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The purpose of this paper is to investigate a delay-dependent robust synchronization analysis for coupled stochastic discrete-time
neural networks with interval time-varying delays in networks coupling, a time delay in leakage term, and parameter uncertainties.
Based on the Lyapunov method, a new delay-dependent criterion for the synchronization of the networks is derived in terms of
linear matrix inequalities (LMIs) by constructing a suitable Lyapunov-Krasovskii’s functional and utilizing Finsler’s lemma without
free-weighting matrices. Two numerical examples are given to illustrate the effectiveness of the proposed methods.

1. Introduction

In recent years, the problem of synchronization of coupled
neural networkswhich is one of hot research fields of complex
networks has been a challenging issue due to its potential
applications such as physics, information sciences, biological
systems, and so on. Here, complex networks, which are a set
of interconnected nodes with specific dynamics, have been
studied from various fields of science and engineering such
as the World Wide Web, social networks, electrical power
grids, global economic markets, and so on. Many mathe-
matical models were proposed to describe various complex
networks [1, 2]. Also, in the real applications of systems,
there exists naturally time delay due to the finite information
processing speed and the finite switching speed of amplifiers.
It is well known that time delay often causes undesirable
dynamic behaviors such as performance degradation and
instability of the systems. So, some sufficient conditions for
synchronization of coupled neural networks with time delay
have been proposed in [3–5]. Moreover, the synchronization

of delayed systems was applied in practical systems such as
secure communication [6]. Furthermore, these days, most
systems use digital computers (usually microprocessor or
microcontrollers) with the necessary input/output hardware
to implement the systems. The fundamental character of
the digital computer is that it takes compute answers at
discrete steps. Therefore, discrete-time modeling with time
delay plays an important role in many fields of science and
engineering applications. In this regard, various approaches
to synchronization stability criterion for discrete-time com-
plex networks with time delay have been investigated in the
literature [7–9].

On the other hand, in implementation of many practical
systems such as aircraft, chemical and biological systems,
and electric circuits, there exist occasionally stochastic per-
turbations. It is not less important than the time delay as a
considerable factor affecting dynamics in the fields of science
and engineering applications. Therefore, the study on the
problems for various forms of stochastic systems with time-
delay has been addressed. For more details, see the literature
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[10–13] and references therein. Furthermore, on the problem
of synchronization of coupled stochastic neural networks
with time delay, various researches have been conducted [14–
17]. Li and Yue [14] studied the synchronization stability
problem for a class of complex networks with Markovian
jumping parameters and mixed time delays. The model con-
sidered in [14] has stochastic coupling terms and stochastic
disturbances to reflect more realistic dynamical behaviors
of the complex networks that are affected by noisy envi-
ronment. In [15], by utilizing novel Lyapunov-Krasovskii’s
functional with both lower and upper delay bounds, the
synchronization criteria for coupled stochastic discrete-time
neural networks with mixed delays were presented. Tang and
Fang [16] derived several sufficient conditions for the syn-
chronization of delayed stochastically coupled fuzzy cellular
neural networks with mixed delays and uncertain hybrid
coupling based on adaptive control technique and some
stochastic analysis methods. In [17], by using Kronecker
product as an effective tool, robust synchronization problem
of coupled stochastic discrete-time neural networks with
time-varying delay was investigated. Moreover, Song [18–
20] addressed synchronization problem for the array of
asymmetric, chaotic, and coupled connected neural networks
with time-varying delay or nonlinear coupling. Also, in [21],
robust exponential stability analysis of uncertain delayed
neural networks with stochastic perturbation and impulse
effects was investigated.

Very recently, a time delay in leakage term of the systems
is being put to use in the problem of stability for neural
networks as a considerable factor affecting dynamics for
the worse in the systems [22, 23]. Li et al. [22] studied
the existence and uniqueness of the equilibrium point of
recurrent neural networks with time delays in the leak-
age term. By use of the topological degree theory, delay-
dependent stability conditions of neural networks of neutral
type with time delays in the leakage term were proposed in
[23]. Unfortunately, to the best of authors’ knowledge, delay-
dependent synchronization analysis of coupled stochastic
discrete-time neural networks with time-varying delay in
network coupling and leakage delay has not been investigated
yet. Thus, by attempting the synchronization analysis for the
model of coupled stochastic discrete-time neural networks
with time delay in the leakage term, the model for coupled
neural networks and its applications are closed to the practical
networks.Here, delay-dependent analysis has been paidmore
attention than delay-independent one because the sufficient
conditions for delay-dependent analysis make use of the
information on the size of time delay [24].That is, the former
is generally less conservative than the latter.

Motivated by the above discussions, the problem of
a new delay-dependent robust synchronization criterion
for coupled stochastic discrete-time neural networks with
interval time-varying delays in network coupling, the time
delay in leakage term, and parameter uncertainties is consid-
ered for the first time. The coupled stochastic discrete-time
neural networks are represented as a simple mathematical
model by the use of Kronecker product technique. Then, by
construction of a suitable Lyapunov-Krasovskii’s functional
and utilization of Finsler’s lemma without free-weighting

matrices, a new synchronization criterion is derived in terms
of LMIs.The LMIs can be formulated as convex optimization
algorithms which are amenable to computer solution [25].
In order to utilize Finsler’s lemma as a tool of getting
less conservative synchronization criteria on the number of
decision variables, it should be noted that a new zero equality
from the constructed mathematical model is devised. The
concept of scaling transformation matrix will be utilized in
deriving zero equality of themethod. In [26], the effectiveness
of Finsler’s lemma was illustrated by the improved passivity
criteria of uncertain neural networks with time-varying
delays. Finally, two numerical examples are included to show
the effectiveness of the proposed method.

Notation. R𝑛 is the 𝑛-dimensional Euclidean space, andR𝑚×𝑛
denotes the set of all 𝑚 × 𝑛 real matrices. For symmetric
matrices𝑋 and𝑌,𝑋 > 𝑌 (resp.,𝑋 ≥ 𝑌)means that thematrix
𝑋 − 𝑌 is positive definite (resp., nonnegative). 𝑋⊥ denotes a
basis for the null-space of𝑋. 𝐼

𝑛
and 0
𝑛
and 0
𝑚×𝑛

denote 𝑛 × 𝑛
identitymatrix and 𝑛×𝑛 and𝑚×𝑛 zeromatrices, respectively.
‖ ⋅ ‖ refers to the Euclidean vector norm or the induced
matrix norm. 𝜆max(⋅) means the maximum eigenvalue of a
given square matrix. diag{⋅ ⋅ ⋅} denotes the block diagonal
matrix. ⋆ represents the elements below the main diagonal
of a symmetric matrix. Let (Ω,F, {𝐹

𝑡
}
𝑡≥0
,P) be complete

probability space with a filtration {𝐹
𝑡
}
𝑡≥0

satisfying the usual
conditions (i.e., it is right continuous and F

0
contains all

P-pull sets). E{⋅} stands for the mathematical expectation
operator with respect to the given probability measureP.

