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The present paper deals with approximation properties of g-Szdsz-Mirakyan-Kantorovich operators. We construct new bivariate
generalization by gg-integral and these operators’ approximation properties in polynomial weighted spaces are investigated. Also,
we obtain Voronovskaya-type theorem for the proposed operators in polynomial weighted spaces of functions of two variables.

1. Introduction

In the past two decades, g-calculus has gained popularity in
the construction of linear approximation processes. Lupas
[1] and Phillips [2] defined generalizations of the Bernstein
operators called g-Bernstein operators. Then, as Phillips
has done for Bernstein operators, the authors introduced
modifications of the other important operators based on
the g-integers, for example, g-Meyer-Konig operators [3, 4],
g-Bleimann, Butzer, and Hahn operators [5, 6], g-Szasz-
Mirakyan operators [7-9], g-Baskakov operators [10, 11].

On the other hand, Stancu [12] first introduced new linear
positive operators in two- and several dimensional variables.
Recently, Barbosu [13] introduced a Stancu-type generaliza-
tion of two-dimensional Bernstein operators based on g-
integers and called them bivariate g-Bernstein operators.
Dogru and Gupta [14] constructed a bivariate generalization
of the Meyer-Konig and Zeller operators based on the g-
integers. Agratini [15] presented two-dimensional exten-
sion of some univariate positive approximation processes
expressed by series.

All the above mentioned new operators motivate us for
current work. In this paper, we firstly extend the g-Szasz-
Mirakyan-Kantorovich operators to the case of bivariate
functions. Then these operators’ approximation properties in
polynomial weighted spaces are investigated. Also we obtain
Voronovskaya-type theorem for the proposed operators in
polynomial weighted spaces of functions of two variables.

Now we recall some definitions about g-integers. For any
nonnegative integer r, the g-integer of the number  is defined
by

[rl, =

{1+q+~--+q*-1 ratl 0,=1 (1
q bl

r ifg=1,
where g is a positive real number. The g-factorial is defined as

ifr=1,2,...

oo 0,!=1 (2)

[r],! = {El]q[z]q e lrlg

Two g-analogues of the exponential function e* are given as

o0 n
_ n(n-1)/2 X
Eq(x)—';)q [n—]q!, x €R,
3)
(o) xn 1
e (x)= ) —, |x] < —.
1 20 (]! l1-q

The following relation between g-exponential functions
Eq(x) and g,(x) holds:

Eq (x) & (—=x) =1, |x] < ﬁ (4)



The g-derivative of a function f(x), denoted by D,f, is
defined by

fgx) - f (%)
—, x#0,
(q_ I)X (5)

(qu> (0) = }Lm(, (qu) (x).

(qu) (x) =

Also, it is known that DqE(ax) = aE(qax).
The g-integral of the function f over the interval [0, b] is
defined by

b e o
L Fwde=b(1-9) Y f(bd)d, 0<q<l ()
=0
If f is integrable over [0, b], then

) b b
Jim L Ftydt= L Fodt. %

Generally accepted definition for g-integral over an interval
[a,b] is

b b a
LfUMJZLf“MJ_JfUMf (8)

0

In order to generalize and spread the existing inequalities,
Marinkovi¢ et al. considered new type of the g-integral. So,
the problems which ensue from the general definition of g-
integral were overcome. The Riemann-type g-integral [16] in
the interval [a, b] was defined as

b (o) . .
I fodit=(1-q)b-a)) fla+®-a)q)q,
a j=0 (9)

0<g< L

This definition includes only point inside the interval of the
integration.
Details of g-integers can be found in [17].

