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We provide a class of fractional-order differential models of biological systems with memory, such as dynamics of tumor-immune
system and dynamics of HIV infection of CD4+ T cells. Stability and nonstability conditions for disease-free equilibrium and
positive equilibria are obtained in terms of a threshold parameterR

0
(minimum infection parameter) for each model. We provide

unconditionally stable method, using the Caputo fractional derivative of order 𝛼 and implicit Euler’s approximation, to find a
numerical solution of the resulting systems. The numerical simulations confirm the advantages of the numerical technique and
using fractional-order differential models in biological systems over the differential equations with integer order. The results may
give insight to infectious disease specialists.

1. Introduction

Mathematical models, using ordinary differential equations
with integer order, have been proven valuable in understand-
ing the dynamics of biological systems. However, the behav-
ior ofmost biological systems hasmemory or aftereffects.The
modelling of these systems by fractional-order differential
equations has more advantages than classical integer-order
mathematical modeling, in which such effects are neglected.
Accordingly, the subject of fractional calculus (i.e., calculus
of integral and derivatives of arbitrary order) has gained
popularity and importance, mainly due to its demonstrated
applications in numerous diverse and widespread fields of
science and engineering. For example, fractional calculus has
been successfully applied to system biology [1–5], physics
[6–9], chemistry and biochemistry [10], hydrology [11, 12],
medicine [13, 14], and finance [15]. In some situations, the
fractional-order differential equations (FODEs) models seem
more consistent with the real phenomena than the integer-
order models. This is due to the fact that fractional deriva-
tives and integrals enable the description of the memory
and hereditary properties inherent in various materials and
processes. Hence there is a growing need to study and use the
fractional-order differential and integral equations.

Fractional-order differential equations are naturally
related to systems with memory which exists in most

biological systems. Also, they are closely related to fractals
[16], which are abundant in biological systems. It has been
deduced in [3] that the membranes of cells of biological
organism have fractional-order electrical conductance and
then are classified in groups of noninteger-order models.
Fractional derivatives embody essential features of cell
rheological behavior and have enjoyed greatest success in
the field of rheology [17]. In this paper, we propose systems
of FODEs for modeling the interactions of tumor-immune
system (see Section 2) and HIV infection of CD4+ T cells
with immune system (see Section 3).

However, analytical and closed solutions of these types of
fractional equations cannot generally be obtained. As a con-
sequence, approximate and numerical techniques are playing
important role in identifying the solution behavior of such
fractional equations and exploring their applications [18–21].
The Adomian decomposition method [22, 23], extrapolation
method [24], multistep method [25], monotone iterative
technique [26], and predictor-corrector approach [18, 27]
are proposed to provide numerical solutions for linear and
nonlinear FODEs. The monograph of [28] investigates the
interconnection between fractional differential equations and
classical differential equations of integer-order derivatives. In
this paper, we provide a numerical approach for the resulting
system using implicit Euler’s scheme (see Section 4). We also
study the stability and convergence of the proposed method.
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We first give the definition of fractional-order integration
and fractional-order differentiation [29, 30].There are several
approaches to the generalization of the notion of differenti-
ation to fractional orders, for example, Riemann-Liouville,
Caputo, and Generalized Functions approaches. Let 𝐿1 =

𝐿
1
[𝑎, 𝑏] be the class of Lebesgue integrable functions on [𝑎, 𝑏],

𝑎 < 𝑏 < ∞.

Definition 1. The fractional integral (or the Riemann-
Liouville integral) of order 𝛽 ∈ R+ of the function 𝑓(𝑡), 𝑡 > 0

(𝑓 : R+ → R) is defined by

𝐼
𝛽

𝑎
𝑓 (𝑡) =

1

Γ (𝛽)

∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛽−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0. (1)

The fractional derivative of order 𝛼 ∈ (𝑛 − 1, 𝑛) of 𝑓(𝑡) is
defined by two (nonequivalent) ways:

(i) Riemann-Liouville fractional derivative: take frac-
tional integral of order (𝑛 − 𝛼), and then take 𝑛th
derivative as follows:

𝐷
𝛼

∗
𝑓 (𝑡) = 𝐷

𝑛

∗
𝐼
𝑛−𝛼

𝑎
𝑓 (𝑡) , 𝐷

𝑛

∗
=

𝑑
𝑛

𝑑𝑡
𝑛
, 𝑛 = 1, 2, . . . .

(2)

(ii) Caputo-fractional derivative: take 𝑛th derivative, and
then take a fractional integral of order (𝑛 − 𝛼)

𝐷
𝛼

𝑓 (𝑡) = 𝐼
𝑛−𝛼

𝑎
𝐷
𝑛

∗
𝑓 (𝑡) , 𝑛 = 1, 2, . . . . (3)

We notice that the definition of time-fractional derivative
of a function 𝑓(𝑡) at 𝑡 = 𝑡

𝑛
involves an integration and

calculating time-fractional derivative that requires all the past
history, that is, all the values of 𝑓(𝑡) from 𝑡 = 0 to 𝑡 =

𝑡
𝑛
. For the concept of fractional derivative, we will adopt

Caputo’s definition which is a modification of the Riemann-
Liouville definition and has the advantage of dealing properly
with initial value problems. The following remark addresses
some of the main properties of the fractional derivatives and
integrals (see [8, 29–31]).