2. Problem Statements

Consider the following discrete-time delayed neural net-
works:
𝑦 (𝑘 + 1) = (𝐴 + Δ𝐴) 𝑦 (𝑘 − 𝜏) + (𝑊

1
+ Δ𝑊

1
) 𝑔 (𝑦 (𝑘))

+ (𝑊
2
+ Δ𝑊

2
) 𝑔 (𝑦 (𝑘 − ℎ (𝑘))) + 𝑏,

(1)

where 𝑛 denotes the number of neurons in a neural network,
𝑦(⋅) = [𝑦

1
(⋅), . . . , 𝑦

𝑛
(⋅)]
𝑇

∈ R𝑛 is the neuron state vector,
𝑔(⋅) = [𝑔

1
(⋅), . . . , 𝑔

𝑛
(⋅)]
𝑇

∈ R𝑛 denotes the neuron activation
function vector, 𝑏 = [𝑏

1
, . . . , 𝑏

𝑛
]
𝑇

∈ R𝑛 means a constant
external input vector, 𝐴 = diag{𝑎

1
, . . . , 𝑎

𝑛
} ∈ R𝑛×𝑛 (0 <

𝑎
𝑞
< 1, 𝑞 = 1, . . . , 𝑛) is the state feedback matrix, 𝑊

𝑞
∈

R𝑛×𝑛 (𝑞 = 1, 2) are the connection weight matrices, and Δ𝐴
and Δ𝑊

𝑞
(𝑞 = 1, 2) are the parameter uncertainties of the

form

[Δ𝐴, Δ𝑊
1
, Δ𝑊
2
] = 𝐷𝐹 (𝑘) [𝐸

𝑎
, 𝐸
1
, 𝐸
2
] , (2)

where 𝐹(𝑘) is a real uncertain matrix function with Lebesgue
measurable elements satisfying

𝐹
𝑇

(𝑘) 𝐹 (𝑘) ≤ 𝐼. (3)

The delays ℎ(𝑘) and 𝜏 are interval time-varying delays and
leakage delay, respectively, satisfying

0 < ℎ
𝑚
≤ ℎ (𝑘) ≤ ℎ

𝑀
, 0 < 𝜏, (4)

where ℎ
𝑚
and ℎ
𝑀
are positive integers.
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Theneuron activation functions,𝑔
𝑝
(𝑦
𝑝
(⋅)) (𝑝 = 1, . . . , 𝑛),

are assumed to be nondecreasing, bounded, and globally
Lipschitz; that is,

𝑙
−

𝑝
≤

𝑔
𝑝
(𝜉
𝑝
) − 𝑔
𝑝
(𝜉
𝑞
)

𝜉
𝑝
− 𝜉
𝑞

≤ 𝑙
+

𝑝
, ∀𝜉

𝑝
, 𝜉
𝑞
∈ R, 𝜉

𝑝
̸= 𝜉
𝑞
, (5)

where 𝑙−
𝑝
and 𝑙+
𝑝
are constant values.

For simplicity, in stability analysis of the network (1), the
equilibrium point 𝑦∗ = [𝑦

∗

1
, . . . , 𝑦

∗

𝑛
]
𝑇 is shifted to the origin

by the utilization of the transformation𝑦(⋅) = 𝑦(⋅)−𝑦∗, which
leads the network (1) to the following form:

𝑦 (𝑘 + 1) = (𝐴 + Δ𝐴) 𝑦 (𝑘 − 𝜏) + (𝑊
1
+ Δ𝑊

1
) 𝑔 (𝑦 (𝑘))

+ (𝑊
2
+ Δ𝑊

2
) 𝑔 (𝑦 (𝑘 − ℎ (𝑘))) ,

(6)

where 𝑦(⋅) = [𝑦
1
(⋅), . . . , 𝑦

𝑛
(⋅)]
𝑇

∈ R𝑛 is the state vector
of the transformed network, and 𝑔(𝑦(⋅)) = [𝑔

1
(𝑦
1
(⋅)), . . . ,

𝑔
𝑛
(𝑦
𝑛
(⋅))]
𝑇 is the transformed neuron activation function

vector with 𝑔
𝑞
(𝑦
𝑞
(⋅)) = 𝑔

𝑞
(𝑦
𝑞
(⋅) + 𝑦

∗

𝑞
) − 𝑔
𝑞
(𝑦
∗

𝑞
) (𝑞 = 1, . . . , 𝑛)

satisfies, from (5), 𝑙−
𝑝
≤ 𝑔
𝑝
(𝜉
𝑝
)/𝜉
𝑝
≤ 𝑙
+

𝑝
, ∀𝜉
𝑝

̸= 0, which is
equivalent to

[𝑔
𝑝
(𝑦
𝑝
(𝑘)) − 𝑙

−

𝑝
𝑦
𝑝
(𝑘)] [𝑔

𝑝
(𝑦
𝑝
(𝑘)) − 𝑙

+

𝑝
𝑦
𝑝
(𝑘)] ≤ 0. (7)

In this paper, a model of coupled stochastic discrete-
time neural networks with interval time-varying delays in
network coupling, leakage delay, and parameter uncertainties
is considered as

𝑦
𝑖
(𝑘 + 1) = (𝐴 + Δ𝐴) 𝑦

𝑖
(𝑘 − 𝜏) + (𝑊

1
+ Δ𝑊

1
) 𝑔 (𝑦
𝑖
(𝑘))

+ (𝑊
2
+ Δ𝑊

2
) 𝑔 (𝑦
𝑖
(𝑘 − ℎ (𝑘)))

+

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑦
𝑗
(𝑘 − ℎ (𝑘)) (1 + 𝜔

1
(𝑘))

+ 𝜎
𝑖
(𝑘, 𝑦
𝑖
(𝑘) , 𝑦

𝑖
(𝑘 − ℎ (𝑘))) 𝜔

2
(𝑘) ,

𝑖 = 1, 2, . . . , 𝑁,

(8)

where 𝑁 is the number of couple nodes, 𝑦
𝑖
(𝑘) = [𝑦

𝑖1
(𝑘),

. . . , 𝑦
𝑖𝑛
(𝑘)]
𝑇

∈ R𝑛 is the state vector of the 𝑖th node, Γ ∈

R𝑛×𝑛 is the constant inner-coupling matrix of nodes, which
describe the individual coupling between the subnetworks,
𝐺 = [𝑔

𝑖𝑗
]
𝑁×𝑁

is the outer-coupling matrix representing
the coupling strength and the topological structure of the
network satisfies the diffusive coupling connections

𝑔
𝑖𝑗
= 𝑔
𝑗𝑖
≥ 0 (𝑖 ̸= 𝑗) ,

𝑔
𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑔
𝑖𝑗

(𝑖, 𝑗 = 1, 2, . . . , 𝑁) ,

(9)

and 𝜔
𝑞
(𝑘) (𝑞 = 1, 2) are 𝑚-dimensional Wiener processes

(Brownian Motion) on (Ω,F, {𝐹
𝑡
}
𝑡≥0
,P) which satisfy

E {𝜔
𝑞
(𝑘)} = 0,

E {𝜔
2

𝑞
(𝑘)} = 1,

E {𝜔
𝑞
(𝑖) 𝜔
𝑞
(𝑗)} = 0 (𝑖 ̸= 𝑗) .

(10)

Here, 𝜔
1
(𝑘) and 𝜔

2
(𝑘), which are mutually independent,

are the coupling strength disturbance and the system noise,
respectively. And the nonlinear uncertainties 𝜎

𝑖
(⋅, ⋅, ⋅) ∈

R𝑛×𝑚 (𝑖 = 1, . . . , 𝑁) are the noise intensity functions satis-
fying the Lipschitz condition and the following assumption:

𝜎
𝑇

𝑖
(𝑘, 𝑦
𝑖
(𝑘) , 𝑦

𝑖
(𝑘 − ℎ (𝑘))) 𝜎

𝑖
(𝑘, 𝑦
𝑖
(𝑘) , 𝑦

𝑖
(𝑘 − ℎ (𝑘)))

≤




𝐻
1
𝑦
𝑖
(𝑘)






2

+




𝐻
2
𝑦
𝑖
(𝑘 − ℎ (𝑘))






2

,

(11)

where 𝐻
𝑞
(𝑞 = 1, 2) are constant matrices with appropriate

dimensions.

Remark 1. According to the graph theory [27], the outer-
coupling matrix 𝐺 is called the negative Laplacian matrix
of undirected graph. A physical meaning of the matrix 𝐺 is
the bilateral connection between node 𝑖 and 𝑗. If the matrix
𝐺 cannot satisfy symmetric, the unidirectional connection
between nodes 𝑖 and 𝑗 is expressed. At this time, the
matrix 𝐺 is called the negative Laplacian matrix of directed
graph. Therefore, new numerical model and strong sufficient
condition guaranteed to the stability for networks are needed.
Moreover, in order to analyze the consensus problem for
multiagent systems, the Laplacian matrix of directed graph
was used [28].
For the convenience of stability analysis for the network (8),
the following Kronecker product and its properties are used.