2. Construction of the Bivariate Operators

For q,,9, € (0,1) and (m,n) € N x N, we now define new
operators that we call the g-Szdsz-Mirakyan-Kantorovich
operators of functions of two variables as follows:

SR UES)

00 00 k+1, k I+1, 1
= ZZM [n]‘;z Y qk(k—l)—lql(m)—l
= ¢ A

1=0k=0 [k] q ' [l] 9 '

(10)
X qu (_[m]% qllcx) qu (_[n]%qlzy)

(1+1]y, /s~ [y, U1y, /gy Iml,, <R
X J[ J[ f(ts) dq1 tdqzs,

N, d ), JIKl,, 14 Imly,
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where

d b R. R
[ ] £ s diegs

c a

=(1-¢9,)(1-g,)(b-a)(c-4d) a1

X ZZf(a+ (b—a)qi,c+ (c—d)qé)qiqé,
7=0i=0
and f is a gp-integrable function, so the series in (11)

converges. It is clear that the operators given in (10) are linear
and positive. For the operator S1"% if f is a gp-integrable

mmn

function and f(x, y) = f;(x) f,(»), (x, y) € Ri, then
S (f (6:5)5x,y) = S5 (fr ), %) S (f(9),y). (12)

Now, in order to obtain approximation properties of pro-
posed operators, we give some auxiliary results. For a fixed
x € R,, by the g-Taylor theorem [18], we write

& (£~ ),
90 =)~ Pag (), (13)
k=0 q’

where
B k-1 k k f
(t - x)q _ H (t _ qsx) _ Z[S] qs(s—l)/Zt —s(_x)s. 14)
s=0 s=0 q

Choosing t = 0 and taking into account

(_x)g = (—1)kxkgte2,

(15)
DiE, (<l x) = (-lnl,) ¢ E, (~lnlyq'x)
we get for g(x) = Eq(—[n]qx) that
© (-x)f
t=900)= ,;, [k]q!q 29 )
(o1, "
2 ([nlgx _
S o, (o).
Similarly, choosing ¢ = 0 and taking into account
(—x)f = (_1)kxqu(k—1)/2
q ,
DLE, (~lnl,ax) = (~lnl,a)" ¢ B, (<[nlyd %),
(17)
we obtain for g(x) = E,(=[n] gx) that
0 (—x)}
1=g(0) = 1pk
g(0) kzo ]! D19 (x)
(18)
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Also, using

(_x)k = (—1)Fxk gD,

DI;Eq (—[n]qqlx) ( [n]) 2k k(k 1)/2 (—[n]qqk+2x),

(19)
we have for g(x) = Eq(—[n]qqzx) that
—x)f
1=g(0)= xZ D z(m
L (20)
_ Z ([n]qx) qszq( [n]qqk+2x)
& T,

Lemmall. Let q;,q, € (0,1) and (m,n) € N x N. One has

S (1) = 1,

ST (fx) = x + N
21, lml,

S% q2 s Zp ,
(si7) = ", [,

9192 (2. — 2 1 qu q%
Sm,n (t ,x) X"+ [m]q1 (1+ [2]% >x+ T ] [m] R

1 2q q
Sk (&) = y* + (1 + 2 | y+ 2
m,n ( y) y [n]q2 [z]qz y [ ]qz [Tl]
(21)
Proof. Using [k + 1], = [k]q + qk and from

J[l+1]q2/qz [nlg, f[k“]ql/‘h mly,, th
Mg, /45 ]y, [klg, /45" Iml,,
we can wrlte

= q19/[mly [nl,,

[n]‘hy k(k-1) _I(I-1)
1 2
[1g," 22)

X qu (_[m]qlqllcx) qu (_[n]‘hqlzy) .

SIE (15x, y) = ZZ

1=0k=0

[k] !

