. Let 𝐴, 𝐵, and 𝐶 ∈ R𝑛×𝑛 be given in (1) and let

M [
𝑈
1

𝑉
1

] = [
𝑈
2

𝑉
2

]𝑇
1
, (32a)

L [
𝑈
1

𝑉
1

] = [
𝑈
2

𝑉
2

]𝑇
2
, (32b)

where [ 𝑈𝑖
𝑉
𝑖

] is full rank, 𝑖 = 1, 2. Assume that the set of 𝜎(𝐵𝐴⊤)
is ⊤-reciprocal free. Then, one has
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(1) 𝑈
1
= 𝑈
2
= 0 if 𝜎(𝑇

1
− 𝜆𝑇
2
) = 𝜎(𝐼

𝑛
− 𝜆𝐴𝐵

⊤
),

(2) 𝑈
1
and 𝑈

2
are nonsingular if 𝑇

1
− 𝜆𝑇
2
∼ 𝐵𝐴
⊤
− 𝜆𝐼
𝑛
.

Moreover, if 𝐴 is nonsingular, then 𝑋 = 𝑉
1
𝑈
−1

1
𝐴
−⊤

=

𝑈
−⊤

2
𝑉
⊤

2
𝐴
−⊤ is the unique solution of (1).

Proof. From (32a) and (32b) we get

𝐵𝐴
⊤
𝑈
1
= 𝑈
2
𝑇
1
, (33a)

−𝐶𝐴
⊤
𝑈
1
+ 𝑉
1
= 𝑉
2
𝑇
1
, (33b)

𝑈
1
= 𝑈
2
𝑇
2
, (33c)

𝐴𝐶
⊤
𝑈
1
+ 𝐴𝐵
⊤
𝑉
1
= 𝑉
2
𝑇
2
. (33d)

(i) It follows from (33a) and (33c) that since 𝜎(𝐵𝐴
⊤

−

𝜆𝐼
𝑛
) ∩ 𝜎(𝑇

1
− 𝜆𝑇
2
) = 𝜙, we have 𝑈

1
= 𝑈
2

= 0 by
Lemma 7.

(ii) It can be seen that there exist two nonsingular
matrices 𝑈 and 𝑉 such that

M [
0

𝑈
] = [

0

𝑉
]𝑇
2
,

L [
0

𝑈
] = [

0

𝑉
]𝑇
1
.

(34)

Hence, together with (32a) and (32b) we have

M [
0 𝑈
1

𝑈 𝑉
1

] = [
0 𝑈
2

𝑉 𝑉
2

] [
𝑇
2

0

0 𝑇
1

] ,

L [
0 𝑈
1

𝑈 𝑉
1

] = [
0 𝑈
2

𝑉 𝑉
2

] [
𝑇
1

0

0 𝑇
2

] .

(35)

Since 𝜎(M−𝜆L) = 𝜎(𝐵𝐴
⊤
−𝜆𝐼
𝑛
)∪𝜎(𝐼

𝑛
−𝜆𝐴𝐵

⊤
) and 𝜎(𝐵𝐴

⊤
−

𝜆𝐼
𝑛
) ∩ 𝜎(𝐼

𝑛
− 𝜆𝐴𝐵

⊤
) = 𝜙, by Theorem 5 and Lemma 6, the

matrix [
0 𝑈
1

𝑈 𝑉
1

] is nonsingular. Together with (33c),𝑈
1
and𝑈

2

are nonsingular.
Let𝑋

𝑖
= 𝑉
𝑖
𝑈
−1

𝑖
, 𝑖 = 1, 2; then form (33b) and (33d)

𝐴𝐶
⊤
+ 𝐴𝐵
⊤
𝑋
1
= 𝑉
2
𝑇
2
𝑈
−1

1
= 𝑋
2
,

−𝐶𝐴
⊤
+ 𝑋
1
= 𝑉
2
𝑇
1
𝑈
−1

1
= 𝑋
2
𝐵𝐴
⊤
,

(36)

or

𝐴𝐶
⊤
+ 𝐴𝐵
⊤
𝑋
1
= 𝑋
2
,

𝐴𝐶
⊤
+ 𝐴𝐵
⊤
𝑋
⊤

2
= 𝑋
⊤

1
.