Remark 2. Let 𝛽, 𝛾 ∈ R+ and 𝛼 ∈ (0, 1). Then

(i) if 𝐼𝛽
𝑎

: 𝐿
1

→ 𝐿
1 and 𝑓(𝑡) ∈ 𝐿

1, then 𝐼
𝛽

𝑎
𝐼
𝛾

𝑎
𝑓(𝑡) =

𝐼
𝛽+𝛾

𝑎
𝑓(𝑡);

(ii) lim
𝛽→𝑛

𝐼
𝛽

𝑎
𝑓(𝑥) = 𝐼

𝑛

𝑎
𝑓(𝑡) uniformly on [𝑎, 𝑏], 𝑛 = 1, 2,

3, . . ., where 𝐼1
𝑎
𝑓(𝑡) = ∫

𝑡

0
𝑓(𝑠)𝑑𝑠;

(iii) lim
𝛽→0

𝐼
𝛽

𝑎
𝑓(𝑡) = 𝑓(𝑡) weakly;

(iv) if 𝑓(𝑡) is absolutely continuous on [𝑎, 𝑏], then
lim
𝛼→1

𝐷
𝛼

∗
𝑓(𝑡) = 𝑑𝑓(𝑡)/𝑑𝑡;

(v) thus 𝐷
𝛼

∗
𝑓(𝑡) = (𝑑/𝑑𝑡)𝐼

1−𝛼

∗
𝑓(𝑡) (Riemann-Liouville

sense) and𝐷
𝛼
𝑓(𝑡) = 𝐼

1−𝛼

∗
(𝑑/𝑑𝑡)𝑓(𝑡) (Caputo sense).

The generalized mean value theorem and another property
are defined in the following remark [32].

Remark 3.

(i) Suppose that 𝑓(𝑡) ∈ 𝐶[𝑎, 𝑏] and 𝐷
𝛼

∗
𝑓(𝑡) ∈ 𝐶(𝑎, 𝑏] for

0 < 𝛼 ≤ 1, and then we have

𝑓 (𝑡) = 𝑓 (𝑎) +

1

Γ (𝛼)

𝐷
𝛼

∗
𝑓 (𝜉) (𝑡 − 𝑎)

𝛼

,

with 𝑎 < 𝜉 < 𝑡 ∀𝑡 ∈ (𝑎, 𝑏] .

(4)

(ii) If (i) holds and𝐷𝛼
∗
𝑓(𝑡) ≥ 0 for all 𝑡 ∈ [𝑎, 𝑏], then 𝑓(𝑡)

is nondecreasing for each 𝑡 ∈ [𝑎, 𝑏]. If 𝐷𝛼
∗
𝑓(𝑡) ≤ 0

for all 𝑡 ∈ [𝑎, 𝑏], then 𝑓(𝑡) is nonincreasing for each
𝑡 ∈ [𝑎, 𝑏].

We next provide a class of fractional-order differential
models to describe the dynamics of tumour-immune system
interactions.

2. Fractional Model of Tumor-Immune System

Immune system is one of the most fascinating schemes from
the point of view of biology and mathematics. The immune
system is complex, intricate, and interesting. It is known to be
multifunctional andmultipathway, somost immune effectors
do more than one job. Also each function of the immune
system is typically done by more than one effector, which
makes it more robust.The reason of using FODEs is that they
are naturally related to systems with memory which exists in
tumor-immune interactions.

Ordinary and delay differential equations have long been
used in modeling cancer phenomena [33–37], but fractional-
order differential equations have short history in modeling
such systems with memory. The authors in [1] used a system
of fractional-order differential equations inmodeling cancer-
immune system interaction.Themodel includes two immune
effectors: 𝐸

1
(𝑡), 𝐸
2
(𝑡) (such as cytotoxic T cells and natural

killer cells), interacting with the cancer cells, 𝑇(𝑡), with a
Holling function of type III. (Holling type III describes a
situation inwhich the number of prey consumed per predator
initially rises slowly as the density of prey increases but then
levels off with further increase in prey density. In other words
the response of predators to prey is depressed at low prey
density, then levels off with further increase in prey density.)
The model takes the form

𝐷
𝛼

𝑇 = 𝑎𝑇 − 𝑟
1
𝑇𝐸
1
− 𝑟
2
𝑇𝐸
2
,

𝐷
𝛼

𝐸
1
= −𝑑
1
𝐸
1
+

𝑇
2
𝐸
1

𝑇
2
+ 𝑘
1

, 0 < 𝛼 ≤ 1,

𝐷
𝛼

𝐸
2
= −𝑑
2
𝐸
2
+

𝑇
2
𝐸
2

𝑇
2
+ 𝑘
1

,

(5)

where 𝑇 ≡ 𝑇(𝑡), 𝐸
1
≡ 𝐸
1
(𝑡), 𝐸
2
≡ 𝐸
2
(𝑡), and 𝑎, 𝑟

1
, 𝑟
2
, 𝑑
1
,

𝑑
2
, 𝑘
1
, and 𝑘

2
are positive constants. The interaction terms

in the second and third equations of model (5) satisfy the
crossreactivity property of the immune system. It has been
assumed that (𝑑

1
𝑘
1
/(1 − 𝑑

1
)) ≪ (𝑑

2
𝑘
2
/(1 − 𝑑

2
)) to avoid
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the nonbiological interior solution where both immune
effectors coexist. The equilibrium points of the system (5) are

E
0
= (0, 0, 0) , E

1
= (√

𝑑
1
𝑘
1

(1 − 𝑑
1
)

,

𝑎

𝑟
1

, 0) ,

E
2
= (√

𝑑
2
𝑘
2

(1 − 𝑑
2
)

, 0,

𝑎

𝑟
2

) .