So%(1; x, y) = 1 is obtained from the above identity (16).
Now, taking f(t,s) = t and since

+1],,/g5 ' nly, (lk+1lg /gt ' Imly R, R .
[l]qz /qlzf—l ["]qz [k]ql /qllc—l [m]ql tdql tdqzs - (qlqz/[m]ql [n] qz)

(([k]ql/qlffl[m]ql) + (q1/12],[ml,)), we get from the
linearity of S11*% that

S (¢ ) = ii[ mlg,x ]qzy k(1) _10-1)
m,n > k ' l] | ql qZ
1=0k=0 QI a2
(k]
k 1 9
X qu (_[m]%qlx) qu (_[n]‘hqzy) qk—l [m]
1 9
SSILE op
1=0k=0 ‘12'

E,, (_[m]qlqlfx) E,, (_[”]qquzy) A

(2], [ml,,
(23)
From this, applying (16) and (18), we have
St (t; x)
00 0 k-1 k I k(k-1)
Z 3 [y, " (1, g -1
S k= 1] 1 g, qlf_l
k ! 4
x qu (_[m]%qlx) E‘]z (_[n]42q2y> + [z]ql [,,n]ql

o @ [m]s x* [n],

x;Z i,

By (ol 3) B, (b )+ 0

%y 2 1-1)
l 1 12
‘12‘

(24)

Similarly, we write that

ST (g0 9)) = o) .
o (57) =7+ 21,0, (25)

2

Now, taking f(t,s) = 2 and from

[1+1],, /s [nly, U+l /gy ml,

J J £t s
Mg, /a5 )y, 1K, /at " Imly,

__ 1%
[m]‘h [n]qz

X( L P R >
G2AmE 5 ml,, 21y Imly, T 3], ImI2, )’
(26)




we have

S,qr:)’gz (tz; x)

o o k 1k
ZZ [ ] y gD gy
1 2
1=0 k: _1] l] z!
E([]k)E([]l) (K], (27)
XLg \=IMmjy @1 X)) Eg \=1Mg, DY) Zi5 1
q 411 q 912 q%k Z[m]ql
5 2
+ D, D ~.
2, lml, " Bl iml
From this, usmg[] [k—l] +q U we get
k=2 k
[m] [ ]qzy k(k-1) _1(-1)

St (tz;x) Z Z k- 2 T
42'

1=0 k=2

1
E,, (_[m]qlqlfx) E,, (_[”]qquzy) F

M“ﬂmf‘thyk

> (k=1) _1(I-1)
+Zz[k_1 ;A 2
1=0 k=1 ‘12'

XE, —[m] 1qu E, —[n] quy —_—
Q( ‘11)4( ‘12)[m]qlqllcl
2

29, X+ 9 .
21, ml, " 131, 2
(28)

Replacing k by k + 2 and k by k + 1 in the abovementioned,
we obtain

S S [m] £ [n] y
S;Jy:;gz (tz;x) — xzz Z qz (k+2)(k+1)ql(l 1)

1 2
1=0 k=0
. 1
x Eg, (_[m]qlqlf 2’C) qu( [n ]qquy) 2k+2
iozo" [ ]‘Zzy K 10-1)
~ & [k] ' [l]qzl ql q2
. 1
x qu (_[m]%qll( lx) E‘iz (_[n]‘hqlzy) @
2q, 4
21y by, 31, Il
(29)

Equation (20) implies

1
SIa: (£ x) = x* + (1+
(%) [mlg, (2],
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Similarly, we write that

Sf,i’,?z(sz;y)=y2+ 1 (1+ 2‘12)y+ ‘é B
’ g \ 2, )0 Bl

So, the proof is completed. O

Similarly, given by the proof of Lemma 1, we calculate
S (£; x) and STy (t*; x), shortly. Since

1]y, /a5 Iy, lkelly, /gt Iml,, ,
I I £l tdt s
[ (k]

Ug,/45 " [nly, Klgy /ay [mly,

_ 1% < [k]¢311 +
[mlg, [nlg, \ ¥ (ml}, 4}
3[k]‘11 q% + q? >

s [mlg, (314, [mly, (4], (m],
(32)

3[k]‘271 9
P, 21, o,

we write

S‘h A2 (t3; X)

m,n

kel kpoal
[mlg M0,y sy 10-1)

ZEQwAJ'm'qI E

X E% (_ [m] 9 qlfx)

[k -1

qu (_ [n]‘h qlzy)

2 (33)