Lemma 2 (see [29]). Let ⊗ denote the notation of Kronecker
product. Then, the following properties of Kronecker product
are easily established:

(i) (𝛼𝐴) ⊗ 𝐵 = 𝐴 ⊗ (𝛼𝐵),
(ii) (𝐴 + 𝐵) ⊗ 𝐶 = 𝐴 ⊗ 𝐶 + 𝐵 ⊗ 𝐶,
(iii) (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷),
(iv) (𝐴 ⊗ 𝐵)

𝑇

= 𝐴
𝑇

⊗ 𝐵
𝑇.

Let us define
𝑥 (𝑘) = [𝑦

1
(𝑘) , . . . , 𝑦

𝑁
(𝑘)]
𝑇

,

𝑓 (𝑥 (𝑘)) = [𝑔 (𝑦
1
(𝑘)) , . . . , 𝑔 (𝑦

𝑁
(𝑘))]
𝑇

,

𝜎 (𝑡) = [𝜎
1
(⋅, ⋅, ⋅) , . . . , 𝜎

𝑁
(⋅, ⋅, ⋅)]

𝑇

.

(12)

Then, with Kronecker product in Lemma 2, the network (8)
can be represented as
𝑥 (𝑘 + 1) = (𝐼

𝑁
⊗ 𝐴 (𝑘)) 𝑥 (𝑘 − 𝜏) + (𝐼

𝑁
⊗𝑊
1
(𝑘)) 𝑓 (𝑥 (𝑘))

+ (𝐼
𝑁
⊗𝑊
2
(𝑘)) 𝑓 (𝑥 (𝑘 − ℎ (𝑘)))

+ (𝐺 ⊗ Γ) 𝑥 (𝑘 − ℎ (𝑘)) (1 + 𝜔
1
(𝑘)) + 𝜎 (𝑡) 𝜔

2
(𝑡) ,

(13)
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where 𝐴(𝑘) = 𝐴 + 𝐷𝐹(𝑘)𝐸
𝑎
, 𝑊
1
(𝑘) = 𝑊

1
+ 𝐷𝐹(𝑘)𝐸

1
, and

𝑊
2
(𝑘) = 𝑊

2
+ 𝐷𝐹(𝑘)𝐸

2
.

In addition, for stability analysis, (13) can be rewritten as
follows:

𝑥 (𝑘 + 1) = 𝜂 (𝑘) +  (𝑘) 𝜔 (𝑘) , (14)

where

𝜂 (𝑘) = (𝐼
𝑁
⊗ 𝐴) 𝑥 (𝑘 − 𝜏) + (𝐼

𝑁
⊗𝑊
1
) 𝑓 (𝑥 (𝑘))

+ (𝐼
𝑁
⊗𝑊
2
) 𝑓 (𝑥 (𝑘 − ℎ (𝑘))) + (𝐺 ⊗ Γ) 𝑥 (𝑘 − ℎ (𝑘))

+ (𝐼
𝑁
⊗ 𝐷)𝑝 (𝑘) ,

𝑝 (𝑘) = (𝐼
𝑁
⊗ 𝐹 (𝑘)) 𝑞 (𝑘) ,

𝑞 (𝑘) = (𝐼
𝑁
⊗ 𝐸
𝑎
) 𝑥 (𝑘 − 𝜏) + (𝐼

𝑁
⊗ 𝐸
1
) 𝑓 (𝑥 (𝑘))

+ (𝐼
𝑁
⊗ 𝐸
2
) 𝑓 (𝑥 (𝑡 − ℎ (𝑘))) ,

 (𝑘) = [(𝐺 ⊗ Γ) 𝑥 (𝑘 − ℎ (𝑘)) , 𝜎 (𝑘)] ,

𝜔
𝑇

(𝑘) = [𝜔
𝑇

1
(𝑘) , 𝜔

𝑇

2
(𝑘)] .

(15)

The aimof this paper is to investigate the delay-dependent
synchronization stability analysis of the network (14) with
interval time-varying delays in network coupling, leakage
delay, and parameter uncertainties. In order to do this, the
following definition and lemmas are needed.

Definition 3 (see [7]). The network (8) is said to be asymptot-
ically synchronized if the following condition holds:

lim
𝑡→∞






𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)






= 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑁. (16)

Lemma 4 (see [3]). Let 𝑈 = [𝑢
𝑖𝑗
]
𝑁×𝑁

, 𝑃 ∈ R𝑛×𝑛, 𝑥𝑇 = [𝑥
1
,

𝑥
2
, . . . , 𝑥

𝑛
]
𝑇, and 𝑦𝑇 = [𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
]
𝑇. If 𝑈 = 𝑈

𝑇 and each
row sum of 𝑈 is zero, then

𝑥
𝑇

(𝑈 ⊗ 𝑃) 𝑦 = − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
)

𝑇

𝑃 (𝑦
𝑖
− 𝑦
𝑗
) . (17)

Lemma 5 (see [30]). For any constant matrix 0 < 𝑀 = 𝑀
𝑇

∈

R𝑛×𝑛, integers ℎ
𝑚
and ℎ

𝑀
satisfying 1 ≤ ℎ

𝑚
≤ ℎ
𝑀
, and vector

function 𝑥(𝑘) ∈ R𝑛, the following inequality holds:

− (ℎ
𝑀
− ℎ
𝑚
+ 1)

ℎ𝑀

∑

𝑘=ℎ𝑚

𝑥
𝑇

(𝑘)𝑀𝑥 (𝑘)

≤ −(

ℎ𝑀

∑

𝑘=ℎ𝑚

𝑥(𝑘))

𝑇

𝑀(

ℎ𝑀

∑

𝑘=ℎ𝑚

𝑥 (𝑘)) .

(18)

Lemma 6 (see [31] (Finsler’s lemma)). Let 𝜁 ∈ R𝑛,Φ = Φ
𝑇

∈

R𝑛×𝑛, and Υ ∈ R𝑚×𝑛 such that 𝑟𝑎𝑛𝑘(Υ) < 𝑛. The following
statements are equivalent:

(i) 𝜁𝑇Φ𝜁 < 0, ∀Υ𝜁 = 0, 𝜁 ̸= 0,
(ii) Υ⊥𝑇ΦΥ⊥ < 0.

3. Main Results

In this section, a new synchronization criterion for the
network (14) will be proposed. For the sake of simplicity
on matrix representation, 𝑒

𝑖
(𝑖 = 1, . . . , 9) ∈ R9𝑛×𝑛 are

defined as block entry matrices (e.g., 𝑒
2
= [0
𝑛
, 𝐼
𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
,

0
𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
]
𝑇). The notations of several matrices are defined

as follows:

𝜁
𝑇

(𝑘) = [𝑥
𝑇

(𝑘) , 𝑥
𝑇

(𝑘 − 𝜏) , 𝑥
𝑇

(𝑘 − ℎ
𝑚
) , 𝑥
𝑇

(𝑘 − ℎ (𝑘)) ,

𝑥
𝑇

(𝑘 − ℎ
𝑀
) , (𝜂 (𝑘) − 𝑥 (𝑘))

𝑇

, 𝑓
𝑇

(𝑥 (𝑘)) ,

𝑓
𝑇

(𝑥 (𝑘 − ℎ (𝑘))) , 𝑝
𝑇

(𝑘)] ,

𝑧
𝑖𝑗
(𝑘) = 𝑥

𝑖
(𝑘) − 𝑥

𝑗
(𝑘) , 𝑓 (𝑧

𝑖𝑗
(𝑘)) = 𝑓 (𝑥

𝑖
(𝑘)) − 𝑓 (𝑥

𝑗
(𝑘)) ,

𝜂
𝑖𝑗
(𝑘) = 𝜂

𝑖
(𝑘) − 𝜂

𝑗
(𝑘) , 𝑝

𝑖𝑗
(𝑘) = 𝑝

𝑖
(𝑘) − 𝑝

𝑗
(𝑘) ,

𝜁
𝑇

𝑖𝑗
(𝑘) = [𝑧

𝑇

𝑖𝑗
(𝑘) , 𝑧

𝑇

𝑖𝑗
(𝑘 − 𝜏) , 𝑧

𝑇

𝑖𝑗
(𝑘 − ℎ

𝑚
) , 𝑧
𝑇

𝑖𝑗
(𝑘 − ℎ (𝑘)) ,

𝑧
𝑇

𝑖𝑗
(𝑘 − ℎ

𝑀
) , (𝜂
𝑖𝑗
(𝑘) − 𝑧

𝑖𝑗
(𝑘))

