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A novel modification of the variational iteration method is proposed by means of Laplace transform and homotopy perturbation
method. The fractional lagrange multiplier is accurately determined by the Laplace transform and the nonlinear one can be easily
handled by the use ofHe’s polynomials. Several fractional nonlinear nonhomogeneous equations are analytically solved as examples
and the methodology is demonstrated.

1. Introduction

Recently, systems of fractional nonlinear partial differential
equations [1–3] have attracted much attention in a variety
of applied sciences. With the development of nonlinear
sciences, some numerical [4–6], semianalytical [7–12], and
analyticalmethods [13–15] have been developed for fractional
differential equations. So, the semianalytical methods have
largely been used to solve fractional equations. Most of
these methods have their inbuilt deficiencies like the cal-
culation of Adomian’s polynomials, the Lagrange multiplier,
divergent results, and huge computational work. Recently,
some improved homotopy perturbation methods [16, 17] and
improved variational iteration methods, [18, 19] have been
used by many researches.

The variational iteration method (VIM) [8, 9, 20] was
extended to initial value problems of differential equations
and has been one of the methods used most often. The key
problem of the VIM is the correct determination of the
Lagrange multiplier when the method is applied to fractional
equations; combined with the Laplace transform, the crucial
point of this method is solved efficiently by Wu and Baleanu
[21, 22]. Laplace transform overcomes principle drawbacks in
application of the VIM to fractional equations.

Motivated and inspired by the ongoing research in this
field, we give a new modification of variational iteration

method, combined with the Laplace transform and the
homotopy perturbation method. The fractional Lagrange
multiplier is accurately determined by the Laplace transform
and the nonlinear one can be easily handed by the use of
He’s polynomials. In this work, we will use this new method
to obtain approximate solutions of the fractional nonlinear
equations, and the fractional derivatives are described in the
Caputo sense.

2. Description of the Method

In order to illustrate the basic idea of the technique, consider
the following general nonlinear system:

𝜕
𝑚

𝑢 (𝑥, 𝑡)

𝜕𝑡𝑚
+ 𝑅 [𝑢 (𝑥, 𝑡)] + 𝑁 [𝑢 (𝑥, 𝑡)] = 𝑔 (𝑥, 𝑡) , (1)

𝑢
𝑘

(𝑥, 0
+

) = 𝑎
𝑘
, (2)

where 𝑘 = 0, . . . , 𝑚 − 1, 𝜕
𝑚

𝑢(𝑥, 𝑡)/𝜕𝑡
𝑚 is the term of the

highest-order derivative, 𝑔(𝑥, 𝑡) is the source term, 𝑁 repre-
sents the general nonlinear differential operator, and 𝑅 is the
linear differential operator.

Now, we consider the application of the modified VIM
[21, 22]. Taking the above Laplace transform to both sides
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of (1) and (2), then the linear part is transformed into an
algebraic equation as follows:

𝑠
𝑚

𝑈 (𝑥, 𝑠) − 𝑢
(𝑚−1)

(𝑥, 0) − ⋅ ⋅ ⋅ − 𝑠
𝑚−1

𝑢 (𝑥, 0)

+ 𝐿 [𝑅 [𝑢]] + 𝐿 [𝑁 [𝑢]] − 𝐿 [𝑔 (𝑥, 𝑡)] = 0,

(3)

where 𝑈(𝑥, 𝑠) = 𝐿[𝑢(𝑥, 𝑡)] = ∫
∞

0

𝑒
−𝑠𝑡

𝑢(𝑥, 𝑡)𝑑𝑡. The iteration
formula of (3) can be used to suggest the main iterative
scheme involving the Lagrange multiplier as

𝑈
𝑛+1

(𝑥, 𝑠) = 𝑈
𝑛
(𝑥, 𝑠) + 𝜆 (𝑠)

× [𝑠
𝑚

𝑈
𝑛
(𝑥, 𝑠) −

𝑚−1

∑

𝑘=0

𝑢
𝑘

(𝑥, 0
+

) 𝑠
𝑚−1−𝑘

+𝐿 [𝑅 [𝑢
𝑛
(𝑥, 𝑡)] + 𝑁 [𝑢

𝑛
(𝑥, 𝑡)] − 𝑔 (𝑥, 𝑡)]] .

(4)

Considering 𝐿[𝑅[𝑢
𝑛
(𝑥, 𝑡)] + 𝑁[𝑢

𝑛
(𝑥, 𝑡)]] as restricted

terms, one can derive a Lagrange multiplier as

𝜆 = −
1

𝑠𝑚
. (5)

With (5) and the inverse-Laplace transform 𝐿
−1, the

iteration formula (4) can be explicitly given as

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) − 𝐿

−1

× [
1

𝑠𝑚
[𝑠
𝑚

𝑈
𝑛
(𝑥, 𝑠) −

𝑚−1

∑

𝑘=0

𝑢
𝑘

(𝑥, 0
+

) 𝑠
𝑚−1−𝑘

+ 𝐿 [𝑅 [𝑢
𝑛
(𝑥, 𝑡)]

+𝑁 [𝑢
𝑛
(𝑥, 𝑡)] − 𝑔 (𝑥, 𝑡)] ]]

= 𝑢
0
(𝑥, 𝑡)

− 𝐿
−1

[
1

𝑠𝑚
[𝐿 [𝑅 [𝑢

𝑛
(𝑥, 𝑡)] + 𝑁 [𝑢

𝑛
(𝑥, 𝑡)]]]] ;

(6)

𝑢
0
(𝑥, 𝑡) is an initial approximation of (1), and

𝑢
0
(𝑥, 𝑡) = 𝐿

−1

(

𝑚−1

∑

𝑘=0

𝑢
𝑘

(𝑥, 0
+

) 𝑠
𝑚−1−𝑘

)

+ 𝐿
−1

[
1

𝑠𝑚
𝐿 [𝑔 (𝑥, 𝑡)]]

= 𝑢 (𝑥, 0) + 𝑢


(𝑥, 0) 𝑡 + ⋅ ⋅ ⋅ +
𝑢
𝑚−1

(𝑥, 0) 𝑡
𝑚−1

(𝑚 − 1)!