Lk _1]+q2k—2
X
3k-3

i [ ]‘11

Using [k]q =[k- 1]q + qkil, we have

k 1 k
[n]qzy k(k-1) I(I-1)
_ 1] ] [l q q2

X E% (_[m]qlqllcx) E% (_[n]L12ql2y>
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k=117 +2¢"" [k=1]+ ¢
X

3k 3 [H’l]

k 3 k
[n]‘by k(k-1) _I(I-1)

:ZZ 1 ql q2
‘12'

1=0

1

X E% (_[m]‘hq}lcx) qu (_[n]%qéy) F

k2k[]

00 00 [m zy

+ IZO Z [k 2 ]22| qlf(k l)qlz(l v

X Eg, (_[m]qlqlfx) E,, (_["]qquzy) P
1

00 00 [m k 2 k [n]q y .
p (k-1) _1(I-1)
+Zozz[k 2 qz! ql qZ

k ] 24"
xE, —[m]qu E, —[n]zqy_—
q ( q; 11 ) q ( Q12 )q?k 3[m]

k 1 k
% k(k-1) I(I-1)
St ST
1=0 k:l ‘12'
qzk—z

X E‘h (_[m]‘hqllcx) E‘Zz (—[n]qquzy)

a1 mlg,

(34)
Then, we rewrite
0o 00 i1k K 1
=xazz[m]q1x [,y (3)0+2) J0-1)
S5 Kkt M ’
1
x By, (<l 1) By, (-0rla,27) g
o oo k X ]! yl
2 %Y (kr2)(kt1) 10-1)
+xZOZ kql! [l] | - 1 1 2
k 1 qk
x E x)E, (- — a1
ql( [mlg, 4, x) ‘12( [”]qz‘by) (ﬁ.l«a[m]q1
(35)
© @ [m]f x* [n]!, 5/
2 9 75} (k+2)(k+1) _I(I-1)
+x — 2
22T, W
k+1
k+2 1 2q
( [m]g, 49 x) E,, (_[”]qzqzy) 3 [m]
41
wmm] mﬂ% i
+ ZZ 2 ke gl
1=0k=0 1 ‘12
2%

q

By (Ol ) B, ()

Finally, we have

Sz (t3;x) =x +

1 ( 1 > 2 1
—+2 )X+ —5x
[m]ch q [Wl]q1

3q; 2 1
+D%mh(x+mmf) (36)

M, @
[3]‘11 [m];l [4]‘11 [m]?h

Since

I[lﬂlqz/qfllnlqz I[kﬂlql/% Hml,, 4dR th

Ny, /a5 )y, Ikl /a5 Iml,,
4 3

_ 91149 ( [k]q1 4[k]q1 91

[mly [nlg, \ @i mly g Iml] (2], [m],,
2 2

6[k]‘11 ql

q%k z[m]; [3]% [m]él

o R 1
9 [m]ql [4]‘11[m]‘11 [5]q1[m]q1
(37)

we obtain
iz (4.
S"an (t ,x)

1 1 2
=x*+ <—2+—+3)x3
I D

1 ( 1 3 ) 5 1
| 5+ —+3]|x + X
mly \4i 4 [m]g,
P (x3+ ! <i+2)x2+ 12 x)
(2], [ml,, [m]y, \q [m]g,

2
+ b4 5 (x2+ ! x)
[3q, [m]ql g,
3 4
+ A, X+ g -
[4]% [m]Lh [5]% [m]%

(38)

3. Approximation Properties in Polynomial
Weighted Spaces

For bivariate operators, the space is considered as follows:

Cpq (RY)
={fec(r

bounded on IRi = [0, 00) x [0, oo)}

2 . . .
+) tw,,f is uniformly continuous and

(39)



associated with the weighted function w,.(x,y) =
wp()wy (), (pq) € Ny x Ny. The weight w,, is defined

as wy(t) = 1, wp(x) =(1+ xp)_l. The norm of this space is
denoted by || - [|,,, and is defined by

"f”p,q = Sup wp, (%, ) |f (x, )’)' (40)

(x.y)eRr2

Now, we give some useful results given by Agratini [15].