𝑇

, 𝑓
𝑇

(𝑧
𝑖𝑗
(𝑘)) ,

𝑓
𝑇

(𝑧
𝑖𝑗
(𝑘 − ℎ (𝑘))) , 𝑝

𝑇

𝑖𝑗
(𝑘)] ,

Υ
𝑖𝑗
= [−𝐼
𝑛
, 𝐴, 0
𝑛
, − (𝑁𝑔

𝑖𝑗
Γ) , 0
𝑛
, −𝐼
𝑛
,𝑊
1
,𝑊
2
, 𝐷] ,

Σ = 𝑃 + ℎ
2

𝑚
𝑅
1
+ (ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
+ 𝜏
2

𝑆
2
,

Ξ
1
= 𝑒
1
𝑃𝑒
𝑇

6
+ 𝑒
6
𝑃𝑒
𝑇

1
+ 𝑒
6
𝑃𝑒
𝑇

6
,

Ξ
2
= 𝑒
1
𝑄
1
𝑒
𝑇

1
− 𝑒
3
(𝑄
1
− 𝑄
2
) 𝑒
𝑇

3
− 𝑒
5
𝑄
2
𝑒
𝑇

5
,

Ξ
3
= 𝑒
6
(ℎ
2

𝑚
𝑅
1
+(ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
) 𝑒
𝑇

6
−(𝑒
1
− 𝑒
3
) 𝑅
1
(𝑒
1
−𝑒
3
)
𝑇

− (𝑒
3
− 𝑒
4
) 𝑅
2
(𝑒
3
− 𝑒
4
)
𝑇

− (𝑒
4
− 𝑒
5
) 𝑅
2
(𝑒
4
− 𝑒
5
)
𝑇

− (𝑒
3
− 𝑒
4
) 𝑇
𝑇

(𝑒
4
− 𝑒
5
)
𝑇

− (𝑒
4
− 𝑒
5
) 𝑇(𝑒
3
− 𝑒
4
)
𝑇

,

Ξ
4
= 𝑒
1
𝑆
1
𝑒
𝑇

1
−𝑒
2
𝑆
1
𝑒
𝑇

2
+𝑒
6
(𝜏
2

𝑆
2
) 𝑒
𝑇

6
−(𝑒
1
− 𝑒
2
) 𝑆
2
(𝑒
1
− 𝑒
2
)
𝑇

,

Ξ
5
= 𝑒
4
(𝑁

𝑁

∑

𝑙=1

𝑔
𝑖𝑙
𝑔
𝑙𝑗
Γ
𝑇

ΣΓ) 𝑒
𝑇

4
+ 𝑒
1
(𝜌𝐻
𝑇

1
𝐻
1
) 𝑒
𝑇

1

+ 𝑒
4
(𝜌𝐻
𝑇

2
𝐻
2
) 𝑒
𝑇

4
,

Ξ
6
= −𝑒
1
(2𝐿
𝑚
𝐷
1
𝐿
𝑝
) 𝑒
𝑇

1
+ 𝑒
1
(𝐿
𝑚
+ 𝐿
𝑝
)𝐷
1
𝑒
𝑇

7

+ (𝑒
1
(𝐿
𝑚
+ 𝐿
𝑝
)𝐷
1
𝑒
𝑇

7
)

𝑇

− 𝑒
7
(2𝐷
1
) 𝑒
𝑇

7

− 𝑒
4
(2𝐿
𝑚
𝐷
2
𝐿
𝑝
) 𝑒
𝑇

4
+ 𝑒
4
(𝐿
𝑚
+ 𝐿
𝑝
)𝐷
2
𝑒
𝑇

8

+ (𝑒
4
(𝐿
𝑚
+ 𝐿
𝑝
)𝐷
2
𝑒
𝑇

8
)

𝑇

− 𝑒
8
(2𝐷
2
) 𝑒
𝑇

8
,

Ξ
7
= −𝑒
9
(𝜖𝐼
𝑛
) 𝑒
𝑇

9
,

Ψ = [0
𝑛
, 𝐸
𝑎
, 0
𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
, 𝐸
1
, 𝐸
2
, 0
𝑛
] .

(19)

Then, themain result of this paper is presented as follows.
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Theorem 7. For given positive integers ℎ
𝑚
, ℎ
𝑀
and 𝜏, diagonal

matrices 𝐿
𝑚
= diag{𝑙−

1
, . . . , 𝑙

−

𝑛
} and 𝐿

𝑝
= diag{𝑙+

1
, . . . , 𝑙

+

𝑛
}, the

network (14) is asymptotically synchronized for ℎ
𝑚
≤ ℎ(𝑘) ≤

ℎ
𝑀
, if there exist positive scalars 𝜌, 𝜖, positive definite matrices

𝑃,𝑄
1
,𝑄
2
,𝑅
1
,𝑅
2
, 𝑆
1
, 𝑆
2
, positive diagonalmatrices𝐷

1
,𝐷
2
, and

any matrix 𝑇 satisfying the following LMIs for 1 ≤ 𝑖 < 𝑗 ≤ 𝑁:

Σ − 𝜌𝐼
𝑛
≤ 0, (20)

[

𝑅
2

𝑇

⋆ 𝑅
2

] ≥ 0, (21)

[

[(𝑗 − 𝑖) Υ
𝑖𝑗
]

⊥

0
9𝑛×𝑛

0
𝑛×8𝑛

𝐼
𝑛

]

𝑇

[

[

[

7

∑

𝑙=1

Ξ
𝑙
𝜖Ψ
𝑇

⋆ −𝜖𝐼
𝑛

]

]

]

× [

[(𝑗 − 𝑖) Υ
𝑖𝑗
]

⊥

0
9𝑛×𝑛

0
𝑛×8𝑛

𝐼
𝑛

] < 0,

(22)

where Σ, Υ
𝑖𝑗
, Ξ
𝑙
(𝑙 = 1, . . . , 7), and Ψ are defined in (19).

Proof. Define a matrix 𝑈 as

𝑈 = [𝑢
𝑖𝑗
]
𝑁×𝑁

=

[

[

[

[

[

[

𝑁 − 1 −1 ⋅ ⋅ ⋅ −1

−1 𝑁 − 1 −1

...
... −1

. . . −1

−1 ⋅ ⋅ ⋅ −1 𝑁 − 1

]

]

]

]

]

]

(23)

and the forward difference of 𝑥(𝑘) and 𝑉(𝑘) as

Δ𝑥 (𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) = 𝜂 (𝑘) − 𝑥 (𝑘) +  (𝑘) 𝜔 (𝑡) ,

Δ𝑉 (𝑘) = 𝑉 (𝑘 + 1) − 𝑉 (𝑘) .

(24)

Let us consider the following Lyapunov-Krasovskii’s func-
tional candidate as

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) + 𝑉

4
(𝑘) , (25)

where

𝑉
1
(𝑘) = 𝑥

𝑇

(𝑘) (𝑈 ⊗ 𝑃) 𝑥 (𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑

𝑠=𝑘−ℎ𝑚

𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑄
1
) 𝑥 (𝑠)

+

𝑘−ℎ𝑚−1

∑

𝑠=𝑘−ℎ𝑀

𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑄
2
) 𝑥 (𝑠) ,

𝑉
3
(𝑘) = ℎ

𝑚

−1

∑

𝑠=−ℎ𝑚

𝑘−1

∑

𝑢=𝑘+𝑠

Δ𝑥
𝑇

(𝑢) (𝑈 ⊗ 𝑅
1
) Δ𝑥 (𝑢)

+ (ℎ
𝑀
− ℎ
𝑚
)

−ℎ𝑚−1

∑

𝑠=−ℎ𝑀

𝑘−1

∑

𝑢=𝑘+𝑠

Δ𝑥
𝑇

(𝑢) (𝑈 ⊗ 𝑅
2
) Δ𝑥 (𝑢) ,

𝑉
4
(𝑘) =

𝑘−1

∑

𝑠=𝑘−𝜏

𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑆
1
) 𝑥 (𝑠)

+ 𝜏

−1

∑

𝑠=−𝜏

𝑘−1

∑

𝑢=𝑘+𝑠

Δ𝑥
𝑇

(𝑢) (𝑈 ⊗ 𝑆
2
) Δ𝑥 (𝑢) .