+ 𝐿
−1

[
1

𝑠𝑚
𝐿 [𝑔 (𝑥, 𝑡)]] .

(7)

In order to deal with the nonlinear term in the iteration
formula (6), combining with the homotopy perturbation
method, we give a new modification of the above method
[21, 22]. In the homotopymethod, the basic assumption is that
the solutions can be written as a power series in 𝑝:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡)

= 𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2

𝑢
2
+ 𝑝
3

𝑢
3
+ ⋅ ⋅ ⋅ ,

(8)

and the nonlinear term can be decomposed as

𝑁𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

H
𝑛
(𝑢) , (9)

where 𝑝 ∈ [0, 1] is an embedding parameter. H
𝑛
(𝑢) is He’s

polynomials [16, 23] can be generated by

H
𝑛
(𝑢
0
, . . . , 𝑢

𝑛
)

=
1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[𝑁(

𝑛

∑

𝑖=0

𝑝
𝑖

𝑢
𝑖
)]

𝑝=0

, 𝑛 = 0, 1, 2, . . . .

(10)

This new modified method is obtained by the elegant
coupling of correction function (6) of variational iteration
method with He’s polynomials and is given by
∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡)

− 𝑝(𝐿
−1

[
1

𝑠𝑚
𝐿[𝑅

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡)]

+
1

𝑠𝑚
𝐿[

∞

∑

𝑛=0

𝑝
𝑛

H
𝑛
(𝑢)]]) ,

(11)

𝑢
0
(𝑥, 𝑡) represents the term arising from the source term and

the prescribed initial conditions. Equating the terms with
identical powers in 𝑝, we obtain the following approxima-
tions:

𝑝
0

: 𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑢



(𝑥, 0) 𝑡 + ⋅ ⋅ ⋅

+
𝑢
𝑚−1

(𝑥, 0) 𝑡
𝑚−1

(𝑚 − 1)!
+ 𝐿
−1

[
1

𝑠𝑚
𝐿 [𝑔 (𝑥, 𝑡)]] ,

𝑝
1

: 𝑢
1
(𝑥, 𝑡) = −𝐿

−1

[
1

𝑠𝑚
𝐿 [𝑅𝑢

0
(𝑥, 𝑡)]

+
1

𝑠𝑚
𝐿 [H
0
(𝑢)]] ,

𝑝
2

: 𝑢
2
(𝑥, 𝑡) = −𝐿

−1

[
1

𝑠𝑚
𝐿 [𝑅𝑢

1
(𝑥, 𝑡)]

+
1

𝑠𝑚
𝐿 [H
1
(𝑢)]] ,

...
(12)



Abstract and Applied Analysis 3

The best approximations for the solution are

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
. (13)

This new modified method here transfers the problem into
the partial differential equation in the Laplace 𝑠-domain,
removes the differentiation with respect to time, and uses
He’s polynomials to deal with the nonlinear term. This new
method basically illustrates how three powerful algorithms,
variational iteration method, Laplace transformmethod, and
homotopy perturbation method, can be combined and used
to approximate the solutions of nonlinear equation. In this
work, we will use this method to solve fractional nonlinear
equations.

3. Illustrative Examples

Wewill apply the newmodifiedVIM to both PDEs and FDEs.
All the results are calculated by using the symbolic calculation
software Mathematica.

3.1. Partial Differential Equations

Example 1. Consider the following nonhomogeneous non-
linear Gas Dynamic equation [24]

𝜕𝑢

𝜕𝑡
+
1

2

𝜕𝑢
2

𝜕𝑥
− 𝑢 (1 − 𝑢) = −𝑒

𝑡−𝑥 (14)

with the initial condition

𝑢 (𝑥, 0) = 1 − 𝑒
−𝑥

. (15)

After taking the Laplace transform to both sides of (14)
and (15), we get the following iteration formula:

𝑈
𝑛+1

(𝑥, 𝑠) = 𝑈
𝑛
(𝑥, 𝑠) + 𝜆 (𝑠) [𝑠𝑈

𝑛
(𝑥, 𝑠) − 𝑢 (𝑥, 0)

+𝐿 [
1

2

𝜕𝑢
2

𝑛

𝜕𝑥
− 𝑢
𝑛
+ 𝑢
2

𝑛
+ 𝑒
𝑡−𝑥

]] .