(37)

Since the set of 𝜎(𝐴𝐵
⊤
) = 𝜎(𝐵𝐴

⊤
) is ⊤-reciprocal free,

together with

𝑋
⊤

1
− 𝑋
2
− 𝐴𝐵
⊤
(𝑋
⊤

1
− 𝑋
2
)
⊤

= 0, (38)

we get 𝑋
1
= 𝑋
⊤

2
. If 𝐴 is nonsingular, it is easy to verify that

two matrices 𝑋
1
𝐴
−⊤ and 𝑋

⊤

2
𝐴
−⊤ are both satisfying ⊤-Stein

equation (1). The proof of part (ii) is complete.

Remark 10. (1) It is easily seen that [ 𝐼𝑛
𝑋𝐴
⊤ ] and [

𝑈
1

𝑉
2

] both span
the unique deflating subspace of M − 𝜆L corresponding to
the set of 𝜎(𝐵𝐴⊤). Otherwise, in part (ii) we know that 𝑇

2

is nonsingular. We then are able to transform the formulae
defined in (32a) and (32b) into the generalized eigenvalue
problem as follows:

M [
𝑈
1

𝑉
1

] = L [
𝑈
1

𝑉
1

]𝐵𝐴
⊤
. (39)

That is, some numerical methods for the computation of
the eigenspace ofM−𝜆L corresponding to the set of 𝜎(𝐵𝐴⊤)
can be designed and solved (1).

(2) Since the transport of the unique solution 𝑋 of (1)
is equal to the unique solution 𝑌 of the following matrix
equation

𝑌 = 𝐵
⊤
𝑌𝐴
⊤
+ 𝐶
⊤
, (40)

analogous to the consequences of Theorem 9, the similar
results can be obtainedwith respect to (40) if𝐵 is nonsingular.
However, we point out that (1) can be solved by computing
deflating subspaces of other matrix pencils. For instance we
let

M
1
− 𝜆L

1
:= [

𝐴
⊤
𝐵 0

−𝐶 − 𝐴𝐶
⊤
𝐵 𝐼
𝑛

] − 𝜆 [
𝐼
𝑛

0

0 𝐴𝐵
⊤] . (41)

Assume that the set of 𝜎(𝐵𝐴⊤) is ⊤-reciprocal free; it can be
shown thatM

1
[
𝐼
𝑛

𝑋
] = L

1
[
𝐼
𝑛

𝑋
] 𝐴
⊤
𝐵 and it has similar results

to the conclusion ofTheorem 9.The unique solution𝑋 of (1)
can be found by computing deflating subspaces of the matrix
pencil M

1
− 𝜆L

1
without the assumption of the singularity

of 𝐴 and 𝐵.

4. Computational Methods for Solving (1)
Numerical methods for solving (1) have received great atten-
tion in theory and in practice and can be found in [5, 6] for
the Krylov subspace methods and in [15–17] for the Smith-
type iterative methods. In particular, Smith-type iterative
methods are only workable in the case 𝜌(𝐴𝐵

⊤
) < 1, where

𝜌(𝐴𝐵
⊤
) denotes the spectral radius of 𝐴𝐵

⊤. In the recent
years, a structure algorithm has been studied for (1) [4] via
PQZ decomposition, which consists of transforming into
Schur form by a PQZ decomposition and then solving the
resulting triangular system by way of back-substitution. In
this section, we revisit these numericalmethods and point out
the advantages and drawbacks of all algorithms.

4.1. Krylov Subspace Methods. Since the ⊤-Stein equation is
essentially a linear system (7), we certainly can use the Krylov
subspace methods to solve (7). See, for example, [5, 6] and
the reference cited therein. The general idea for applying the
Krylov subspace methods is defining the ⋆-Stein operatorT
as T : 𝑋 → 𝑋 − 𝐴𝑋

⊤
𝐵 and its adjoint liner operator T as

T∗ : 𝑌 → 𝑌 − 𝐵𝑌
⊤
𝐴 such that ⟨T(𝑋), 𝑌⟩ = ⟨𝑋,T∗(𝑌)⟩.