(26)

The mathematical expectation of Δ𝑉(𝑘) is calculated as
follows:

E {Δ𝑉
1
(𝑘)}

= E {𝑥
𝑇

(𝑘 + 1) (𝑈 ⊗ 𝑃) 𝑥 (𝑘 + 1)

−𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑃) 𝑥 (𝑘)}

= E {(Δ𝑥 (𝑘) + 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) (Δ𝑥 (𝑘) + 𝑥 (𝑘))

−𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑃) 𝑥 (𝑘) }

= E {Δ𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑃) Δ𝑥 (𝑘)

+2Δ𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑃) 𝑥 (𝑘)}

= E {(𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) (𝜂 (𝑘) − 𝑥 (𝑘))

+ ( (𝑘) 𝜔 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) ( (𝑘) 𝜔 (𝑘))

+2(𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) 𝑥 (𝑘)}

= E {(𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) (𝜂 (𝑘) − 𝑥 (𝑘))

+ 𝑥
𝑇

(𝑡 − ℎ (𝑘)) (𝐺 ⊗ Γ)
𝑇

(𝑈 ⊗ 𝑃) (𝐺 ⊗ Γ) 𝑥 (𝑡 − ℎ (𝑘))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ1

+ 𝜎
𝑇

(𝑘) (𝑈 ⊗ 𝑃) 𝜎 (𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω1

+2(𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) 𝑥 (𝑘)} ,

E {Δ𝑉
2
(𝑘)}

= E {𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑄
1
) 𝑥 (𝑘)

− 𝑥
𝑇

(𝑘 − ℎ
𝑚
) (𝑈 ⊗ (𝑄

1
− 𝑄
2
)) 𝑥 (𝑘 − ℎ

𝑚
)

−𝑥
𝑇

(𝑘 − ℎ
𝑀
) (𝑈 ⊗ 𝑄

2
) 𝑥 (𝑘 − ℎ

𝑀
) } ,

E {Δ𝑉
3
(𝑘)}

= E
{

{

{

Δ𝑥
𝑇

(𝑘) (𝑈 ⊗ (ℎ
2

𝑚
𝑅
1
+ (ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
)) Δ𝑥 (𝑘)

− ℎ
𝑚

𝑘−1

∑

𝑠=𝑘−ℎ𝑚

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
1
) Δ𝑥 (𝑠)

− (ℎ
𝑀
− ℎ
𝑚
)

𝑘−ℎ𝑚−1

∑

𝑠=𝑘−ℎ𝑀

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
2
) Δ𝑥 (𝑠)

}

}

}
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= E
{

{

{

(𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ (ℎ
2

𝑚
𝑅
1
+ (ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
))

× (𝜂 (𝑘) − 𝑥 (𝑘))

+ (

𝑥
𝑇

(𝑡 − ℎ (𝑘)) (𝐺 ⊗ Γ)
𝑇

× (𝑈 ⊗ (ℎ
2

𝑚
𝑅
1
+ (ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
))

× (𝐺 ⊗ Γ) 𝑥 (𝑡 − ℎ (𝑘))

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ2

+ 𝜎
𝑇

(𝑘) (𝑈 ⊗ (ℎ
2

𝑚
𝑅
1
+ (ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
)) 𝜎 (𝑘)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω2

− ℎ
𝑚

𝑘−1

∑

𝑠=𝑘−ℎ𝑚

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
1
) Δ𝑥 (𝑠)

− (ℎ
𝑀
− ℎ
𝑚
)

𝑘−ℎ𝑚−1

∑

𝑠=𝑘−ℎ𝑀

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
2
) Δ𝑥 (𝑠)

}

}

}

,

E {Δ𝑉
4
(𝑘)}

= E{𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑆
1
) 𝑥 (𝑘) − 𝑥

𝑇

(𝑘 − 𝜏) (𝑈 ⊗ 𝑆
1
) 𝑥 (𝑘 − 𝜏)

+ Δ𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝜏
2

𝑆
2
) Δ𝑥 (𝑘)

−𝜏

𝑘−1

∑

𝑠=𝑘−𝜏

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑆
2
) Δ𝑥 (𝑠)}

= E{𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑆
1
) 𝑥 (𝑘) − 𝑥

𝑇

(𝑘 − 𝜏) (𝑈 ⊗ 𝑆
1
) 𝑥 (𝑘 − 𝜏)

+ (𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝜏
2

𝑆
2
) (𝜂 (𝑘) − 𝑥 (𝑘))

+ 𝑥
𝑇

(𝑡−ℎ (𝑘)) (𝐺⊗Γ)
𝑇

(𝑈⊗𝜏
2

𝑆
2
) (𝐺⊗Γ) 𝑥 (𝑡 − ℎ (𝑘))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ3

+ 𝜎
𝑇

(𝑘) (𝑈 ⊗ 𝜏
2

𝑆
2
) 𝜎 (𝑘)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω3

−𝜏

𝑘−1

∑

𝑠=𝑘−𝜏

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑆
2
) Δ𝑥 (𝑠)} .

(27)

By Lemmas 4 and 5, the sum terms ofE{Δ𝑉
3
(𝑘)} are bounded

as follows:

− ℎ
𝑚

𝑘−1

∑

𝑠=𝑘−ℎ𝑚

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
1
) Δ𝑥 (𝑠)

≤ −(

𝑘−1

∑

𝑠=𝑘−ℎ𝑚

Δ𝑥 (𝑠))

𝑇

(𝑈 ⊗ 𝑅
1
)(

𝑘−1

∑

𝑠=𝑘−ℎ𝑚

Δ𝑥 (𝑠))

= − ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘) (𝑒
𝑇

1
− 𝑒
𝑇

3
)

𝑇

𝑅
1
(𝑒
𝑇

1
− 𝑒
𝑇

3
) 𝜁
𝑖𝑗
(𝑘) ,

− (ℎ
𝑀
− ℎ
𝑚
)

𝑘−ℎ𝑚−1

∑

𝑠=𝑘−ℎ𝑀

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
2
) Δ𝑥 (𝑠)

(28)

≤ −

[

[

[

[

[

[

[

[

𝑘−ℎ(𝑘)−1

∑

𝑠=𝑘−ℎ𝑀

Δ𝑥 (𝑠)

𝑘−ℎ𝑚−1

∑

𝑠=𝑘−ℎ(𝑘)

Δ𝑥 (𝑠)

]

]

]

]

]

]

]

]

𝑇

[

[

[

[

1

𝛼
𝑘

(𝑈 ⊗ 𝑅
2
) 0

𝑁𝑛

0
𝑁𝑛

1

1 − 𝛼
𝑘

(𝑈 ⊗ 𝑅
2
)

]

]

]

]

×

[

[

[

[

[

[

[

[

𝑘−ℎ(𝑘)−1

∑

𝑠=𝑘−ℎ𝑀

Δ𝑥 (𝑠)

𝑘−ℎ𝑚−1

∑

𝑠=𝑘−ℎ(𝑘)

Δ𝑥 (𝑠)

]

]

]

]

]

]

]

]

= − ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘)

[

[

𝑒
𝑇

4
− 𝑒
𝑇

5

𝑒
𝑇

3
− 𝑒
𝑇

4

]

]

𝑇

×

[

[

[

[

1

𝛼
𝑘

𝑅
2

0
𝑛

0
𝑛

1

1 − 𝛼
𝑘

𝑅
2

]

]

]

]

[

[

𝑒
𝑇

4
− 𝑒
𝑇

5

𝑒
𝑇

3
− 𝑒
𝑇

4

]

]

𝜁
𝑖𝑗
(𝑘) ,

(29)

where𝛼
𝑘
= (ℎ
𝑀
−ℎ(𝑘))(ℎ

𝑀
−ℎ
𝑚
)
−1, which satisfies 0 < 𝛼

𝑘
< 1.