(16)

Considering 𝐿[(1/2)(𝜕𝑢
2

𝑛
/𝜕𝑥) − 𝑢

𝑛
+ 𝑢
2

𝑛
] as restricted

terms, Lagrange multiplier can be defined as 𝜆(𝑠) = −1/𝑠;
with the inverse-Laplace transform, the approximate solution
of (16) can be given as

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) − 𝐿

−1

× [
1

𝑠
[𝑠𝑈
𝑛
(𝑥, 𝑠) − 𝑢 (𝑥, 0)

+𝐿 [
1

2

𝜕𝑢
2

𝑛

𝜕𝑥
− 𝑢
𝑛
+ 𝑢
2

𝑛
+ 𝑒
𝑡−𝑥

]]]

= 𝑢
0
(𝑥, 𝑡) − 𝐿

−1

[
1

𝑠𝛼
[𝐿[

1

2

𝜕𝑢
2

𝑛

𝜕𝑥
− 𝑢
𝑛
+ 𝑢
2

𝑛
]]] ,

(17)

where 𝑢
0
(𝑥, 𝑡) is an initial approximation of (14), and

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) − 𝐿

−1

[
1

𝑠
𝐿 [𝑒
𝑡−𝑥

]] . (18)

Combiningwith the homotopy perturbationmethod, one has

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡)

= 𝑢
0
(𝑥, 𝑡) − 𝑝 [𝐿

−1

[
1

𝑠
𝐿 [

1

2

𝜕 (∑
∞

𝑛=0
𝑝
𝑛H
𝑛
(𝑢))

𝜕𝑥

−

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
+

∞

∑

𝑛=0

𝑝
𝑛

H
𝑛
(𝑢)]]] ,

(19)

where H
𝑛
(𝑢) is He’s polynomials that represent nonlinear

term 𝑢
2; we have a few terms of the He’s polynomials for 𝑢2

which are given by

H
0
(𝑢) = 𝑢

2

0
,

H
1
(𝑢) = 2𝑢

0
𝑢
1
,

H
2
(𝑢) = 𝑢

2

1
+ 2𝑢
0
𝑢
2
,

...

(20)

Comparing the coefficient with identical powers in 𝑝,

𝑢
0
(𝑥, 𝑡) = 1 − 𝑒

𝑡−𝑥

,

𝑢
1
= −𝐿
−1

[
1

𝑠
[𝐿 [

1

2

𝜕𝑢
2

0

𝜕𝑥
− 𝑢
0
+ 𝑢
2

0
]]] = 0,

𝑢
2
= −𝐿
−1

[
1

𝑠
[𝐿 [

1

2

𝜕 (2𝑢
0
𝑢
1
)

𝜕𝑥
− 𝑢
1
+ 2𝑢
0
𝑢
1
]]]

= 𝑒
−𝑥

𝑡
2𝛼

Γ [1 + 2𝛼]
= 0,

...

(21)

and so on; in this manner the rest of component of the
solution can be obtained. The solution of (14) and (15) in
series form is given by

𝑢 (𝑥, 𝑡) = 1 − 𝑒
𝑡−𝑥

, (22)

which is the exact solution. For this equation, the first-
order approximate solution is justly the exact solution, and
this proposed new method provides the solution in a rapid
convergent. Furthermore, the new modified method can be
easily extended to FDEs and this is the main purpose of our
work.
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3.2. Fractional Differential Equations. Let us consider the
time fractional equation as follows:

𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝑅𝑢 (𝑥, 𝑡) + 𝑁𝑢 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) , (23)

𝑢
𝑘

(𝑥, 0
+

) = 𝑎
𝑘
, (24)

where 𝑘 = 0, . . . , 𝑚 − 1, 𝑚 = [𝛼] + 1, 𝑔(𝑥, 𝑡) is the
source term, 𝑁 represents the general nonlinear differential
operator, and 𝑅 is the linear differential operator. And the
Caputo timefractional derivative operator of order 𝛼 > 0 is
defined as

𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡)

=
1

Γ (𝑚 − 𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−𝛼−1

𝜕
𝑚

𝑢 (𝑥, 𝜏)

𝜕𝜏𝑚
𝑑𝜏,

𝑚 = [𝛼] + 1, 𝑚 ∈ 𝑁,

(25)

where Γ(⋅) denotes the Gamma function.
Now, we consider the application of the modified VIM

[21, 22]. The following Laplace transform of the term
𝐶

0
𝐷
𝛼

𝑡
𝑢(𝑥, 𝑡) holds:

𝐿 [
𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡)] = 𝑠

𝛼

𝑈 (𝑥, 𝑠)

−

𝑚−1

∑

𝑘=0

𝑢
𝑘

(𝑥, 0
+

) 𝑠
𝛼−1−𝑘

,

𝑚 − 1 < 𝛼 ≤ 𝑚,

(26)

where 𝑈(𝑥, 𝑠) = 𝐿[𝑢(𝑥, 𝑡)] = ∫
∞

0

𝑒
−𝑠𝑡

𝑢(𝑥, 𝑡)𝑑𝑡. The detailed
properties of fractional calculus and Laplace transform can
be found in [1, 2]; we have chosen to the Caputo fractional
derivative because it allows traditional initial and boundary
conditions to be included in the formulation of the problem.
Taking the above Laplace transform to both sides of (23) and
(24), the iteration formula of (23) can be constructed as

𝑈
𝑛+1

(𝑥, 𝑠) = 𝑈
𝑛
(𝑥, 𝑠) + 𝜆 (𝑠)

× [𝑠
𝛼

𝑈
𝑛
(𝑥, 𝑠) −

𝑚−1

∑

𝑘=0

𝑢
𝑘

(𝑥, 0
+

) 𝑠
𝛼−1−𝑘

+𝐿 [𝑅 [𝑢
𝑛
(𝑥, 𝑡)] + 𝑁 [𝑢

𝑛
(𝑥, 𝑡)] − 𝑔 (𝑥, 𝑡)]] .

