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In the last two decades, the theory of variational analysis
including variational inequalities (VI) emerged as a rapidly
growing area of research because of its applications in
nonlinear analysis, optimization, economics, game theory,
and so forth; see, for example, [1] and the references therein.
In the recent past, many authors devoted their attention
to study the VI defined on the set of fixed points of a
mapping, called hierarchical variational inequalities. Very
recently, several iterative methods have been investigated
to solve VI, hierarchical variational inequalities, and triple
hierarchical variational inequalities. Since the origin of the
VI, it has been used as a tool to study optimization problems.
Hierarchical variational inequalities are used to study the
bilevel mathematical programming problems. A triple level
mathematical programming problem can be studied by using
triple hierarchical variational inequalities.

The Ekeland’s variational principle provides the existence
of an approximate minimizer of a bounded below and lower
semicontinuous function. It is one of the most important
results from nonlinear analysis and it has applications in
different areas of mathematics and mathematical sciences,
namely, fixed point theory, optimization, optimal control
theory, game theory, nonlinear equations, dynamical systems,
and so forth, for example, [2–9] and the references therein.
During the last decade, it has been used to study the existence
of solutions of equilibrium problems in the setting of metric
spaces, for example, [2, 3] and the references therein.

Banach’s contraction principle is remarkable in its sim-
plicity, yet it is perhaps the most widely applied fixed point

theory in all of analysis. This is because the contractive
condition on the mapping is simple and easy to verify, and
because it requires only completeness of the metric space.
Although, the basic idea was known to others earlier, the
principle first appeared in explicit form inBanach’s 1922 thesis
where it was used to establish the existence of a solution to an
integral equation.

Caristi’s fixed point theorem [10, 11] has found many
applications in nonlinear analysis. It is shown, for example,
that this theorem yields essentially all the known inwardness
results of geometric fixed point theory in Banach spaces.
Recall that inwardness conditions are the ones which assert
that, in some sense, points from the domain are mapped
toward the domain. This theorem is amazing equivalent to
Ekeland’s variational principle.
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