For each z € R,, define the function ¢, by ¢,(t) =
(t-2),t € R,,r € N. For the one-dimensional operator
L, s € N,and for each r € N, a polynomial I, exists such that

P (Ll) () <T, (£), deg(T,) <r. (41)

Theorem 2 (see [15]). Consider (p,q) € Ny x N,. For any
(m,n) € NxN, given by

(Lynnf) (%)

Z i (X) b, ( m,i’yn,j)’ (x.y) € R
(42)
the operator L, , verifies
1
Loy P <c(p.q),
Pa /lpq (43)

1L (£ < (0@ fl,p f € Cpg(RE).

Theorem 3 (see [15]). Let (p,q) € Ny x N,. For any (m,n) €
N x N, the operator L,, , given by (42) satisfies

wp,q (x,y) l(Lm,nf) (x’y) _f(x’y)l
x (44)
Sc(p,q)wf(‘ﬂ >)¢(y)),

Vm© n
R?, where ¢ is given by

P
() = \ L () + \Jrz () + Z (i) Lepa (£), (45)

k=0

(x,y) €

with the polynomialsT,(t), v = 2, p + 2, being indicated at (41),
and c(p, q) is a suitable constant.

Theorem 4 (see [15]). Let (p,q) € Ny x N,. Let the operator
L, (m,n) € N x N, be defined by (42). For any (x, y) € R.
the pointwise convergence takes place

lim (L,,,f) (%)= f(xy),

m,n— oo

feC,,(RY). (46)

IfK,, K, are compact intervals included in R, then (46) holds
uniformly on the domain K, x K.

In the latter paper, we use the weight function p(x, y) =
(1+x*+ y2 )71 instead of a)p)q(x, y) and instead of the space

Cp)q(Ri), the space C,(R2) associated with the weighted
function p(x, y) is used. We denote the norm of this space

by - Il
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Lemma 5. The operator STt
given by (10) verifies

SM( (: BY )

s (£, < ”f"z’ feG(RY). (8

Proof. Since q;,q, € (0, 1) and by Lemma 1, we have

‘11‘12 1 >
p(xy)S (p(t,s),

Sp(x,y)<1+x2+y2+§(x+y)>.

2) (m)n) € N X N) ql,qz € (0’ 1))

10
< 3 (47)

(49)

So, inequality (47) is proved. Since the operator SI% is linear
and positive and by using (47)

p (% y)SE (f;-) < p(x,y) St (P(t s)|f] p(t 3 )

10
< §||f||z>
(50)

we obtain inequality (48). O

The Steklov function associated with f € C(Ri) is given
as follows:

h 5
fus o) = o [ [ fxrmyevydn (ny) Rl
0 0
(51)
where h,6 > 0.

The modulus of smoothness function associated with any
function f € C,(R?) is given by

2

= sup |[f (x+uy+v) - f(xy), (ny)eR

0<u<h
0<v<d

(52)
One can see that

1f = fisl

= sup p(x,y) %L duJ-Of(x+u,y+v)

—f (e y)dv

(53)

< sup p(xy) sup f(x+u,y+v)—f(xy)

2 0
(x.y)er? Ozz<6

= sup |f (x+uy+v) - f (% y)],
0svss

= w; (1,0).
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The following inequalities verify

2
< 7O (h,6), s wy (h,6),

(54)

0
”ﬁa

|5 fua,

where h,§ > 0. In order to justify these inequalities, one can
see that

0
afh,az
)
= swp p(ny) s Jf(x+h’y+V)
(x.y)er? 0
—f(x,y+v)dv
6
= sup p(s) g [ £ by e - s
(x.y)er2 0

+f(ey) = floy+v)dv

8
<55, 50 p(e9) [ 1 ety en) = £ (o)l av

(vy)er?