Also, by Theorem 7 in [32], the following inequality for
any matrix 𝑇 holds

[

[

[

[

[

√

1 − 𝛼
𝑘

𝛼
𝑘

𝐼
𝑛

0
𝑛

0
𝑛

−√

𝛼
𝑘

1 − 𝛼
𝑘

𝐼
𝑛

]

]

]

]

]

[

𝑅
2

𝑇

⋆ 𝑅
2

]

×

[

[

[

[

[

√

1 − 𝛼
𝑘

𝛼
𝑘

𝐼
𝑛

0
𝑛

0
𝑛

−√

𝛼
𝑘

1 − 𝛼
𝑘

𝐼
𝑛

]

]

]

]

]

≥ 0,

(30)

which implies

[

[

[

[

1

𝛼
𝑘

𝑅
2

0
𝑛

0
𝑛

1

1 − 𝛼
𝑘

𝑅
2

]

]

]

]

≥ [

𝑅
2

𝑇

⋆ 𝑅
2

] , (31)

then, an upper bound of the sum term (29) of E{Δ𝑉
3
(𝑘)} can

be rebounded as

− (ℎ
𝑀
− ℎ
𝑚
)

𝑘−ℎ𝑚−1

∑

𝑠=𝑘−ℎ𝑀

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
2
) Δ𝑥 (𝑠)

≤ − ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘)

[

[

𝑒
𝑇

4
− 𝑒
𝑇

5

𝑒
𝑇

3
− 𝑒
𝑇

4

]

]

𝑇

[

𝑅
2

𝑇

⋆ 𝑅
2

]

×
[

[

𝑒
𝑇

4
− 𝑒
𝑇

5

𝑒
𝑇

3
− 𝑒
𝑇

4

]

]

𝜁
𝑖𝑗
(𝑘) .

(32)
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Similarly, the sum term of E{Δ𝑉
4
(𝑘)} is bounded as

− 𝜏

𝑘−1

∑

𝑠=𝑘−𝜏

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑆
2
) Δ𝑥 (𝑠)

≤ − ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘) (𝑒
1
− 𝑒
2
) 𝑆
2
(𝑒
1
− 𝑒
2
)
𝑇

𝜁
𝑖𝑗
(𝑘) .

(33)

Also, by properties of Kronecker product in Lemma 2 and
𝑈𝐺 = 𝐺𝑈 = 𝑁𝐺, the terms Θ

𝑞
(𝑞 = 1, 2, 3) in (27) are

calculated as follows:

3

∑

𝑙=1

Θ
𝑙
= 𝑥
𝑇

(𝑡 − ℎ (𝑘)) (𝐺 ⊗ Γ)
𝑇

(𝑈 ⊗ Σ) (𝐺 ⊗ Γ) 𝑥 (𝑡 − ℎ (𝑘))

= 𝑥
𝑇

(𝑡 − ℎ (𝑘)) (𝑁𝐺
𝑇

𝐺 ⊗ Γ
𝑇

ΣΓ) 𝑥 (𝑡 − ℎ (𝑘)) ,

(34)

where Σ is defined in (19), and, if Σ ≤ 𝜌𝐼
𝑛
, then, from (11), the

upper bound of terms Ω
𝑞
(𝑞 = 1, 2, 3) in (27) is calculated as

follows:

3

∑

𝑙=1

Ω
𝑙
= 𝜎
𝑇

(𝑘) (𝑈 ⊗ Σ) 𝜎 (𝑘)

≤ 𝜌 {𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝐻
𝑇

1
𝐻
1
) 𝑥 (𝑘)

+𝑥
𝑇

(𝑡 − ℎ (𝑘)) (𝑈 ⊗ 𝐻
𝑇

2
𝐻
2
) 𝑥 (𝑡 − ℎ (𝑘))} .

(35)

Then, by utilizing Lemma 4, an upper bound of E{Δ𝑉(𝑘) =
∑
4

𝑙=1
Δ𝑉
𝑙
(𝑘)} can be written as follows:

E {Δ𝑉 (𝑘)} ≤ E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘)(

5

∑

𝑙=1

Ξ
𝑙
)𝜁
𝑖𝑗
(𝑘)

}

}

}

. (36)

From (7), for any positive diagonal matrices 𝐷
𝑞
(𝑞 = 1, 2),

the following inequalities hold.

0 ≤ ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘) Ξ
6
𝜁
𝑖𝑗
(𝑘) . (37)

Since the relational expression between 𝑝(𝑘) and 𝑞(𝑘),
𝑝
𝑇

(𝑘)𝑝(𝑘) ≤ 𝑞
𝑇

(𝑘)𝑞(𝑘), holds from the second equality of
the system (14), there exists a positive scalar 𝜖 satisfying the
following inequality:

0 ≤ ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘) (𝜖Ψ

𝑇

Ψ + Ξ
7
) 𝜁
𝑖𝑗
(𝑘) . (38)

From (36)–(38), by S-procedure [25], theE{Δ𝑉(𝑘)} has a new
upper bound as follows:

E {Δ𝑉 (𝑘)} ≤ E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘)(

7

∑

𝑙=1

Ξ
𝑙
+ 𝜖Ψ
𝑇

Ψ)𝜁
𝑖𝑗
(𝑘)

}

}

}

.

(39)

Also, the network (14) with the augmented matrix 𝜁
𝑖𝑗
(𝑘) can

be rewritten as follows:

E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) Υ
𝑖𝑗
𝜁
𝑖𝑗
(𝑘)

}

}

}

= 0
𝑛×1

. (40)

Here, in order to illustrate the process of obtaining (40), let
us define the following:

Λ = [Λ
1
, Λ
2
, . . . , Λ

𝑁
] = [𝑁,𝑁 − 1, . . . , 1] ⊗ 𝐼

𝑛
∈ R
𝑛×𝑁𝑛

.

(41)

By (14), (23), and properties of Kronecker product in
Lemma 2, we have the following zero equality:

0
𝑛×1

= E {Λ (𝑈 ⊗ 𝐴) 𝑥 (𝑘 − 𝜏) + Λ (𝑁𝐺 ⊗ Γ) 𝑥 (𝑘 − ℎ (𝑘))

− Λ (𝑈 ⊗ 𝐼
𝑛
) (𝜂 (𝑘) − 𝑥 (𝑘)) + Λ (𝑈 ⊗𝑊

1
) 𝑓 (𝑥 (𝑘))

+Λ (𝑈 ⊗𝑊
2
) 𝑓 (𝑥 (𝑘 − ℎ (𝑘))) + Λ (𝑈 ⊗ 𝐷) 𝑝 (𝑘)} .

(42)

By Lemma 4, the first term of (42) can be obtained as follows:

Λ (𝑈 ⊗ 𝐴) 𝑥 (𝑘 − 𝜏)

= [𝑁𝐼
𝑛
, . . . , 𝐼

𝑛
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛×𝑁𝑛

(𝑈 ⊗ 𝐴)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁𝑛×𝑁𝑛

[𝑥
1
(𝑘 − 𝜏) , . . . , 𝑥

𝑁
(𝑘 − 𝜏)]

𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁𝑛×1

= − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
)𝐴 (𝑥

𝑖
(𝑘 − 𝜏) − 𝑥

𝑗
(𝑘 − 𝜏))

= ∑

1≤𝑖<𝑗≤𝑁

(Λ
𝑖
− Λ
𝑗
)𝐴𝑧
𝑖𝑗
(𝑘 − 𝜏)

= ∑

1≤𝑖<𝑗≤𝑁

((𝑁 + 1 − 𝑖) 𝐼
𝑛
− (𝑁 + 1 − 𝑗) 𝐼

𝑛
) 𝐴𝑧
𝑖𝑗
(𝑘 − 𝜏)

= ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) 𝐴𝑧
𝑖𝑗
(𝑘 − 𝜏) .