Here, 𝑋, 𝑌 ∈ R𝑚×𝑛 and the notion ⟨⋅, ⋅⟩ is denoted as the
Frobenius inner product. Then, the iterative method based
on the Krylov subspaces for (1) is as follows.
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(i) The conjugate gradient (CG) method [5]:

𝑋
𝑘+1

= 𝑋
𝑘
+

𝑅𝑘


2

𝑃𝑘


2
𝑃
𝑘
,

𝑅
𝑘+1

= 𝐶 −T (𝑋
𝑘+1

) = 𝑅
𝑘
−

𝑅𝑘


2

𝑃𝑘


2
T (𝑃
𝑘
) ,

𝐷
𝑘+1

= T
∗
(𝑅
𝑘+1

) +

𝑅𝑘+1


2

𝑅𝑘


2
𝐷
𝑘
,

(42)

with an initial matrix 𝑋
0
and the corresponding initial

conditions

𝑅
0
= 𝐶 −T (𝑋

0
) , 𝐷

0
= T
∗
(𝑅
0
) . (43)

Note that when the solvability conditions of Theorem 4
are met, the CG method is guaranteed to converge in a finite
number of iterations for any initial matrix𝑋

0
.

4.2. The Bartels-Stewart-Like Algorithm [18]. In this section,
we focus on the discussion of the Bartels-Stewart algorithm,
which is known to be a numerical stable algorithm, to solve
⊤-Stein equations.This method is to solve (1) by means of the
PQZ decomposition [18]. Its approach has been discussed in
[4] and can be summarized as follows. From Lemma 3, we
know that there exist two unitary matrices 𝑃 and 𝑄 (see [3]
for the computation procedure) such that

𝑃𝑋𝑄 − 𝑃𝐴𝑄 ⋅ 𝑄
𝐻
𝑋
⊤
𝑃
⊤
⋅ 𝑃𝐵𝑄 = 𝑃𝐶𝑄. (44)

With 𝐴 = 𝑃𝐴𝑄 and 𝐵
⊤

= 𝑄
𝐻
𝐵
⊤
𝑃
𝐻 being uppertriangular,

the transformed equation looks like

[
𝑋
11

𝑥
12

𝑥
21

𝑥
22

] − [
𝐴
11

𝑎
12

0 𝑎
22

] [
𝑋
⊤

11
𝑥
⊤

21

𝑥
⊤

12
𝑥
⊤

22

] [
𝐵
11

0

�̂�
21

�̂�
22

]

= [
𝐶
11

𝑐
12

𝑐
21

𝑐
22

]

(45)

with𝑋 = [
�̂�
11
𝑥
12

𝑥
21
𝑥
22

]. We then have

𝑥
22

− 𝑎
22
𝑥
⊤

22
�̂�
22

= 𝑐
22
, (46)

𝑥
21

− 𝑎
22
𝑥
⊤

12
𝐵
11

= 𝑐
21

+ 𝑎
22
𝑥
⊤

22
�̂�
21
, (47)

𝑥
12

− 𝐴
11
𝑥
⊤

21
�̂�
22

= 𝑐
12

+ 𝑎
12
𝑥
⊤

22
�̂�
22
, (48)

𝑋
11

− 𝐴
11
𝑋
⊤

11
𝐵
11

= 𝐶
11

+ 𝑎
12
𝑥
⊤

12
𝐵
11

+ 𝐴
11
𝑥
⊤

21
�̂�
21

+ 𝑎
12
𝑥
⊤

22
�̂�
21
.

(49)

Thus, the Bartels-Stewart algorithm can easily be constructed
by first solving 𝑥

22
from (46), using 𝑥

22
to obtain 𝑥

12
and 𝑥

21

from (47) and (48), and then repeating the same discussion
as (46)–(48) by taking advantage of the property of 𝐴

11
and

𝐵
11
being lower triangular matrices from (49).

4.3. Smith-Type Iterative Methods. Recently, a class method
referred to as the Smith accelerative iteration has been studied
for solving the Sylvester matrix equation [15]. The Smith
accelerative iteration has attracted much interests in many
papers (see [7, 17] and the references therein) because of its
nice numerical behavior, a quadratic convergence rate, low
computational cost, and high numerical reliability, despite the
lack of a rigorous error analysis. Since the Sylvester matrix
equation can be transformed into the Stein matrix equation
with a suitable transformation, Zhou et al. proposed Smith-
type iterative methods (including the Smith accelerative
iteration, Smith (ℓ) iteration, and 𝑟-Smith iteration) for
solving the Stein matrix equation [17] and applying Smith-
type iterative methods to (1) [7]. In this section, we try to
explain the Smith accelerative iteration based on the invariant
subspace method and summarize the recent results from [7].