(6)

The first equilibrium E
0
is the nave, the second E

1
is the

memory, and the third E
2
is endemic according to the value

of the tumor size. Stability analysis shows that the nave state is
unstable. However, thememory state is locally asymptotically
stable if 𝑑

1
< 𝑑
2
and 𝑑

1
< 1. While the endemic state is

locally asymptotically stable if 𝑑
2
< 𝑑
1
and 𝑑

2
< 1, there

is bifurcation at 𝑑
1
= 1. The stability of the memory state

depends on the value of one parameter, namely, the immune
effector death rate.

Now we modify model (5) to include three populations
of the activated immune-system cells, 𝐸(𝑡); the tumor cells,
𝑇(𝑡); and the concentration of IL-2 in the single tumor-site
compartment, 𝐼

𝐿
(𝑡). We consider the classic bilinear model

that includes Holling function of type I and external effector
cells 𝑠

1
and input of IL-2, 𝑠

2
. (holling Type I is a linear

relationship, where the predator is able to keep up with
increasing density of prey by eating them in direct proportion
to their abundance in the environment. If they eat 10% of the
prey at low density, they continue to eat 10% of them at high
densities.) The interactions of the three populations are then
governed by the fractional-order differential model:

𝐷
𝛼
1
𝐸 = 𝑠
1
+ 𝑝
1
𝐸𝑇 − 𝑝

2
𝐸 + 𝑝
3
𝐸𝐼
𝐿
,

𝐷
𝛼
2
𝑇 = 𝑝

4
𝑇 (1 − 𝑝

5
𝑇) − 𝑝

6
𝐸𝑇, 0 < 𝛼

𝑖
≤ 1, 𝑖 = 1, 2, 3,

𝐷
𝛼
3
𝐼
𝐿
= 𝑠
2
+ 𝑝
7
𝐸𝑇 − 𝑝

8
𝐼
𝐿
,

(7)

with initial conditions: 𝐸(0) = 𝐸
0
, 𝑇(0) = 𝑇

0
, and 𝐼

𝐿
(0) =

𝐼
𝐿
0

. The parameter 𝑝
1
is the antigenicity rate of the tumor

(immune response to the appearance of the tumor), and 𝑠
1

is the external source of the effector cells, with rate of death
𝑝
2
. The parameter 𝑝

4
incorporates both multiplication and

death of tumor cells. The maximal carrying capacity of the
biological environment for tumor cell is 𝑝−1

5
; 𝑝
3
is considered

as the cooperation rate of effector cells with interleukin-2
parameter; 𝑝

6
is the rate of tumor cells; 𝑝

7
is the competition

rate between the effector cells and the tumor cells. External
input of IL-2 into the system is 𝑠

2
, and the rate loss parameter

of IL-2 cells is 𝑝
8
.

In the absence of immunotherapy with IL-2, we have

𝐷
𝛼
1
𝐸 = 𝑠
1
+ 𝑝
1
𝐸𝑇 − 𝑝

2
𝐸,

0 < 𝛼
𝑖
≤ 1, 𝑖 = 1, 2,

𝐷
𝛼
2
𝑇 = 𝑝

4
𝑇 (1 − 𝑝

5
𝑇) − 𝑝

6
𝐸𝑇.

(8)

To ease the analysis and stability of the steady states with
meaningful parameters and minimize sensitivity (or robust-
ness) of themodel, we nondimensionalize the bilinear system
(8) by taking the rescaling

𝑥 =

𝐸

𝐸
0

, 𝑦 =

𝑇

𝑇
0

, 𝜔 =

𝑝
1
𝑇
0

𝑡
𝑠
𝐸
0

,

𝜃 =

𝑝
2

𝑡
𝑠

, 𝜎 =

𝑠
1

𝑡
𝑠
𝐸
0

, 𝑎 =

𝑝
4

𝑡
𝑠

,

𝑏 = 𝑝
5
𝑇
0
, 1 =

𝑝
6
𝐸
0

𝑡
𝑠

, 𝜏 = 𝑡
𝑠
𝑡.

(9)

Therefore, after the previous substitution into (8) and replac-
ing 𝜏 by 𝑡, the model becomes

𝐷
𝛼
1
𝑥 = 𝜎 + 𝜔𝑥𝑦 − 𝜃𝑥,

𝐷
𝛼
2
𝑦 = 𝑎𝑦 (1 − 𝑏𝑦) − 𝑥𝑦.

(10)

2.1. Equilibria and Local Stability of Model (10). The steady
states of the reduced model (10) are again the intersection of
the null clines 𝐷𝛼1𝑥 = 0, 𝐷𝛼2𝑦 = 0. If 𝑦 = 0, the tumor-
free equilibrium is atE

0
= (𝑥, 𝑦) = (𝜎/𝜃, 0). This steady state

is always exist, since 𝜎/𝜃 > 0. From the analysis, it is easy
to prove that the tumor-free equilibriumE

0
= (𝜎/𝜃, 0) of the

model (10) is asymptotically stable if threshold parameter (the
minimum tumor-clearance parameter) R

0
= 𝑎𝜃/𝜎 < 1 and

unstable ifR
0
> 1.