(27)

Considering 𝐿[𝑅[𝑢
𝑛
(𝑥, 𝑡)] + 𝑁[𝑢

𝑛
(𝑥, 𝑡)]] as restricted

terms, one can derive a Lagrange multiplier as

𝜆 =
−1

𝑠𝛼
. (28)

With (28) and the inverse-Laplace transform 𝐿
−1, the

iteration formula (27) can be explicitly given as

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) − 𝐿

−1

× [
1

𝑠𝛼
[𝑠
𝛼

𝑈
𝑛
(𝑥, 𝑠) −

𝑚−1

∑

𝑘=0

𝑢
𝑘

(𝑥, 0
+

) 𝑠
𝛼−1−𝑘

+ 𝐿 [𝑅 [𝑢
𝑛
(𝑥, 𝑡)]

+𝑁 [𝑢
𝑛
(𝑥, 𝑡)] − 𝑔 (𝑥, 𝑡)] ] ]

= 𝑢
0
(𝑥, 𝑡) − 𝐿

−1

× [
1

𝑠𝛼
[𝐿 [𝑅 [𝑢

𝑛
(𝑥, 𝑡)] + 𝑁 [𝑢

𝑛
(𝑥, 𝑡)]]]] ;

(29)

𝑢
0
(𝑥, 𝑡) is an initial approximation of (23), and

𝑢
0
(𝑥, 𝑡) = 𝐿

−1

(

𝑚−1

∑

𝑘=0

𝑢
𝑘

(𝑥, 0
+

) 𝑠
𝛼−1−𝑘

)

+ 𝐿
−1

[
1

𝑠𝛼
𝐿 [𝑔 (𝑥, 𝑡)]]

= 𝑢 (𝑥, 0) + 𝑢


(𝑥, 0) 𝑡 + ⋅ ⋅ ⋅ +
𝑢
𝑚−1

(𝑥, 0) 𝑡
𝑚−1

(𝑚 − 1)!

+ 𝐿
−1

[
1

𝑠𝛼
𝐿 [𝑔 (𝑥, 𝑡)]] .

(30)

In the homotopy method, the basic assumption is that the
solutions can be written as a power series in 𝑝:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡)

= 𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2

𝑢
2
+ 𝑝
3

𝑢
3
+ ⋅ ⋅ ⋅ ,

(31)

and the nonlinear term can be decomposed as

𝑁𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

H
𝑛
(𝑢) , (32)

where 𝑝 ∈ [0, 1] is an embedding parameter. H
𝑛
(𝑢) is He’s

polynomials [16, 23] that can be generated by

H
𝑛
(𝑢
0
, . . . , 𝑢

𝑛
)

=
1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[𝑁(

𝑛

∑

𝑖=0

𝑝
𝑖

𝑢
𝑖
)]

𝑝=0

, 𝑛 = 0, 1, 2, . . . .

(33)
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The variational homotopy perturbation method is obtained
by the elegant coupling of correction function (29) of vari-
ational iteration method with He’s polynomials and is given
by

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡)

− 𝑝(𝐿
−1

[
1

𝑠𝛼
𝐿[𝑅

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡)]

+
1

𝑠𝛼
𝐿[

∞

∑

𝑛=0

𝑝
𝑛

H
𝑛
(𝑢)]]) ,

(34)

𝑢
0
(𝑥, 𝑡) represents the term arising from the source term and

the prescribed initial conditions. Equating the terms with
identical powers in 𝑝, we obtain the following approxima-
tions:

𝑝
0

: 𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝑢



(𝑥, 0) 𝑡 + ⋅ ⋅ ⋅

+
𝑢
𝑚−1

(𝑥, 0) 𝑡
𝑚−1

(𝑚 − 1)!
+ 𝐿
−1

[
1

𝑠𝛼
𝐿 [𝑔 (𝑥, 𝑡)]] ,

𝑝
1

: 𝑢
1
(𝑥, 𝑡)

= −𝐿
−1

[
1

𝑠𝛼
𝐿 [𝑅𝑢

0
(𝑥, 𝑡)] +

1

𝑠𝛼
𝐿 [H
0
(𝑢)]] ,

𝑝
2

: 𝑢
2
(𝑥, 𝑡)

= −𝐿
−1

[
1

𝑠𝛼
𝐿 [𝑅𝑢

1
(𝑥, 𝑡)] +

1

𝑠𝛼
𝐿 [H
1
(𝑢)]] ,

...
(35)

The best approximations for the solution are 𝑢(𝑥, 𝑡) =

∑
∞

𝑛=0
𝑢
𝑛
. Let us apply the above method to solve fractional

nonlinear equations of Caputo type.

Example 2. Consider the following nonlinear space time
fractional equation [25]:

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
+ 𝑢

𝜕
𝛽

𝑢 (𝑥, 𝑡)

𝜕𝑥𝛽
= 𝑥 + 𝑥𝑡

2

, (36)

𝑢 (𝑥, 0) = 0, (37)

where 0 < 𝛼, 𝛽 ⩽ 1, and the time-space fractional derivatives
definedhere are inCaputo sense.TheCaputo space-fractional
derivative operator of order 𝛽 > 0 is defined as

𝐶

0
𝐷
𝛽

𝑥
𝑢 (𝑥, 𝑡) =

1

Γ (𝑚 − 𝛽)
∫

𝑥

0

(𝑥 − 𝜉)
𝑚−𝛽−1 𝜕

𝑚

𝑢 (𝜉, 𝑡)

𝜕𝜉𝑚
𝑑𝜉,

𝑚 = [𝛽] + 1, 𝑚 ∈ 𝑁.

(38)

After taking the Laplace transform on both sides of (36) and
(37), we get the following iteration formula:

𝑈
𝑛+1

= 𝑈
𝑛
+ 𝜆 (𝑠) [𝑠

𝛼

𝑈
𝑛
(𝑥, 𝑠) − 𝑠

𝛼−1

𝑢 (𝑥, 0)

+𝐿 [𝑢
𝑛

𝜕
𝛽

𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑥𝛽
− (𝑥 + 𝑥𝑡

2

)]] .