S5
+ %(xsup p(x,y L |f Gy +v) = f(xy)|dv

y)ERZ

2
<o sup play) sup flx+uy+v)=f(xy)
R2 0<u<h
(x y)e 0<v<é

2
=y (0).

(55)

Theorem 6. For any (m,n) € Nx Nand f € Cz(Ri), the
operator S>% q,, g, € (0,1) given by (10) satisfies

P(x y)| S‘hqz (x,y)—f(x’y)'
Lo (¢(x’ql) ¢(y>q2)) (56)
-3 f [m]ql 4 [n]qz >

where (x, y) € Ri, o(x,q) = q/[2]q +I'(x, q).

Proof. For any (m,n) € N x N, we can write
p () |(SI% £) (x, ) - f (x, )|
<p (%) [SH% (f = fugs % y)|
+p(x )’)| (S fr6) (%, ) = fuo (x5 y)'
+p (% 3) [ fus (6 ) = f (2 9)]-

(57)

7
Inequalities (48) and (53) imply that
p (% ) [SL (f = fuss % )|
< [[sit (F = fass % 0, (58)

<—I|f Fuolly = - wf(m)

Let CJ(R?) be the class of all functions in which partial
derivatives belong to C,(R?). Since f, 5 € C,R2 and ST
given by (10) is linear and monotone, we get

p (%) (S fi5) (% ¥) = fus (%, 7)]

t
=p(x,p) |Sh ( 5, o (1) dus x, y)‘

S0
S‘h ‘12<J‘ E}fh"s (x,s)dv;x,y>‘ (59)

y
X u
Sqlqz< ;x’y>'

Then, by definition of norm || - ||, and the first mean value
theorem for integration, we have

J — fus (W, 5) dul;

, %fh,a (x,8)dv

) t du
L afh’(; (u,s)du| < J p(u,s) fhs( ‘ o)
0 ' du
< afh,a , L o (5)
= 3f [t—x| ——, §e(x1)
dx "l pEs) ’
5} < 1 1 )
<= I—x + .
axfh"‘ 2' | p(x,s)  pl(ts)
(60)
Following the same way, one finds
50
L Ef”"s (x,8)dv
(61)

2 (o
1oyl TN ) T e )



Using inequalities (59), (61), and (60), since S;* is linear and
monotone, we get

p (% ) |(SB fius) (%, 9) = fius (. 9)]

1 (o)
SM(E(H)' y) (62)
2 fus smfz(iiiiiﬂx,y)

2 p(x.y)

|s -y
‘71‘12
om (p(xs) e

From Lemmas 1 and 5 and (36), we can write the following:

p (% ) |(SB fius) (%, 9) = fins (. 9)]

x Y H—fha

0
+p(x ) afha

+p(x,y)

)
+p(x ) 5&5

10 9
S J— —_—
axfh"s 23 [2],[ml],
10T (x.9,)
+ —
Thal, 3 [m],, (63)
J e
+ —_ R
o1, 2, b,
9 10T (y,9,)
+ — —
where
1 q\ .- ( 39,2 ) T
IF'x,g)=|—-+1+— |x"+|1+—+— |x+—
() (q [z]q> 21, Bl T,
(64)
is a polynomial of degree 2. Then, by inequalities (54), we have
p(x )|(Sq1 o) (6 9) = fus (xa)’)|
<[z_0( b +1"(x,q1))
h3\ 2l ml, | [, (65)
2( 4 10F(Mz)>]
+= + — ws (h,9).
9 < [2]72 [n]% 3 [n]‘Zz !
Finally, we write from (53)
p(xy) |fh5 xy) - l ||fh5 f”z wy (h,9).
(66)
If we go back to (57) and take h = ¢(x, ql)/[m]ql, 5 =
¢(y,q,)/[n],,, then the proof is completed. O

We replace g, and g, in (10) by sequences (g, ,,,), (g, ,,) s0
that

Jim g,,, =1, limg,, =1,
1 1 (67)
im =0, im =0.
m— 0o [l’l] n— 00 [1’1]

91m Dn
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So, (h,6) — (0%,0%) as n,m — o0o. Knowing that
modulus of smoothness function w, satisfies the property
lim, ) -, o+ 0+) @5 (h, 6) = 0, from Theorem 6, we deduce the
following result.