However, if𝑦 ̸= 0, the steady states are obtained by solving

𝜔𝑎𝑏𝑦
2

− 𝑎 (𝜔 + 𝜃𝑏) 𝑦 + 𝑎𝜃 − 𝜎 = 0. (11)

In this case, we have two endemic equilibria, E
1
and E

2
:

E
1
= (𝑥
1
, 𝑦
1
) , where 𝑥

1
=

−𝑎 (𝑏𝜃 − 𝜔) − √Δ

2𝜔

,

𝑦
1
=

𝑎 (𝑏𝜃 + 𝜔) + √Δ

2𝑎𝑏𝜔

,

E
2
= (𝑥
2
, 𝑦
2
) , where 𝑥

2
=

−𝑎 (𝑏𝜃 − 𝜔) + √Δ

2𝜔

,

𝑦
2
=

𝑎 (𝑏𝜃 + 𝜔) − √Δ

2𝑎𝑏𝜔

(12)

with Δ = 𝑎
2
(𝑏𝜃 − 𝜔)

2

+ 4𝜎𝜔𝑎𝑏 > 0. The Jacobian matrix of
the system (10) at the endemic equilibriumE

1
is

𝐽 (E
1
) = (

𝜔𝑦
1
− 𝜃 𝜔𝑥

1

−𝑦
1

𝑎 − 2𝑎𝑏𝑦
1
− 𝑥
1

) . (13)
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Proposition 4. Assume that the endemic equilibrium E
1

exists and has nonnegative coordinates. If R
0
= 𝑎𝜃/𝜎 < 1,

then tr(𝐽(E
1
)) > 0 and E

1
is unstable.

Proof. Since

tr (𝐽 (E
1
)) =

𝜔
2
− 𝜔 (𝑎𝑏 + 𝑏𝜃) − 𝑎𝑏

2
𝜃

2𝑏𝜔

+

𝜔 − 𝑎𝑏

2𝑎𝑏𝜔

√𝑎
2
(𝑏𝜃 + 𝜔)

2

− 4𝑎𝑏𝜔 (𝑎𝜃 − 𝜎),

(14)

then inequality tr(𝐽(E
1
)) > 0 is true if

𝑎 [𝜔
2

− 𝜔 (𝑎𝑏 + 𝑏𝜃) − 𝑎𝑏
2

𝜃]

> (𝑎𝑏 − 𝜔)√𝑎
2
(𝑏𝜃 + 𝜔)

2

− 4𝑎𝑏𝜔 (𝑎𝜃 − 𝜎).

(15)

Therefore, when 𝑎𝜃 < 𝜎, we have𝜔2−𝜔𝑏(𝑎+𝜃)−𝑎𝜃𝑏2 > 0, and
hence both sides of the inequality are positive.Therefore if the
equilibrium pointE

1
exists and has nonnegative coordinates,

then tr(𝐽(E
1
)) > 0 and the point (E

1
) is unstable, whenever

R
0
= 𝑎𝜃/𝜎 < 1.

Similarly, we arrive at the following proposition.

Proposition 5. If the point E
2
exists and has nonnegative

coordinates, then it is asymptotically stable.

Wenext examine a fractional-order differential model for
HIV infection of CD4+ T cells.

3. Fractional Model of HIV Infection of
CD4+ T Cells

As mentioned before, many mathematical models have
been developed to describe the immunological response to
infection with human immunodeficiency virus (HIV), using
ordinary differential models (see, e.g., [38, 39]) and delay
differential models [40, 41]. In this section, we extend the
analysis and replace the original system of Perelson et al. [39]
by an equivalent fractional-order differential model of HIV
infection of CD4+ T cells that consists of three equations:

𝐷
𝛼
1
𝐻 = 𝑠 − 𝜇

𝐻
𝐻 + 𝑟𝐻(1 −

𝐻 + 𝐼

𝐻max
) − 𝑘
1
𝑉𝐻,

𝐷
𝛼
2
𝐼 = 𝑘


1
𝑉𝐻 − 𝜇

𝐼
𝐼,

𝐷
𝛼
3
𝑉 = 𝑀𝜇

𝑏
𝐼 − 𝑘
1
𝑉𝐻 − 𝜇

𝑉
𝑉,

0.5 < 𝛼
𝑖
≤ 1, 𝑖 = 1, 2, 3.

(16)

Here𝐻 = 𝐻(𝑡) represents the concentration of healthy CD4+
T cells at time 𝑡, 𝐼 = 𝐼(𝑡) represents the concentration of
infected CD4+ T cells, and 𝑉 = 𝑉(𝑡) is the concentration
of free HIV at time 𝑡. In this system, the logistic growth of

the healthy CD4+ T-cells is (1 − ((𝐻 + 𝐼)/𝐻max)), and the
proliferation of infected cells is neglected. The parameter 𝑠 is
the source of CD4+ T cells from precursors, 𝜇

𝐻
is the natural

death rate of CD4+ T cells (𝜇
𝐻
𝐻max > 𝑠, cf. [39, page 85]),

𝑟 is their growth rate (thus, 𝑟 > 𝜇
𝐻
in general), and 𝐻max is

their carrying capacity. The parameter 𝑘
1
represents the rate

of infection of T cells with free virus. 𝑘
1
is the rate at which

infected cells become actively infected. 𝜇
𝐼
is a blanket death

term for infected cells to reflect the assumption that we do not
initially know whether the cells die naturally or by bursting.
In addition, 𝜇

𝑏
is the lytic death rate for infected cells. Since

𝑀 viral particles are released by each lysing cell, this term is
multiplied by the parameter𝑀 to represent the source for free
virus (assuming a one-time initial infection). Finally,𝜇

𝑉
is the

loss rate of virus. The initial conditions for infection by free
virus are𝐻(0) = 𝐻

0
, 𝐼(0) = 𝐼

0
, and 𝑉(0) = 𝑉

0
.

Theorem 6. According to Remark 3 and the fact that 𝑠 ≥ 0,
then the system (16) has a unique solution (𝐻, 𝐼, 𝑉)

𝑇 which
remains in R3

+
and bounded by𝐻max; [11].