Originally, the Smith-type iterative methods are devel-
oped to solve the standard Stein equation

𝑋 = A𝑋B +C, A,B,C ∈ R
𝑛×𝑛

. (50)

As mentioned before, the unknown𝑋 is highly related to the
generalized eigenspace problems

[
B 0

−C 𝐼
] [

𝐼

𝑋
] = [

𝐼 0

0 A
] [

𝐼

𝑋
]B, (51a)

or

A [𝑋 𝐼] [
B 0

0 𝐼
] = [𝑋 𝐼] [

𝐼 0

−C A
] . (51b)

Premultiplying (51a) by the matrix [ B 0
−AC 𝐼 ] and postmul-

tiplying (51b) by the matrix [
𝐼 0

−CB A ], we get

[
B2 0

−C −ACB 𝐼
𝑛

] [
𝐼
𝑛

𝑋
] = [

𝐼
𝑛

0

0 A2
] [

𝐼
𝑛

𝑋
]B
2
,

A
2
[𝑋 𝐼
𝑛
] [

B2 0

0 𝐼
𝑛

] = [𝑋 𝐼
𝑛
] [

𝐼
𝑛

0

−C −ACB A2
] .

(52)

Then, for any positive integer 𝑘 > 0, we obtain

[
B2
𝑘−1

0

−𝐶
𝑘

𝐼
𝑛

] [
𝐼
𝑛

𝑋
] = [

𝐼
𝑛

0

0 A2
𝑘−1] [

𝐼
𝑛

𝑋
]B
2
𝑘−1

,

A
2
𝑘−1

[𝑋 𝐼
𝑛
] [

B2
𝑘−1

0

0 𝐼
𝑛

] = [𝑋 𝐼
𝑛
] [

𝐼
𝑛

0

−𝐶
𝑘

A2
𝑘−1] ,

(53)

where the sequence {C
𝑘
} is defined by

𝐶
𝑘
= 𝐶
𝑘−1

+A
2
𝑘−1

𝐶
𝑘−1

B
2
𝑘−1

, 𝑘 ≥ 1, (54a)

𝐶
0
= C. (54b)

The explicit expression of 𝐶
𝑘
is given as follows:

𝐶
𝑘
=

2
𝑘
−1

∑

𝑖=1

A
𝑖
CB
𝑖
. (55)
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Under the condition 𝜌(A)𝜌(B) < 1, it is easy to see that {𝐶
𝑘
}

is convergent, and

lim sup
𝑘→∞

2
𝑘

√
𝑋 − 𝐶

𝑘

 ≤ 𝜌 (A) 𝜌 (B) ; (56)

that is, 𝐶
𝑘
converges quadratically to 𝑋 as 𝑘 → ∞.

This iterative method (54a) and (54b) is called the Smith
accelerative iteration [15]. In recent years, some modified
iterative methods are so-called Smith-type iteration, which
are based on Smith iteration and improve its speed of
convergence. See, for example, [17] and the references cited
therein.

Since the condition 𝜌(A)𝜌(B) < 1 implies that the
assumptions of Theorem 4 hold, (1) is equivalent to (5). We
can apply the Smith iteration to the (1) with the substitution
(A,B,C) = (𝐴𝐵

⊤
, 𝐴
⊤
𝐵, 𝐶+𝐴𝐶

⊤
𝐵). One possible drawback

of the Smith-type iterativemethods is that they cannot always
handle the case when there exist eigenvalues 𝜆, 𝜇 ∈ 𝜎(𝐴

⊤
𝐵)

such that 𝜆𝜇 = −1 even if the unique solution𝑋 exists. Based
on the solvable conditions given in this work, it is possible to
develop a specific technique working on the particular case
and it is a subject currently under investigation.

5. Error Analysis

Error analysis is a way for testing the stability of a numerical
algorithm and evaluating the accuracy of an approximated
solution. In the subsequent discussion, we want to consider
the backward error and perturbation bounds for solving (1).