(39)

As a result, after the identification of a Lagrange multiplier
𝜆(𝑠) = −1/𝑠

𝛼, and with the inverse-Laplace transform, one
can derive

𝑢
𝑛+1

(𝑥, 𝑦, 𝑡) = 𝑢
0
(𝑥, 𝑦, 𝑡) − 𝐿 [𝑢

𝑛

𝜕
𝛽

𝑢
𝑛
(𝑥, 𝑡)

𝜕𝑥𝛽
] (40)

𝑢
0
(𝑥, 𝑦, 𝑡) is an initial approximation of (36), and

𝑢
0
(𝑥, 𝑡) = 𝐿

−1

[
1

𝑠𝛼
[𝐿 [𝑥 + 𝑥𝑡

2

]]] . (41)

Applying the variational homotopy perturbation method,
one has

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡)

= 𝑢
0
(𝑥, 𝑡) − 𝑝 [𝐿

−1

[
1

𝑠𝛼
[𝐿[

∞

∑

𝑛=0

𝑝
𝑛

H
𝑛
(𝑢)]]]] ,

(42)

where H
𝑛
(𝑢) is He’s polynomials that represent nonlinear

term 𝑢(𝜕
𝛽

𝑢(𝑥, 𝑡)/𝜕𝑥
𝛽

); we have a few terms of the He’s
polynomials for 𝑢(𝜕𝛽𝑢(𝑥, 𝑡)/𝜕𝑥𝛽) which are given by

H
0
(𝑢) = 𝑢

0

𝜕
𝛽

𝑢
0

𝜕𝑥𝛽
,

H
1
(𝑢) = 𝑢

0

𝜕
𝛽

𝑢
1

𝜕𝑥𝛽
+ 𝑢
1

𝜕
𝛽

𝑢
0

𝜕𝑥𝛽
,

H
2
(𝑢) = 𝑢

0

𝜕
𝛽

𝑢
2

𝜕𝑥𝛽
+ 𝑢
1

𝜕
𝛽

𝑢
1

𝜕𝑥𝛽
+ 𝑢
2

𝜕
𝛽

𝑢
0

𝜕𝑥𝛽
,

...

(43)
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Comparing the coefficient with identical powers in𝑝, one has

𝑢
0
(𝑥, 𝑡) =

𝑥𝑡
𝛼

Γ (1 + 𝛼)
+

2𝑥𝑡
𝛼+2

Γ (3 + 𝛼)
,

𝑢
1
= −𝐿
−1

[
1

𝑠𝛼
[𝐿[𝑢

0

𝜕
𝛽

𝑢
0

𝜕𝑥𝛽
]]]

= −
𝑡
3𝛼

𝑥
2−𝛽

Γ (1 + 2𝛼)

Γ2 (1 + 𝛼) Γ (1 + 3𝛼) Γ (2 − 𝛽)

−
4𝑡
4+3𝛼

𝑥
2−𝛽

Γ (5 + 2𝛼)

Γ2 (3 + 𝛼) Γ (5 + 3𝛼) Γ (2 − 𝛽)

−
4𝑡
2+3𝛼

𝑥
2−𝛽

Γ (3 + 2𝛼)

Γ (1 + 𝛼) Γ (3 + 𝛼) Γ (3 + 3𝛼) Γ (2 − 𝛽)
,

𝑢
2
= −𝐿
−1

[
1

𝑠𝛼
[𝐿[𝑢

0

𝜕
𝛽

𝑢
1

𝜕𝑥𝛽
+ 𝑢
1

𝜕
𝛽

𝑢
0

𝜕𝑥𝛽
]]]

=
𝑡
5𝛼

𝑥
3−2𝛽

Γ (1 + 2𝛼) Γ (1 + 4𝛼)

Γ3 (1 + 𝛼) Γ (1 + 3𝛼) Γ (1 + 5𝛼) Γ2 (2 − 𝛽)

+
2𝑡
2+5𝛼

𝑥
3−2𝛽

Γ (1 + 2𝛼) Γ (3 + 4𝛼)

Γ2 (1 + 𝛼) Γ (3 + 𝛼) Γ (1 + 3𝛼) Γ (3 + 5𝛼) Γ2 (2 − 𝛽)

+
4𝑡
2+5𝛼

𝑥
3−2𝛽

Γ (3 + 2𝛼) Γ (3 + 4𝛼)

Γ2 (1 + 𝛼) Γ (3 + 𝛼) Γ (3 + 3𝛼) Γ (3 + 5𝛼) Γ2 (2 − 𝛽)

+
8𝑡
4+5𝛼

𝑥
3−2𝛽

Γ (3 + 2𝛼) Γ (5 + 4𝛼)

Γ (1 + 𝛼) Γ2 (3 + 𝛼) Γ (3 + 3𝛼) Γ (5 + 5𝛼) Γ2 (2 − 𝛽)

+
4𝑡
4+5𝛼

𝑥
3−2𝛽

Γ (5 + 2𝛼) Γ (5 + 4𝛼)

Γ (1 + 𝛼) Γ2 (3 + 𝛼) Γ (5 + 3𝛼) Γ (5 + 5𝛼) Γ2 (2 − 𝛽)

+
8𝑡
6+5𝛼

𝑥
3−2𝛽

Γ (5 + 2𝛼) Γ (7 + 4𝛼)

Γ3 (3 + 𝛼) Γ (5 + 3𝛼) Γ (7 + 5𝛼) Γ2 (2 − 𝛽)