3.1. Equilibria and Local Stability of Model (16). To evaluate
the equilibrium points of system (16), we put 𝐷𝛼1𝐻(𝑡) =

𝐷
𝛼
2
𝐼(𝑡) = 𝐷

𝛼
3
𝑉(𝑡) = 0. Then the infection-free equilibrium

point (uninfected steady state) is E∗
0

= (𝐻
0
, 0, 0), and

endemic equilibrium point (infected steady state) is E∗
+

=

(𝐻
∗
, 𝐼
∗
, 𝑉
∗
), where

𝐻
∗

=

𝜇
𝑉
𝜇
𝐼

𝑘


1
𝑀𝜇
𝑏
− 𝑘
1
𝜇
𝐼

, 𝐼
∗

=

𝑘


1
𝐻
∗
𝑉
∗

𝜇
𝐼

,

𝑉
∗

=

𝜇
𝐼
[(𝑠 + (𝑟 − 𝜇

𝐻
)𝐻
∗
)𝐻max − 𝑟𝐻

∗2

]

𝐻
∗
[𝑘


1
𝑟𝐻
∗
− 𝑘
1
𝜇
𝐼
𝐻max]

.

(17)

The Jacobian matrix 𝐽(E∗
0
) for system (16) evaluated at the

uninfected steady state E∗
0
is then given by

𝐽 (E
∗

0
)

= (

−𝜇
𝐻
+ 𝑟 − 2𝑟𝐻

0

𝐻max

−𝑟𝐻
0

𝐻max
−𝑘
1
𝐻
0

0 −𝜇
𝐼

𝑘


1
𝐻
0

0 𝑀𝜇
𝑏

− (𝑘
1
𝐻
0
+ 𝜇
𝑉
)

).

(18)

Let us introduce the following definition and assumption to
ease the analysis.

Definition 7. The threshold parameter R∗
0
(the minimum

infection-free parameter) is the parameter that has the
property that ifR∗

0
< 1, then the endemic infected state does

not exist, while ifR∗
0
> 1, the endemic infected state persists,

where

R
∗

0
=

𝑘


1
𝜇
𝑏
𝑀𝐻
0

𝜇
𝐼
(𝜇
𝑉
+ 𝑘
1
𝐻
0
)

. (19)
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We also assume that

𝐻
0
=

{𝑟 − 𝜇
𝐻
+ [(𝑟 − 𝜇

𝐻
)
2

+ 4𝑟𝑠𝐻
−1

max]
1/2

}

2𝑟𝐻
−1

max
.

(20)

The uninfected steady state is asymptotically stable if all of the
eigenvalues𝜆 of the Jacobianmatrix 𝐽(E∗

0
), given by (18), have

negative real parts. The characteristic equation det(𝐽(E
0
) −

𝐼) = 0 becomes

(𝜆 + 𝜇
𝐻
− 𝑟 +

2𝑟𝐻
0

𝐻max
) (𝜆
2

+ 𝐵𝜆 + 𝐶) = 0, (21)

where 𝐵 = 𝜇
𝐼
+𝑘
𝐼
𝐻
0
+𝜇
𝑉
and𝐶 = 𝜇

𝐼
(𝑘
1
𝐻
0
+𝜇
𝑉
)−𝑘


1
𝜇
𝑏
𝑀𝐻
0
.

Hence, the three roots of the characteristic equation (21) are

𝜆
1
= −𝜇
𝐻
+ 𝑟 −

𝑟𝐻
0

𝐻max
≡ −√(𝑟 − 𝜇

𝐻
)
2

+ 4𝑟𝑠𝐻
−1

max < 0,

𝜆
2,3

=

1

2

[−𝐵 ± √𝐵
2
− 4𝐶] .

(22)

Proposition 8. IfR∗
0
≡ (𝑘


1
𝜇
𝑏
𝑀𝐻
0
)/𝜇
𝐼
(𝜇
𝑉
+𝑘
1
𝐻
0
) < 1, then

𝐶 > 0 and the three roots of the characteristic equation (21)will
have negative real parts.

Corollary 9. In case of uninfected steady state E∗
0
, one has

three cases.

(i) If R∗
0

< 0, the uninfected state is asymptotically
stable and the infected steady state E

+
does not exist

(unphysical).

(ii) IfR∗
0
= 1, then 𝐶 = 0, and from (21) implies that one

eigenvalue 𝜆 = 0 and the remaining two eigenvalues
have negative real parts. The uninfected and infected
steady states collide, and there is a transcritical bifur-
cation.

(iii) IfR∗
0
> 1, then 𝐶 < 0, and thus at least one eigenvalue

will be positive real root. Thus, the uninfected state
E
0
is unstable, and the endemically infected state E∗

+

emerges.

To study the local stability of the positive infected steady
states E∗

+
for R∗

0
> 1, we consider the linearized system of

(16) at E∗
+
. The Jacobian matrix at E∗

+
becomes

𝐽 (E
∗

+
) =

(

(

−𝐿
∗

−𝑟𝐻
∗

𝐻max
−𝑘
1
𝐻
∗

𝑘


1
𝑉
∗

−𝜇
𝐼

𝑘


1
𝐻
∗

𝑘
1
𝑉
∗

𝑀𝜇
𝑏

− (𝑘
1
𝐻
∗
+ 𝜇
𝑉
)

)

)

. (23)

Here

𝐿
∗

= −[𝜇
𝐻
− 𝑟 + 𝑘

1
𝑉
∗

+

𝑟 (2𝐻
∗
+ 𝐼
∗
)

𝐻max
] . (24)

Then the characteristic equation of the linearized system is

𝑃 (𝜆) = 𝜆
3

+ 𝑎
1
𝜆
2

+ 𝑎
2
𝜆 + 𝑎
3
= 0, (25)