Theorem 7. Let (m,n) € N x N and let (q,,,), (q,,) be
sequences in the interval (0, 1) satisfying (67). Let the operator
Sird> given by (10) and f € C,(R2) qg-integrable function.
For any (x, y) € [R{i the pointwise convergence takes place

lim (Shwe f) (x,y) = f (x.p). (68)

m,n— 00

IfK,, K, are compact intervals included in R, then (68) holds
uniformly on the domain K| x K.

4. Voronovskaya-Type Theorem

We will prove the Voronovskaya-type theorem.

Theorem 8. Let (q,,), (q,,,) be sequences in the interval (0, 1)
satisfying (67). Suppose that f € C5(R2) is the class of all
functions in which the second partial derivatives belong to
C,(R2) and qy-integrable function. Then, for every (x,y) €
R2, one has

im n {Str (fx, y) = f (x, y)}
= ;_Cfxx () + %fyy (x.7) (69)

)+ 5 f, (%)

Proof. Let f € C3(R?) and gy-integrable function and let
(0> ¥o) € R? be fixed point. Then, by the Taylor formula,

we can write

f )

= f (%0, ¥o) + f (30> o) (£ = x0) + 1y (%0> ¥0) (s = ¥5)
+ % {fxx (%0 o) (£ = x0)2 +2f4 (%0 %)

X (t = x,) (s = y) + Sy (0> ¥o) (s = )’0)2}

49 (6,5 %0, y0) V(E = x0)* + (5= 3)",
(70)
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where (t,s) € Ri, @(t,s) = @(t,s; x,, ¥,) belongs to Cz(Ri),
and limg; ), (,, ) (¢, s) = 0 for n € N. From the linearity of
Sii2, we have

531;?2 (f (t,8) ;x5 J’o)
= f (x0 o) + fx (%05 o) SZf;LqZ (t = x93 %)
+ fy (%0 ¥0) SZ};FZ (s = Yo ¥0)
1 R 2
+ E {fxx (xO’ yO) Sf:nq ((t - xO) ;xO)
+ zfxy (XO’ J’o) Sz,lr’lqz (t — X5 xo) Sgl,l;lqz (5 ~ Yo J’o)

+fyy (%0 %) Spl ((5 - )/0)2;)/0)}

+ SZ}’FZ <§0 (t,s) \/(t - x0)4 +(s - )’0)45 xm)’o) -
(71)

By Lemma 1 and since the sequences q, ,,, g5, satisfy (67), we
obtain

1
: q1,n>92, _ . — - T 1,792, _ .
Jim nS (= x03.0) = 5" Jim nSiie® (s = o3 y0)
. , 2
lim nSjr ((t = x0)"5%0) = %o

Jim nSj e ((5 -5 )’0) = o

(72)
By the Hélder inequality, we have
N <‘P (t,s) \/(t - x0)4 +(s- )’0)45 on’o)
< {SZ;FZ (‘P2 (t, 5);xo>)’o)}1/2
x {SZ}?Z ((t - x0)4; xo) + SZ,‘;?Z ((5 - )’0)4; )’0)}1/2
(73)

By properties of ¢ and Theorem 7, we get
nangOSZf;f’qz’” (‘l’2 (t, )5 x5 )’0) = ‘PZ (0> ¥o) = 0. (74)

From the foregoing facts and using (12) and (38), we obtain

1 1L,n2,n 4 4 —
nll{%onSZ,h @, <<p (t,s) \/(t -xy) +(s— ) ;xo,y0> =0.