+ (4𝑡
2+5𝛼

𝑥
3−2𝛽

Γ (3 + 2𝛼) Γ (3 + 4𝛼) Γ (3 − 𝛽))

× (Γ
2

(1 + 𝛼) Γ (3 + 𝛼) Γ (3 + 3𝛼)

× Γ (3 + 5𝛼) Γ (3 − 2𝛽) Γ (2 − 𝛽) )
−1

+ (8𝑡
4+5𝛼

𝑥
3−2𝛽

Γ (3 + 2𝛼) Γ (5 + 4𝛼) Γ (3 − 𝛽))

× (Γ (1 + 𝛼) Γ
2

(3 + 𝛼) Γ (3 + 3𝛼)

× Γ (5 + 5𝛼) Γ (3 − 2𝛼) Γ (2 − 𝛽) )
−1

+ (4𝑡
4+5𝛼

𝑥
3−2𝛽

Γ (5 + 2𝛼) Γ (5 + 4𝛼) Γ (3 − 𝛽))

× (Γ (1 + 𝛼) Γ
2

(3 + 𝛼) Γ (5 + 3𝛼)

× Γ (5 + 5𝛼) Γ (3 − 2𝛽) Γ (2 − 𝛽) )
−1

+ (8𝑡
6+5𝛼

𝑥
3−2𝛽

Γ (5 + 2𝛼) Γ (7 + 4𝛼) Γ (3 − 𝛽))

× (Γ
3

(1 + 𝛼) Γ (5 + 3𝛼) Γ (7 + 5𝛼)

× Γ (3 − 2𝛼) Γ (2 − 𝛽) )
−1

,

...
(44)

The solution of (36) and (37) is given as 𝑢(𝑥, 𝑡) = 𝑢
0
+ 𝑢
1
+

𝑢
2
+ ⋅ ⋅ ⋅ . If we take 𝛼 = 𝛽 = 1, one has

𝑢
0
= 𝑥𝑡 +

𝑡
3

𝑥

3
,

𝑢
1
= −

𝑡
3

𝑥

3
−
2𝑡
5

𝑥

15
−
𝑡
7

𝑥

63
,

𝑢
2
=
2𝑡
5

𝑥

15
+
22𝑡
7

𝑥

315
+
38𝑡
9

𝑥

2835
+
2𝑡
11

𝑥

2079
,

...

(45)

The noise terms −(𝑡3𝑥/3) between the components 𝑢
0
and 𝑢

1

can be canceled and the remaining term of 𝑢
0
still satisfies the

equation. For this special case, the exact solution is therefore
𝑢(𝑥, 𝑡) = 𝑡𝑥 which was given in [25].

Example 3. Consider the following timefractional nonlinear
system arising in thermoelasticity [26]:

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
− 𝑎 (𝑢

𝑥
, 𝜃) 𝑢
𝑥𝑥

+ 𝑏 (𝑢
𝑥
, 𝜃) 𝜃
𝑥
= 𝑓 (𝑥, 𝑡) ,

𝑐 (𝑢
𝑥
, 𝜃)

𝜕
𝛽V (𝑥, 𝑡)

𝜕𝑡𝛽
+ 𝑏 (𝑢

𝑥
, 𝜃) 𝑢
𝑥𝑡
− 𝑑 (𝑢

𝑥
, 𝜃) 𝜃
𝑥𝑥

= 𝑔 (𝑥, 𝑡) ,

(46)

where 𝑡 > 0, 𝑥 ∈ 𝑅
1

, 1 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1, and the time
fractional derivatives defined here are in Caputo sense. 𝑎, 𝑏, 𝑐,
and 𝑑 are defined by

𝑎 (𝑢
𝑥
, 𝜃) = 2 − 𝑢

𝑥
𝜃, 𝑏 (𝑢

𝑥
, 𝜃) = 2 + 𝑢

𝑥
𝜃,

𝑐 (𝑢
𝑥
, 𝜃) = 1, 𝑑 (𝑢

𝑥
, 𝜃) = 𝜃,

(47)

and the right-hand side of (46) is replaced by

𝑓 (𝑥, 𝑡) =
2

1 + 𝑥2
−
2 (1 + 𝑡

2

) (3𝑥
2

− 1)

(1 + 𝑥2)
3

𝑎 (𝑤, V)

−
2𝑥 (1 + 𝑡)

(1 + 𝑥2)
2
𝑏 (𝑤, V) ,

𝑔 (𝑥, 𝑡) =
1

1 + 𝑥2
𝑐 (𝑤, V) −

4𝑥𝑡

(1 + 𝑥2)
2

𝑏 (𝑤, V)

−
2 (1 + 𝑡) (3𝑥

2

− 1)

(1 + 𝑥2)
3

𝑑 (𝑤, V) ,

(48)
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where 𝑎, 𝑏, 𝑐, and 𝑑 are defined above and

𝑤 ≡ 𝑤 (𝑥, 𝑡) =
2𝑥 (1 + 𝑡

2

)

(1 + 𝑥2)
2
, 𝑤 ≡ 𝑤 (𝑥, 𝑡) =

1 + 𝑡

1 + 𝑥2
,

(49)

with the initial conditions

𝑢 (𝑥, 0) =
1

1 + 𝑥2
, 𝑢

𝑡
(𝑥, 0) = 0, V (𝑥, 0) =

1

1 + 𝑥2
;

(50)

thus the exact solution of system is 𝑢(𝑥, 𝑡) = (1 + 𝑡
2

)/(1 +

𝑥
2

), 𝜃 = (1 + 𝑡)/(1 + 𝑥
2

). After taking the Laplace transform
to both sides of (46) and (50), we get the following iteration
formula:

𝑈
𝑛+1

(𝑥, 𝑠) = 𝑈
𝑛
(𝑥, 𝑠) + 𝜆

1
(𝑠)

× [𝑠
𝛼

𝑈
𝑛
(𝑥, 𝑠) − 𝑠

𝛼−1

𝑢 (𝑥, 0) − 𝑠
𝛼−2

𝑢
𝑡
(𝑥, 0)

− 𝐿 [2𝑢
𝑛𝑥𝑥

− 2𝜃
𝑛𝑥
]

−𝐿 [𝑢
𝑛𝑥
𝜃
𝑛
𝑢
𝑛𝑥𝑥

+ 𝑢
𝑛𝑥
𝜃
𝑛
𝜃
𝑛𝑥
]] ,

Θ
𝑛+1

(𝑥, 𝑠) = Θ
𝑛
(𝑥, 𝑠) + 𝜆

2
(𝑠)

× [𝑠
𝛽

𝑈
𝑛
(𝑥, 𝑠) − 𝑠

𝛽−1

𝑢 (𝑥, 0)

+ 𝐿 [−2𝑢
𝑛𝑥𝑡
]

−𝐿 [𝑢
𝑛𝑥
𝜃
𝑛
𝑢
𝑛𝑥𝑡

− 𝜃
𝑛
𝜃
𝑛𝑥𝑥

]] ,

(51)

where Θ(𝑥, 𝑠) = 𝐿[𝜃(𝑥, 𝑡)] = ∫
∞

0

𝑒
−𝑠𝑡

𝜃(𝑥, 𝑡)𝑑𝑡. As a result,
after the identification of a Lagrange multiplier 𝜆

1
(𝑠) =

−1/𝑠
𝛼

, 𝜆
2
(𝑠) = −1/𝑠

𝛽 andwith the inverse-Laplace transform,
one can derive the following iteration formula:

𝑢
𝑛+1

= 𝑢
0
+ 𝐿
−1

[
1

𝑠𝛼
[𝐿 [2𝑢

𝑛𝑥𝑥
− 2𝜃
𝑛𝑥
]

−𝐿 [𝑢
𝑛𝑥
𝜃
𝑛
𝑢
𝑛𝑥𝑥

+ 𝑢
𝑛𝑥
𝜃
𝑛
𝜃
𝑛𝑥
]]] ,

𝜃
𝑛+1

= 𝜃
0
+ 𝐿
−1

[
1

𝑠𝛽
[𝐿 [−2𝑢

𝑛𝑥𝑡
]

−𝐿 [𝑢
𝑛𝑥
𝜃
𝑛
𝑢
𝑛𝑥𝑡

− 𝜃
𝑛
𝜃
𝑛𝑥𝑥

]]] ,

(52)

𝑢
0
(𝑥, 𝑡), V

0
(𝑥, 𝑡) is an initial approximation of (46), and

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) + 𝐿

−1

[
1

𝑠𝛼
𝐿 [𝑓 (𝑥, 𝑡)]] ,

𝜃
0
(𝑥, 𝑡) = 𝜃 (𝑥, 0) + 𝐿

−1

[
1

𝑠𝛽
𝐿 [𝑔 (𝑥, 𝑡)]] .

(53)

Applying the variational homotopy perturbation method,
one has

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
= 𝑢
0
+ 𝑝

× [𝐿
−1

[
1

𝑠𝛼
[𝐿[2

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛𝑥𝑥

− 2

∞

∑

𝑛=0

𝑝
𝑛

𝜃
𝑛𝑥
]

− 𝐿[

∞

∑

𝑛=0

𝑝
𝑛

H
1𝑛
(𝑢, 𝜃)

+

∞

∑

𝑛=0

𝑝
𝑛

H
2𝑛
(𝑢, 𝜃)]]]] ,

∞

∑

𝑛=0

𝑝
𝑛

𝜃
𝑛
= 𝜃
0
+ 𝑝[𝐿

−1

[
1

𝑠𝛽
[𝐿[−2

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛𝑥𝑡
]

− 𝐿[

∞

∑

𝑛=0

𝑝
𝑛

H
3𝑛
(𝑢, 𝜃)

−

∞

∑

𝑛=0

𝑝
𝑛

H
4𝑛
(𝑢, 𝜃)]]]] ,

(54)

where H
𝑖𝑛
(𝑢, 𝜃), 𝑖 = 1, 2, 3, 4, is He’s polynomials that rep-

resent nonlinear terms 𝑢
𝑥
𝜃𝑢
𝑥𝑥
, 𝑢
𝑥
𝜃𝜃
𝑥
, 𝑢
𝑥
𝜃𝑢
𝑥𝑡
, 𝜃𝜃
𝑥𝑥
, respec-

tively; we have a few terms of the He’s polynomials for these
nonlinear terms which are given by

H
10
(𝑢, 𝜃) = 𝑢

0𝑥
𝜃
0
𝑢
0𝑥𝑥

,

H
11
(𝑢, 𝜃) = 𝑢

0𝑥
𝜃
0
𝑢
1𝑥𝑥

+ 𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑥

+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥𝑥

,

...

H
20
(𝑢, 𝜃) = 𝑢

0𝑥
𝜃
0
𝜃
0𝑥
,

H
21
(𝑢, 𝜃) = 𝑢

0𝑥
𝜃
1
𝜃
0𝑥
+ 𝑢
0𝑥
𝜃
0
𝜃
1𝑥
+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥
,

...