𝑎
1
= 𝜇
𝐼
+ 𝜇
𝑉
+ 𝑘
1
𝐻
∗

+ 𝐿
∗

,

𝑎
2
= 𝐿
∗

(𝜇
𝐼
+ 𝜇
𝑉
+ 𝑘
1
𝐻
∗

) + 𝜇
𝐼
(𝜇
𝑉
+ 𝑘
1
𝐻
∗

)

− 𝑘
2

1
𝐻
∗

𝑉
∗

− 𝑘


1
𝐻
∗

(𝑀𝜇
𝑏
−

𝑟𝑉
∗

𝐻max
) ,

𝑎
3
= 𝑘


1
𝐻
∗

[𝑘
1
𝑀𝜇
𝑏
𝑉
∗

−

𝑟𝜇
𝑉
𝑉
∗

𝐻max
− 𝐿
∗

𝑀𝜇
𝑏
]

+ 𝐿
∗

𝜇
𝐼
(𝜇
𝑉
+ 𝑘
1
𝐻
∗

) − 𝜇
𝐼
𝑘
2

1
𝐻
∗

𝑉
∗

.

(26)

The infected steady state E∗
+
is asymptotically stable if all of

the eigenvalues have negative real parts. This occurs if and
only if Routh-Hurwitz conditions are satisfied; that is, 𝑎

1
> 0,

𝑎
3
> 0, and 𝑎

1
𝑎
2
> 𝑎
3
.

4. Implicit Euler’s Scheme for FODEs

Since most of the fractional-order differential equations do
not have exact analytic solutions, approximation and numer-
ical techniques must be used. Several numerical methods
have been proposed to solve the fractional-order differential
equations [18, 42, 43]. In addition,most of resulting biological
systems are stiff. (One definition of the stiffness is that the
global accuracy of the numerical solution is determined by
stability rather than local error, and implicit methods are
more appropriate for it.) The stiffness often appears due to
the differences in speed between the fastest and slowest
components of the solutions and stability constraints. In
addition, the state variables of these types of models are
very sensitive to small perturbations (or changes) in the
parameters occur in the model. Therefore, efficient use of a
reliable numerical method that based in general on implicit
formulae for dealing with stiff problems is necessary.

Consider biological models in the form of a system of
FODEs of the form

𝐷
𝛼

𝑋(𝑡) = 𝐹 (𝑡, 𝑋 (𝑡) ,P) , 𝑡 ∈ [0, 𝑇] , 0 < 𝛼 ≤ 1,

𝑋 (0) = 𝑋
0
.

(27)

Here 𝑋(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇, P is the set of param-

eters appear in themodel, and𝐹(𝑡, 𝑋(𝑡)) satisfies the Lipschitz
condition

‖𝐹 (𝑡, 𝑋 (𝑡) ,P) − 𝐹 (𝑡, 𝑌 (𝑡) ,P)‖ ≤ 𝐾 ‖𝑋 (𝑡) − 𝑌 (𝑡)‖ ,

𝐾 > 0,

(28)

where 𝑌(𝑡) is the solution of the perturbed system.

Theorem10. Problem (27) has a unique solution provided that
the Lipschitz condition (28) is satisfied and𝐾𝑇

𝛼
/Γ(𝛼 + 1) < 1.

Proof. Using the definitions of Section 1, we can apply a
fractional integral operator to the differential equation (27)
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and incorporate the initial conditions, thus converting the
equation into the equivalent equation

𝑋 (𝑡) = 𝑋 (0) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐹 (𝑠, 𝑋 (𝑠) ,P) 𝑑𝑠 (29)

which also is a Volterra equation of the second kind. Define
the operatorL, such that

L𝑋 (𝑡) = 𝑋 (0) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐹 (𝑠, 𝑋 (𝑠) ,P) 𝑑𝑠.

(30)

Then, we have

‖L𝑋 (𝑡) −L𝑌 (𝑡)‖

≤

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

‖𝐹 (𝑠, 𝑋 (𝑠) ,P) − 𝐹 (𝑠, 𝑌 (𝑠) ,P)‖ 𝑑𝑠

≤

𝐾

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 sup
𝑠∈[0,𝑇]

|𝑋 (𝑠) − 𝑌 (𝑠)| 𝑑𝑠

≤

𝐾

Γ (𝛼)

‖𝑋 − 𝑌‖∫

𝑡

0

𝑠
𝛼−1

𝑑𝑠

≤

𝐾

Γ (𝛼)

‖𝑋 − 𝑌‖𝑇
𝛼

.

(31)

Thus for𝐾𝑇
𝛼
/Γ(𝛼 + 1) < 1, we have

‖L𝑋 (𝑡) −L𝑌 (𝑡)‖ ≤ ‖𝑋 − 𝑌‖ . (32)

This implies that our problem has a unique solution.

However, converted Volterra integral equation (29) is
with a weakly singular kernel, such that a regularization is
not necessary any more. It seems that there exists only a very
small number of software packages for nonlinear Volterra
equations. In our case the kernel may not be continuous,
and therefore the classical numerical algorithms for the
integral part of (29) are unable to handle the solution of
(27). Therefore, we implement the implicit Euler’s scheme to
approximate the fractional-order derivative.