As indicated in (44), matrices 𝐴 and 𝐵
⊤ are both upper-

triangular.We can then apply the error analysis for triangular
linear systems in [19, Section 3.1] and [20] to obtain


𝐶 − (𝑋 − 𝐴𝑋

⊤
𝐵)

𝐹
≤ 𝑐
𝑚,𝑛

u (1 +

𝐴
𝐹


𝐵
𝐹

)

𝑋
𝐹

, (57)

where 𝑐
𝑚,𝑛

is a content depending on the dimensions 𝑚 and
𝑛 and u is the unit roundoff. Since the PQZ decomposition is
a stable process, it is true that


𝐶 − (𝑋 − 𝐴𝑋

⊤
𝐵)

𝐹
≤ 𝑐


𝑚,𝑛
u (1 + ‖𝐴‖

𝐹
‖𝐵‖
𝐹
) ‖𝑋‖
𝐹
; (58)

with a modest multiple 𝑐
𝑚,𝑛

.
Note that the inequality of the form (58) can serve

as a stopping criterion for terminating iterations generated
from the Krylov subspace methods [5, 6] and Smith-type
iterative methods [15–17]. In what follows, we will derive
the error associated with numerical algorithms, following the
development in [20, 21].

5.1. Backward Error. Like the discussion of the ordinary
Sylvester equations [20], the normwise backward error of an
approximate solution 𝑌 of (1) is defined by

𝜂 (𝑌) ≡ min {𝜖 : 𝑌 = (𝐶 + 𝛿𝐶) + (𝐴 + 𝛿𝐴)𝑌
⊤

(𝐵 + 𝛿𝐵) ,

‖𝛿𝐴‖
𝐹
≤ 𝜖𝛼, ‖𝛿𝐵‖

𝐹
≤ 𝜖𝛽, ‖𝛿𝐶‖

𝐹
≤ 𝜖𝛾} ,

(59)

where 𝛼 ≡ ‖𝐴‖
𝐹
, 𝛽 ≡ ‖𝐵‖

𝐹
, and 𝛾 ≡ ‖𝐶‖

𝐹
. Let R ≡ 𝛿𝐶 +

𝛿𝐴𝑌
⊤
𝐵 + 𝐴𝑌

⊤
𝛿𝐵 + 𝛿𝐴𝑌

⊤
𝛿𝐵, which implies that R = 𝑌 −

𝐴𝑌
⊤
𝐵 − 𝐶. It can be seen that the residualR satisfies

‖R‖
𝐹
≤ 𝜂 (𝑌) (𝛾 + ‖𝑌‖

𝐹
𝛼𝛽 (2 + 𝜂 (𝑌))) . (60)

From (60), we know that a small backward error indeed
implies a small relative residual R. Since the coefficient
matrices in (1) include nonlinearity, it appears to be an open
problem to obtain the theoretical backward error with respect
to the residual. Again, similar to the Sylvester equation
discussed in [20, Section 16.2], the conditions under which
a ⊤-Stein equation has a well-conditioned solution remain
unknown.

5.2. Perturbation Bounds. Consider the perturbed equation

𝑋 + 𝛿𝑋 = (𝐴 + 𝛿𝐴) (𝑋 + 𝛿𝑋)
⊤

(𝐵 + 𝛿𝐵) + (𝐶 + 𝛿𝐶) .

(61)

Let 𝑆(𝑋) = 𝑋−𝐴𝑋
⊤
𝐵 be the corresponding⊤-Stein operator.

We then have 𝑆(𝛿𝑋) = 𝛿𝐶+𝐴(𝑋+𝛿𝑋)
⊤
𝛿𝐵+𝛿𝐴(𝑋+𝛿𝑋)

⊤
(𝐵+

𝛿𝐵). With the application of norm, it follows that

‖𝛿𝑋‖
𝐹
≤

𝑆
−1𝐹

{‖𝛿𝐶‖
𝐹
+ ‖𝛿𝑆‖

𝐹
(‖𝑋‖
𝐹
+ ‖𝛿𝑋‖

𝐹
)} , (62)

where ‖𝛿𝑆‖
𝐹

≡ ‖𝐴‖
𝐹
‖𝛿𝐵‖
𝐹
+ ‖𝛿𝐴‖

𝐹
(‖𝐵‖
𝐹
+ ‖𝛿𝐵‖

𝐹
). When

‖𝛿𝑆‖
𝐹
is small enough so that 1 ≥ ‖𝑆

−1
‖
𝐹
⋅ ‖𝛿𝑆‖

𝐹
, we can

rearrange the previous result to be

‖𝛿𝑋‖
𝐹

‖𝑋‖
𝐹

≤


𝑆
−1
𝐹

1 −
𝑆
−1𝐹

⋅ ‖𝛿𝑆‖
𝐹

(
‖𝛿𝐶‖
𝐹

‖𝑋‖
𝐹

+ ‖𝛿𝑆‖
𝐹
) . (63)