H
30
(𝑢, 𝜃) = 𝑢

0𝑥
𝜃
0
𝑢
0𝑥𝑡
,

H
31
(𝑢, 𝜃) = 𝑢

0𝑥
𝜃
0
𝑢
1𝑥𝑡

+ 𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑡

+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥𝑡
,

...

H
40
(𝑢, 𝜃) = 𝜃

0
𝜃
0𝑥𝑥

,

H
41
(𝑢, 𝜃) = 𝜃

0
𝜃
1𝑥𝑥

+ 𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑥

,

...

(55)
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Comparing the coefficient with identical powers in𝑝, one has

𝑢
0
(𝑥, 𝑡) =

1

1 + 𝑥2

+ (
4𝑥 − 12𝑥

3

(1 + 𝑥2)
6
+

4𝑥
2

(1 + 𝑥2)
5
+
4 − 12𝑥

2

(1 + 𝑥2)
3

+
4𝑥

(1 + 𝑥2)
2
+

2

1 + 𝑥2
)

𝑡
𝛼

Γ (𝛼)

+ (
4𝑥 − 12𝑥

3

(1 + 𝑥2)
6
+

8𝑥
2

(1 + 𝑥2)
5
−

4

(1 + 𝑥2)
5
)

×
𝑡
1+𝛼

Γ (2 + 𝛼)
+ (

480𝑥 − 1440𝑥
3

(1 + 𝑥2)
6

)
𝑡
5+𝛼

Γ (6 + 𝛼)

+ (
16𝑥 − 48𝑥

3

(1 + 𝑥2)
6

+
16𝑥
2

(1 + 𝑥2)
5
+
8 + 24𝑥

2

(1 + 𝑥2)
3
)

×
𝑡
2+𝛼

Γ (3 + 𝛼)

+ (
48 − 144𝑥

3

(1 + 𝑥2)
6

+
48𝑥
2

(1 + 𝑥2)
5
)

𝑡
3+𝛼

Γ (4 + 𝛼)

+ (
96𝑥 − 288𝑥

3

(1 + 𝑥2)
6

+
96𝑥
2

(1 + 𝑥2)
5
)

𝑡
4+𝛼

Γ (5 + 𝛼)
,

𝜃
0
(𝑥, 𝑡) =

1

1 + 𝑥2
+ (

2 − 6𝑥
2

(1 + 𝑥2)
4
+

1

1 + 𝑥2
)

𝑡
𝛽

Γ (1 + 𝛽)

+ (
8𝑥
2

(1 + 𝑥2)
5
+
4 − 12𝑥

2

(1 + 𝑥2)
4
−

8𝑥

(1 + 𝑥2)
2
)

×
𝑡
1+𝛽

Γ (2 + 𝛽)

+ (
16𝑥
2

(1 + 𝑥2)
5
+
4 − 12𝑥

2

(1 + 𝑥2)
4
)

𝑡
2+𝛽

Γ (3 + 𝛽)

×
48𝑥
2

(1 + 𝑥2)
5

𝑡
3+𝛽

Γ (4 + 𝛽)

+
192𝑥
2

(1 + 𝑥2)
5

𝑡
4+𝛽

Γ (5 + 𝛽)
,

𝑢
1
(𝑥, 𝑡) = 𝐿

−1

[
1

𝑠𝛼
[𝐿 [2𝑢

0𝑥𝑥
− 2𝜃
0𝑥
]

−𝐿 [𝑢
0𝑥
𝜃
0
𝑢
0𝑥𝑡

+ 𝑢
0𝑥
𝜃
0
𝜃
0𝑥
]] ] ,

𝜃
1
(𝑥, 𝑡) = 𝐿

−1

[
1

𝑠𝛽
[𝐿 [−2𝑢

0𝑥𝑡
] − 𝐿 [𝑢

0𝑥
𝜃
0
𝑢
0𝑥𝑡

− 𝜃
0
𝜃
0𝑥𝑥

]]] ,

𝑢
2
= 𝐿
−1

[
1

𝑠𝛼
[𝐿 [2𝑢

1𝑥𝑥
− 2𝜃
1𝑥
]

− 𝐿 [𝑢
0𝑥
𝜃
0
𝑢
1𝑥𝑥

+ 𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑥

+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥𝑥

+ 𝑢
0𝑥
𝜃
1
𝜃
0𝑥

+𝑢
0𝑥
𝜃
0
𝜃
1𝑥
+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥
]]] ,

𝜃
2
= 𝐿
−1

[
1

𝑠𝛽
[𝐿 [−2𝑢

1𝑥𝑡
]

− 𝐿 [𝑢
0𝑥
𝜃
0
𝑢
1𝑥𝑡

+ 𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑡

+ 𝑢
1𝑥
𝜃
0
𝑢
0𝑥𝑡

− 𝜃
0
𝜃
1𝑥𝑥

+𝑢
0𝑥
𝜃
1
𝑢
0𝑥𝑥

]] ] ,

...
(56)

and so on; in this manner the rest of components of the solu-
tion can be obtained using theMathematica symbolic compu-
tation software for purpose of simlification, the approximate
solutions are not listed here.

4. Conclusion

In this paper, a new modification of variational iteration
method is considered, which is based on Laplace transform
and homotopy perturbation method. The fractional lagrange
multiplier is accurately determined by the Laplace transform
and the nonlinear one can be easily handled by the use of
He’s polynomials. Several fractional nonlinear nonhomoge-
neous equations are analytically solved as examples and the
methodology is demonstrated. Examples 1, 2, and 3 have been
successfully solved. And the results show that this method is
a powerful and reliable method for finding the solution of the
fractional nonlinear equations.
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