Given model (27) and mesh points T = {𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑁
},

such that 𝑡
0
= 0 and 𝑡

𝑁
= 𝑇. Then a discrete approximation

to the fractional derivative can be obtained by a simple
quadrature formula, using the Caputo fractional derivative
(3) of order 𝛼, 0 < 𝛼 ≤ 1, and using implicit Euler’s
approximation as follows (see [44]):

𝐷
𝛼

∗
𝑥
𝑖
(𝑡
𝑛
)

=

1

Γ (1 − 𝛼)

∫

𝑡

0

𝑑𝑥
𝑖
(𝑠)

𝑑𝑠

(𝑡
𝑛
− 𝑠)
−𝛼

𝑑𝑠

≈

1

Γ (1 − 𝛼)

𝑛

∑

𝑗=1

∫

𝑗ℎ

(𝑗−1)ℎ

[

𝑥
𝑗

𝑖
− 𝑥
𝑗−1

𝑖

ℎ

+ 𝑂 (ℎ)] (𝑛ℎ − 𝑠)
−𝛼

𝑑𝑠

=

1

(1 − 𝛼) Γ (1 − 𝛼)

×

𝑛

∑

𝑗=1

{[

𝑥
𝑗

𝑖
− 𝑥
𝑗−1

𝑖

ℎ

+ 𝑂 (ℎ)]

× [(𝑛 − 𝑗 + 1)
1−𝛼

− (𝑛 − 𝑗)
1−𝛼

]} ℎ
1−𝛼

=

1

(1 − 𝛼) Γ (1 − 𝛼)

1

ℎ
𝛼

×

𝑛

∑

𝑗=1

[𝑥
𝑗

𝑖
− 𝑥
𝑗−1

𝑖
] [(𝑛 − 𝑗 + 1)

1−𝛼

− (𝑛 − 𝑗)
1−𝛼

]

+

1

(1 − 𝛼) Γ (1 − 𝛼)

×

𝑛

∑

𝑗=1

[𝑥
𝑗

𝑖
− 𝑥
𝑗−1

𝑖
] [(𝑛 − 𝑗 + 1)

1−𝛼

− (𝑛 − 𝑗)
1−𝛼

]𝑂 (ℎ
2−𝛼

) .

(33)

Setting

G (𝛼, ℎ) =

1

(1 − 𝛼) Γ (1 − 𝛼)

1

ℎ
𝛼
, 𝜔

𝛼

𝑗
= 𝑗
1−𝛼

− (𝑗 − 1)
1−𝛼

,

(where 𝜔
𝛼

1
= 1) ,

(34)

then the first-order approximation method for the compu-
tation of Caputo’s fractional derivative is then given by the
expression

𝐷
𝛼

∗
𝑥
𝑖
(𝑡
𝑛
) = G (𝛼, ℎ)

𝑛

∑

𝑗=1

𝜔
𝛼

𝑗
(𝑥
𝑛−𝑗+1

𝑖
− 𝑥
𝑛−𝑗

𝑖
) + 𝑂 (ℎ) . (35)

From the analysis and numerical approximation, we also
arrive at the following proposition.

Proposition 11. The presence of a fractional differential order
in a differential equation can lead to a notable increase in
the complexity of the observed behaviour, and the solution is
continuously depends on all the previous states.

4.1. Stability and Convergence. We here prove that the
fractional-order implicit difference approximation (35) is
unconditionally stable. It follows then that the numerical
solution converges to the exact solution as ℎ → 0.

In order to study the stability of the numerical method,
let us consider a test problem of linear scaler fractional
differential equation

𝐷
𝛼

∗
𝑢 (𝑡) = 𝜌

0
𝑢 (𝑡) + 𝜌

1
, 𝑈 (0) = 𝑈

0
, (36)

such that 0 < 𝛼 ≤ 1, and 𝜌
0
< 0, 𝜌

1
> 0 are constants.
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Figure 1: Numerical simulations of the FODEs model (5) when 𝛼 = 0.75 and 𝛼 = 0.95 with (𝑎 = 𝑟
1
= 𝑟
2
= 1; 𝑑

1
= 0.3; 𝑑

2
= 0.7; 𝑘

1
= 0.3;

𝑘
2
= 0.7) and when 𝑑

1
= 0.7; 𝑑

2
= 0.3. The system converges to the stable steady statesE

1
,E
2
. The fractional derivative damps the oscillation

behavior.

Theorem 12. The fully implicit numerical approximation (35),
to test problem (36) for all 𝑡 ≥ 0, is consistent and uncon-
ditionally stable.

Proof. We assume that the approximate solution of (36) is of
the form 𝑢(𝑡

𝑛
) ≈ 𝑈
𝑛
≡ 𝜁
𝑛
, and then (36) can be reduced to

(1 −

𝜌
0

G
𝛼,ℎ

)𝜁
𝑛

= 𝜁
𝑛−1

+

𝑛

∑

𝑗=2

𝜔
(𝛼)

𝑗
(𝜁
𝑛−𝑗

− 𝜁
𝑛−𝑗+1

) +

𝜌
1

G
𝛼,ℎ

, 𝑛 ≥ 2

(37)

or

𝜁
𝑛
=

𝜁
𝑛−1

+ ∑
𝑛

𝑗=2
𝜔
(𝛼)

𝑗
(𝜁
𝑛−𝑗

− 𝜁
𝑛−𝑗+1

) + 𝜌
1
/G
𝛼,ℎ

(1 − (𝜌
0
/G
𝛼,ℎ
))

, 𝑛 ≥ 2.