(43)

Similarly, the other terms of (42) are calculated as follows:

Λ (𝑁𝐺 ⊗ Γ) 𝑥 (𝑘 − ℎ (𝑘))

= − ∑

1≤𝑖<𝑗≤𝑁

𝑁𝑔
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
) Γ

× (𝑥
𝑖
(𝑡 − ℎ (𝑘)) − 𝑥

𝑗
(𝑡 − ℎ (𝑘)))

= − ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) (𝑁𝑔
𝑖𝑗
Γ) 𝑧
𝑖𝑗
(𝑘 − ℎ (𝑘)) ,

− Λ (𝑈 ⊗ 𝐼
𝑛
) (𝜂 (𝑘) − 𝑥 (𝑘))

= ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
) 𝐼
𝑛

× ((𝜂
𝑖
(𝑘) − 𝑥

𝑖
(𝑘)) − (𝜂

𝑗
(𝑘) − 𝑥

𝑗
(𝑘)))

= − ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) (𝜂
𝑖𝑗
(𝑘) − 𝑧

𝑖𝑗
(𝑘)) ,
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Λ (𝑈 ⊗𝑊
1
) 𝑓 (𝑥 (𝑘))

= − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
)𝑊
1
(𝑓 (𝑥
𝑖
(𝑘)) − 𝑓 (𝑥

𝑗
(𝑘)))

= ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖)𝑊
1
𝑓 (𝑧
𝑖𝑗
(𝑘)) ,

Λ (𝑈 ⊗𝑊
2
) 𝑓 (𝑥 (𝑘 − ℎ (𝑘)))

= − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
)𝑊
2

× (𝑓 (𝑥
𝑖
(𝑡 − ℎ (𝑘))) − 𝑓 (𝑥

𝑗
(𝑡 − ℎ (𝑘))))

= ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖)𝑊
2
𝑓 (𝑧
𝑖𝑗
(𝑘 − ℎ (𝑘))) ,

Λ (𝑈 ⊗ 𝐷) 𝑝 (𝑘)

= − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
)𝐷 (𝑝

𝑖
(𝑘) − 𝑝

𝑗
(𝑘))

= ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖)𝐷𝑝
𝑖𝑗
(𝑘) .

(44)

Then, (42) can be rewritten as follows:

0
𝑛×1

= E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖)

× [−𝐼
𝑛
, 𝐴, 0
𝑛
, −(𝑁𝑔

𝑖𝑗
Γ) , 0
𝑛
, −𝐼
𝑛
,𝑊
1
,𝑊
2
, 𝐷]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Υ𝑖𝑗

×𝜁
𝑖𝑗
(𝑘)

}

}

}

.

(45)

Therefore, if the zero equality (40) holds, then a synchroniza-
tion condition for the network (14) is

E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘)(

7

∑

𝑙=1

Ξ
𝑙
+ 𝜖Ψ
𝑇

Ψ)𝜁
𝑖𝑗
(𝑘)

}

}

}

< 0 (46)

subject to

E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) Υ
𝑖𝑗
𝜁
𝑖𝑗
(𝑘)

}

}

}

= 0
𝑛×1

. (47)

Here, if inequality (47) holds, then there exists a positive
scalar 𝜀 such that ∑7

𝑙=1
Ξ
𝑙
+ 𝜖Ψ
𝑇

Ψ < −𝜀𝐼
9𝑛
. From (39) and

(47), we have E{Δ𝑉(𝑘)} ≤ E{−𝜀∑
1≤𝑖<𝑗≤𝑁

‖𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)‖
2

}.
Thus, by Lyapunov theorem and Definition 3, it can be
guaranteed that the subnetworks in the coupled discrete-time

neural networks (14) are asymptotically synchronized. Also,
condition (47) is equivalent to the following inequality:

∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘)(

7

∑

𝑙=1

Ξ
𝑙
+ 𝜖Ψ
𝑇

Ψ)𝜁
𝑖𝑗
(𝑘) < 0 (48)

subject to

∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) Υ
𝑖𝑗
𝜁
𝑖𝑗
(𝑘) = 0

𝑛×1
. (49)

Finally, by the use of Lemma 6, condition (49) is equivalent
to the following inequality:

∑

1≤𝑖<𝑗≤𝑁

[(𝑗 − 𝑖) Υ
𝑖𝑗
]

⊥𝑇

(

7

∑

𝑙=1

Ξ
𝑙
+ 𝜖Ψ
𝑇

Ψ)[(𝑗 − 𝑖) Υ
𝑖𝑗
]

⊥

< 0,

(50)

and applying Schur complement [25] leads to

∑

1≤𝑖<𝑗≤𝑁

[

[

[

[

[(𝑗 − 𝑖) Υ
𝑖𝑗
]

⊥𝑇

(

7

∑

𝑙=1

Ξ
𝑙
)[(𝑗 − 𝑖) Υ

𝑖𝑗
]

⊥

⋆

𝜖Ψ[(𝑗 − 𝑖) Υ
𝑖𝑗
]

⊥

−𝜖𝐼
𝑛

]

]

]

]

< 0,

(51)

which can be rewritten by

∑

1≤𝑖<𝑗≤𝑁

[

[(𝑗 − 𝑖) Υ
𝑖𝑗
]

⊥

0
9𝑛×𝑛

0
𝑛×8𝑛

𝐼
𝑛

]

𝑇

[

[

[

7

∑

𝑙=1

Ξ
𝑙
𝜖Ψ
𝑇

⋆ −𝜖𝐼
𝑛

]

]

]

× [

[(𝑗 − 𝑖) Υ
𝑖𝑗
]

⊥

0
9𝑛×𝑛

0
𝑛×8𝑛

𝐼
𝑛

] < 0.

(52)

From inequality (52), if the LMIs (22) are satisfied, then
stability condition (47) holds. This completes our proof.

Remark 8. In order to induce a new zero equality (40), the
matrix Λ in (41) was defined. It is inspired by the concept
of scaling transformation matrix. To reduce the decision
variable, Finsler’s lemma (ii) Υ⊥𝑇ΦΥ⊥ < 0 without free-
weighting matrices was used. At this time, a zero equality is
required. If thematrixΛ is not considered, then the following
description (see only (43) as an example)

{ } (𝑈 ⊗ 𝐴) 𝑥 (𝑘 − 𝜏)

= { } (𝑈 ⊗ 𝐴) [𝑥
1
(𝑘 − 𝜏) , . . . , 𝑥

𝑁
(𝑘 − 𝜏)]

𝑇

= ∑

1≤𝑖<𝑗≤𝑁

{⋅} 𝐴 (𝑥
𝑖
(𝑘 − 𝜏) − 𝑥

𝑗
(𝑘 − 𝜏))

(53)

as shown in (53) does not hold. Thus, the derivation of
zero equality in (40) is impossible. Here, to use Lemma 4,
a suitable vector or matrix in the empty parentheses { } is
needed. Therefore, by defining the matrix Λ, the induction
of the zero equality (40) is possible.
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Figure 1: The structure of complex networks with 𝑁 = 5

(Example 10).

Table 1: Maximum allowable delay bounds, ℎ
𝑀
, with different ℎ

𝑚

and fixed 𝜏 = 3 (Example 10).

ℎ
𝑚

1 5 10 50 100
ℎ
𝑀

3 7 12 52 102

Table 2: The conditions of simulation in Example 10.

Number 𝜏 ℎ
𝑚

ℎ
𝑀

ℎ(𝑘)

3
C1-1 15 5 7 sin (𝑘𝜋/2) + 6

30

C1-2 3 50 52 sin (𝑘𝜋/2) + 51

Remark 9. In this paper, the problemof newdelay-dependent
synchronization for coupled stochastic discrete-time neural
networks with leakage delay and parameter uncertainties is
considered. By using Finsler’s lemma without free-weighting
matrices, the proposed robust synchronization criterion for
the network is established in terms of LMIs. Here, as men-
tioned in the Introduction, the leakage delay is the time
delay in leakage or forgetting term of the systems and a
considerable factor affecting dynamics for the worse in the
network. The effect of the leakage delay which cannot be
negligible is shown in Figure 2. Also, the stochastic discrete-
time systems with parameter uncertainties do not formulate
like as the network (14) in any other literature. To do this,
the vector (𝜂(𝑘) − 𝑥(𝑘)) is added in the augmented vector
𝜁(𝑘). It is just like as �̇�(𝑡) in continuous-time systems. This
form for the systems may give more less conservative results
for stability analysis. As a case of stochastic continuous-
time systemswith parameter uncertainties, Kwon [13] derived
the delay-dependent stability criteria for uncertain stochastic
dynamic systems with time-varying delays via the Lyapunov-
Krasovskii’s functional approach with two delay fraction
numbers.