With ‖𝐶‖
𝐹

= ‖𝑆(𝑋)‖
𝐹

≤ ‖𝑆‖
𝐹
⋅ ‖𝑋‖
𝐹
and the condition

number 𝜅(𝑆) ≡ ‖𝑆‖
𝐹

⋅ ‖𝑆
−1
‖
𝐹
, we arrive at the standard

perturbation result
‖𝛿𝑋‖
𝐹

‖𝑋‖
𝐹

≤
𝜅 (𝑆)

1 − 𝜅 (𝑆) ⋅ ‖𝛿𝑆‖
𝐹
/‖𝑆‖
𝐹

(
‖𝛿𝐶‖
𝐹

‖𝐶‖
𝐹

+
‖𝛿𝑆‖
𝐹

‖𝑆‖
𝐹

) .

(64)

Thus the relative error in𝑋 is controlled by those in𝐴, 𝐵, and
𝐶, magnified by the condition number 𝜅(𝑆).

On the other hand, we can also drop the high-order terms
in the perturbation to obtain

𝛿𝑋 − 𝐴𝛿𝑋
⊤
𝐵 = 𝐴𝑋

⊤
𝛿𝐵 + 𝛿𝐴𝑋

⊤
𝐵 + 𝛿𝐶. (65)

We then rewrite the system in terms of

Q vec (𝛿𝑋) = [(𝑋
⊤
𝐵)
⊤

⊗ 𝐼
𝑚
𝐼
𝑛
⊗ (𝐴𝑋

⊤
) 𝐼
𝑚𝑛

] [

[

vec (𝛿𝐴)

vec (𝛿𝐵)
vec (𝛿𝐶)

]

]

,

(66)

where Q = 𝐼
𝑚𝑛

− (𝐵
⊤

⊗ 𝐴)P. Let 𝜁 = max{‖𝛿𝐴‖
𝐹
/‖𝐴‖
𝐹
,

‖𝛿𝐵‖
𝐹
/‖𝐵‖
𝐹
, ‖𝛿𝐶‖

𝐹
/‖𝐶‖
𝐹
}. It can be shown that

‖𝛿𝑋‖
𝐹

‖𝑋‖
𝐹

≤ √3Ψ𝜁, (67)

where Ψ=‖Q−1[𝛼(𝑋⊤𝐵)
⊤
⊗ 𝐼
𝑚

𝛽𝐼
𝑛
⊗ (𝐴𝑋

⊤
)𝛾𝐼
𝑚𝑛

]‖
2
/‖𝑋‖
𝐹
.
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A possible disadvantage of the perturbation bound (67),
which ignores the consideration of the underlying structure
of the problem, is that it overestimates the effect of the
perturbation on the data. But this “universal” perturbation
bound is accessible to any given matrices 𝐴, 𝐵, and 𝐶 of (1).

Unlike the perturbation bound (67), it is desirable to
obtain a posteriori error bound by assuming 𝛿𝐴 = 𝛿𝐵 = 0

and 𝛿𝐶 = 𝑋 − 𝐴𝑋
⊤
𝐵 − 𝐶 in (61). This assumption gives rise

to

‖𝛿𝑋‖
𝐹

‖𝑋‖
𝐹

≤


𝑃
−1
2
‖𝑅‖
𝐹

‖𝑋‖
𝐹

. (68)

It is true that while doing numerical computation, this bound
given in (68) provides a simpler way for estimating the error
of the solution of (1).

6. Conclusion

In this note, we propose a novel approach to the necessary
and sufficient conditions for the unique solvability of the
solution 𝑋 of the ⊤-Stein equation for square coefficient
matrices in terms of the analysis of the spectra 𝜎(𝐴

⊤
𝐵).

Solvability conditions have been derived and algorithms
have been proposed in [4, 8] by using PQZ decomposition.
On the other hand, one common procedure to solve the
Stein-type equations is by means of the invariant subspace
method. We believe that our discussion is the first which
implements the techniques of the deflating subspace for
solving ⊤-Stein matrix equation and might also give rise
to the possibility of developing an advanced and effective
solver in the future. Also, we obtain the theoretical residual
analysis, backward error analysis, and perturbation bounds
for measuring accurately the error in the computed solution
of (1).
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