(38)

Since (1 − (𝜌
0
/G
𝛼,ℎ
)) ≥ 1 for allG

𝛼,ℎ
, then

𝜁
1
≤ 𝜁
0
, (39)

𝜁
𝑛
≤ 𝜁
𝑛−1

+

𝑛

∑

𝑗=2

𝜔
(𝛼)

𝑗
(𝜁
𝑛−𝑗

− 𝜁
𝑛−𝑗+1

) , 𝑛 ≥ 2. (40)

Thus, for 𝑛 = 2, the previous inequality implies

𝜁
2
≤ 𝜁
1
+ 𝜔
(𝛼)

2
(𝜁
0
− 𝜁
1
) . (41)

Using the relation (39) and the positivity of the coefficients
𝜔
2
, we get

𝜁
2
≤ 𝜁
1
. (42)

Repeating the process, we have from (40)

𝜁
𝑛
≤ 𝜁
𝑛−1

+

𝑛

∑

𝑗=2

𝜔
(𝛼)

𝑗
(𝜁
𝑛−𝑗

− 𝜁
𝑛−𝑗+1

) ≤ 𝜁
𝑛−1

, (43)
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Figure 2: Numerical simulations of the FODEs model (10) when 𝑠 = 0.1181, 𝜔 = 0.1184, 𝜃 = 0.1747, 𝑟 = 0.636, and 𝑏 = 0.002. 𝛼
1
= 𝛼
2
=

1, 0.9, 0.7.The endemic stateE
2
is locally asymptotically stable whenR

0
= 𝑎𝜃/𝜎 > 1.The fractional derivative damps the oscillation behavior.

since each term in the summation is negative. Thus 𝜁
𝑛

≤

𝜁
𝑛−1

≤ 𝜁
𝑛−2

≤ ⋅ ⋅ ⋅ ≤ 𝜁
0
. With the assumption that 𝜁

𝑛
= |𝑈
𝑛
| ≤

𝜁
0
= |𝑈
0
|, which entails ‖𝑈𝑛‖ ≤ ‖𝑈

0
‖, we have stability.

Of course this numerical technique can be used both for
linear and for nonlinear problems, and it may be extended
to multiterm FODEs. For more details about stability and
convergence of the fractional Euler method, we refer to [19,
45].

4.2. Numerical Simulations. We employed the implicit Euler’s
scheme (35) to solve the resulting biological systems of
FODEs (5), (10), and (16). Interesting numerical simulations
of the fractional tumor-immune models (5) and (10), with
step size ℎ = 0.05 and 0.5 < 𝛼 ≤ 1 and parameters values
given in the captions, are displayed in Figures 1, 2, and 3. The

equilibrium points (for infection-free and endemic cases) are
the same in both integer-order (when 𝛼 = 1) and fractional-
order (𝛼 < 1) models. We notice that, in the endemic steady
states, the fractional-order derivative damps the oscillation
behavior. From the graphs, we can see that FODEs have rich
dynamics and are better descriptors of biological systems
than traditional integer-order models.

The numerical simulations for the HIV FODEmodel (16)
(with parameter values given in the captions) are displayed in
Figure 4.We note that the solution of themodel, with various
values of 𝛼, continuously depends on the time-fractional
derivative but arrives to the equilibriumpoints.The displayed
solutions, in the figure, confirm that the fractional order of
the derivative plays the role of time delay in the system. We
should also note that although the equilibrium points are
the same for both integer-order and fractional-order models,
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Figure 3: Numerical simulations of the FODEs model (10) when 𝑠 = 0.1181, 𝜔 = 0.1184, 𝜃 = 0.3747, 𝑟 = 1.636, and 𝑏 = 0.002. 𝛼
1
= 𝛼
2
=

1, 0.9, 0.7. The infection-free steady state E
0
is locally asymptotically stable whenR

0
= 𝑎𝜃/𝜎 < 1.

the solution of the fractional order model tends to the fixed
point over a longer period of time.

5. Conclusions

In fact, fractional-order differential equations are generaliza-
tions of integer-order differential equations. Using fractional-
order differential equations can help us to reduce the errors
arising from the neglected parameters in modeling biological
systems withmemory and systems distributed parameters. In
this paper, we presented a class of fractional-order differential
models of biological systems with memory to model the
interaction of immune system with tumor cells and with
HIV infection of CD4+ T cells. The models possess non-
negative solutions, as desired in any population dynamics.
We obtained the threshold parameterR

0
that represents the

minimum tumor-clearance parameter orminimum infection
free for each model.

We provided unconditionally stable numerical technique,
using the Caputo fractional derivative of order 𝛼 and implicit
Euler’s approximation, for the resulting system. The numer-
ical technique is suitable for stiff problems. The solution
of the system at any time 𝑡

∗ is continuously depends on
all the previous states at 𝑡 ≤ 𝑡

∗. We have seen that the
presence of the fractional differential order leads to a notable
increase in the complexity of the observed behaviour and play
the role of time lag (or delay term) in ordinary differential
model. We have obtained stability conditions for disease-
free equilibrium and nonstability conditions for positive
equilibria. We should also mention that one of the basic
reasons of using fractional-order differential equations is that
fractional-order differential equations are, at least, as stable
as their integer-order counterpart. In addition, the presence
of a fractional differential order in a differential equation can
lead to a notable increase in the complexity of the observed
behaviour, and the solution continuously depends on all
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Figure 4: Numerical simulations of the FODEs model (16) when 𝑠 = 20 day−1mm−3, 𝜇
𝐻
= 0.02 day−1, 𝜇

𝐼
= 0.26 day−1, 𝜇

𝑏
= 0.24 day−1,

𝜇
𝑉
= 2.4 day−1, 𝑘

1
= 2.4 × 10

−5mm3 day−1, 𝑘
1
= 2 × 10

−5mm3 day−1, 𝑟 = 0.3 day−1,𝐻max = 1500mm−3, and𝑀 = 1400. The trajectories of
the system approach to the steady state E∗

+
.

the previous states. The analysis can be extended to other
models related to the immune response systems.
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[17] V. D. Djordjević, J. Jarić, B. Fabry, J. J. Fredberg, and D.
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