4. Numerical Examples

In this section, we provide two numerical examples to
illustrate the effectiveness of the proposed synchronization
criterion in this paper.

Example 10. Consider the following coupled neural networks
by complex model in Figure 1:

𝑦
𝑖
(𝑘 + 1) = (𝐴 + Δ𝐴) 𝑦

𝑖
(𝑘 − 𝜏) + (𝑊

1
+ Δ𝑊

1
) 𝑔 (𝑦
𝑖
(𝑘))

+ (𝑊
2
+ Δ𝑊

2
) 𝑔 (𝑦
𝑖
(𝑘 − ℎ (𝑘)))

+

5

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑦
𝑗
(𝑘 − ℎ (𝑘)) (1 + 𝜔

1
(𝑘))

+ 𝜎
𝑖
(𝑘, 𝑦
𝑖
(𝑘) , 𝑦

𝑖
(𝑘 − ℎ (𝑘))) 𝜔

2
(𝑘) ,

(54)

with 𝑔(𝑥) = 0.5 tanh(𝑥), where

𝐴 = [

0.2 0

0 0.3
] ,

𝑊
1
= [

0.001 0

0 0.005
] , 𝑊

2
= [

−0.1 0.01

−0.2 −0.1
] ,

Γ = 0.01𝐼
2
,

𝐺 =

[

[

[

[

[

[

−2 1 0 0 1

1 −3 1 1 0

0 1 −2 1 0

0 1 1 −3 1

1 0 0 1 −2

]

]

]

]

]

]

,

𝐿
𝑚
= 0
2
, 𝐿

𝑝
= 0.5𝐼

2
, 𝐷 = 0.1𝐼

2
,

𝐸
𝑎
= [

0.3 0

0 −0.1
] , 𝐸

1
= [

−0.4 0

0.3 −0.7
] ,

𝐸
2
= 𝐸
1
, 𝐻

1
= 0.2𝐼

2
, 𝐻

2
= 𝐻
1
.

(55)

For the network above, the maximum allowable delay
bounds with different ℎ

𝑚
and fixed 𝜏 = 3 by Theorem 7

are listed in Table 1. In order to confirm the obtained results
with the conditions of the time delays as listed in Table 2,
the simulation results for the trajectories of state responses,
𝑥
𝑖
(𝑘) (𝑖 = 2, 3, 4, 5), and synchronization errors, 𝑧

𝑖1
(𝑘) =

𝑥
𝑖
(𝑘) − 𝑥

1
(𝑘), of the network (54) are shown in Figures 2, 3,

4, and 5. These figures show that the network with the errors
converge to zero for given initial values of the state by 𝑥𝑇

1
(0) =

[1, −3], 𝑥𝑇
2
(0) = [−1, 2], 𝑥𝑇

3
(0) = [4, −5], 𝑥𝑇

4
(0) = [3, −1], and

𝑥
𝑇

5
(0) = [4, 2]. Specially, the simulation results in Figure 2

show state response trajectories for the values of leakage delay,
𝜏, by 3, 15, and 30 with fixed values ℎ

𝑚
= 5 and ℎ

𝑀
= 7. It is

easy to illustrate that the larger value of leakage delay gives
the worse dynamic behaviors of the network (54).
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Figure 2: State responses with C1-1 (Example 10): (a) 𝜏 = 3, (b) 𝜏 = 15, and (c) 𝜏 = 30.
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Figure 3: Synchronization errors trajectories with C1-1 (𝜏 = 3) (Example 10).
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Figure 4: State responses with C1-2 (Example 10).
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Figure 5: Synchronization errors trajectories with C1-2 (Example 10).

Example 11. Consider the following coupled neural networks
by BA scale-free model [33] in Figure 6:

𝑦
𝑖
(𝑘 + 1) = (𝐴 + Δ𝐴) 𝑦

𝑖
(𝑘 − 𝜏) + (𝑊

1
+ Δ𝑊

1
) 𝑔 (𝑦
𝑖
(𝑘))

+ (𝑊
2
+ Δ𝑊

2
) 𝑔 (𝑦
𝑖
(𝑘 − ℎ (𝑘)))

+

50

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑦
𝑗
(𝑘 − ℎ (𝑘)) (1 + 𝜔

1
(𝑘))

+ 𝜎
𝑖
(𝑘, 𝑦
𝑖
(𝑘) , 𝑦

𝑖
(𝑘 − ℎ (𝑘))) 𝜔

2
(𝑘) ,

(56)
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Figure 6: The structure of BA scale-free networks with𝑁 = 50 (Example 11).
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Figure 7: State responses and time-delay ℎ(𝑘) with C2-1 (Example 11).

with 𝑔(𝑥) = 0.1 tanh(𝑥), where

𝐴 = [

0.01 0

0 0.02
] ,

𝑊
1
= [

0.2 −0.1

0.3 −0.2
] , 𝑊

2
= [

0.3 0.1

−0.3 0.2
] ,

Γ = 0.001𝐼
2
, 𝐿

𝑚
= 0
2
, 𝐿

𝑝
= 0.1𝐼

2
,

𝐷 = 0.1𝐼
2
,

𝐸
𝑎
= [

0.7 −0.2

0 0.4
] , 𝐸

1
= [

0.2 −0.5

0 0.3
] ,

𝐸
2
= 𝐸
1
, 𝐻
1
= 0.2𝐼

2
, 𝐻
2
= 𝐻
1
.

(57)

The results of maximum allowable delay bounds with
different ℎ

𝑚
andfixed 𝜏 = 3 byTheorem 7 are listed inTable 3.

For lack of space, the outer-coupling matrix 𝐺 is omitted.
It is easy that the matrix 𝐺 was expressed from Figure 6.
Figures 7 and 8 show the state response trajectories, 𝑥

𝑖
(𝑡) (𝑖 =

1, . . . , 50), of the network (56) with the condition of the time

Table 3: Maximum allowable delay bounds, ℎ
𝑀
, with different ℎ

𝑚

and fixed 𝜏 = 5 (Example 11).

ℎ
𝑚

1 5 10 25 30
ℎ
𝑀

5 9 14 29 34

Table 4: The conditions of simulation in Example 11.

Number ℎ
𝑚

ℎ
𝑀

ℎ(𝑘)

C2-1 5 9 Random integer variable with 5 ≤ ℎ(𝑘) ≤ 9
C2-2 30 34 Random integer variable with 30 ≤ ℎ(𝑘) ≤ 34

delays as listed in Table 4 for random initial values of the
state. These figures show that the network (56) with the state
responses converge to zero. This means the synchronization
stability of the network (56).

5. Conclusions

In this paper, the delay-dependent robust synchronization
criterion for the coupled stochastic discrete-time neural



Abstract and Applied Analysis 13

2

1.5

1

0.5

0

−0.5

−1
0 50 100 150

k

x
i(
k
)

(a)

0 50 100 150

k

h
(k
)

34

33.5

33

32

32.5

31.5

31

30.5

30

(b)

Figure 8: State responses and time-delay ℎ(𝑘) with C2-2 (Example 11).

networks with interval time-varying delays in network cou-
pling, leakage delay, and parameter uncertainties has been
proposed. To do this, the suitable Lyapunov-Krasovskii’s
functional was used to investigate the feasible region of
stability criterion. By utilization of Finsler’s lemma with a
new zero equality, a sufficient condition for guaranteeing
asymptotic synchronization for the concerned networks has
been derived in terms of LMIs. Two numerical examples have
been given to show the effectiveness and usefulness of the
presented criterion.
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