(75)
Then, using (72) and (75), we reproduce from (71)
Lim n {SZ,I;:"%’" (f (6:5)5%0, %) = f (05 }’0)}
X b
= Tofxx (xO’ yO) + ?Ofyy (xO’ yO) (76)

+ L)+ 3 fy (5),

Thus, the proof is completed for f € C5(R?). O

References

[1] A. Lupas, “A g-analogue of the Bernstein operator,” in Seminar
on Numerical and Statistical Calculus (Cluj-Napoca, 1987), vol.
87 of Preprint, pp. 85-92, University of Cluj-Napoca, Cluj-
Napoca, Romania, 1987.

[2] G. M. Phillips, “Bernstein polynomials based on the g-integers,”
Annals of Numerical Mathematics, vol. 4, no. 1-4, pp. 511-518,
1997.

[3] T. Trif, “Meyer-Konig and Zeller operators based on the
g-integers,” Revue dAnalyse Numérique et de Théorie de
IApproximation, vol. 29, no. 2, pp. 221-229, 2000.

[4] O.Dogru and O. Duman, “Statistical approximation of Meyer-
Konig and Zeller operators based on g-integers,” Publicationes
Mathematicae Debrecen, vol. 68, no. 1-2, pp. 199-214, 2006.

[5] A. Aral and O. Dogru, “Bleimann, Butzer, and Hahn operators
based on the g-integers,” Journal of Inequalities and Applications,
vol. 2007, Article ID 79410, 12 pages, 2007.

[6] N. I. Mahmudov and P. Sabancigil, “g-parametric Bleimann
Butzer and Hahn operators,” Journal of Inequalities and Appli-
cations, vol. 2008, Article ID 816367, 15 pages, 2008.

[7] A. Aral, “A generalization of Szdsz-Mirakyan operators based
on g-integers,” Mathematical and Computer Modelling, vol. 47,
no. 9-10, pp. 1052-1062, 2008.

[8] N. I. Mahmudov, “Approximation by the g-Szdsz-Mirakjan
operators,” Abstract and Applied Analysis, vol. 2012, Article ID
754217, 16 pages, 2012.

[9] N.I. Mahmudov, “On g-parametric Szasz-Mirakjan operators,”
Mediterranean Journal of Mathematics, vol. 7, no. 3, pp. 297-311,
2010.

[10] O. Agratini and C. Radu, “On g-Baskakov-Mastroianni opera-
tors,” The Rocky Mountain Journal of Mathematics, vol. 42, no.
3, pp. 773-790, 2012.

[11] N. I. Mahmudov, “Statistical approximation of Baskakov and
Baskakov-Kantorovich operators based on the g-integers,” Cen-
tral European Journal of Mathematics, vol. 8, no. 4, pp. 816-826,
2010.

[12] D. D. Stancu, “A new class of uniform approximating polyno-
mial operators in two and several variables,” in Proceedings of
the Conference on the Constructive Theory of Functions, pp. 443-
455, Akadémiai Kiad6, Budapest, Hungary, 1972.

[13] D. Barbosu, “Some generalized bivariate Bernstein operators,”
Mathematical Notes, vol. 1, no. 1, pp. 3-10, 2000.

[14] O.Dogruand V. Gupta, “Korovkin-type approximation proper-
ties of bivariate g-Meyer-Koénig and Zeller operators,” Calcolo,
vol. 43, no. 1, pp. 51-63, 2006.

[15] O. Agratini, “Bivariate positive operators in polynomial
weighted spaces,” Abstract and Applied Analysis, vol. 2013,
Article ID 850760, 8 pages, 2013.

[16] S. Marinkovi¢, P. Rajkovi¢, and M. Stankovi¢, “The inequalities
for some types of g-integrals,” Computers & Mathematics with
Applications, vol. 56, no. 10, pp. 2490-2498, 2008.

[17] G. E. Andrews, R. Askey, and R. Roy, Special Functions, vol. 71
of Encyclopedia of Mathematics and its Applications, Cambridge
University Press, Cambridge, UK, 1999.

[18] V. Kac and P. Cheung, Quantum Calculus, Universitext,
Springer, New York, NY, USA, 2002.



