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The global asymptotic behavior of a nonautonomous competitor-competitor-mutualist model is investigated, where all the coeffi-
cients are time-dependent and asymptotically approach periodic functions, respectively. Under certain conditions, it is shown that
the limit periodic system of this asymptotically periodic model admits two positive periodic solutions (𝑢𝑇

1
, 𝑢
2𝑇
, 𝑢𝑇
3
), (𝑢
1𝑇
, 𝑢𝑇
2
, 𝑢
3𝑇
)

such that 𝑢
𝑖𝑇
≤ 𝑢𝑇
𝑖
(𝑖 = 1, 2, 3), and the sector {(𝑢

1
, 𝑢
2
, 𝑢
3
) : 𝑢
𝑖𝑇
≤ 𝑢
𝑖
≤ 𝑢𝑇
𝑖
, 𝑖 = 1, 2, 3} is a global attractor of the asymptotically

periodic model. In particular, we derive sufficient conditions that guarantee the existence of a positive periodic solution which is
globally asymptotically stable.

1. Introduction

In this paper, we investigate the global asymptotic behavior of
solutions for the following competitor-competitor-mutualist
diffusion model:

𝑢
1𝑡
− 𝑑
1
Δ𝑢
1

= 𝑔
1
𝑢
1
(1 −

𝑢
1

𝑎
1

−
𝑎
2
𝑢
2

1 + 𝑎
3
𝑢
3

) in Ω × (0,∞) ,

𝑢
2𝑡
− 𝑑
2
Δ𝑢
2

= 𝑔
2
𝑢
2
(1 − 𝑏

1
𝑢
1
−
𝑢
2

𝑏
2

) in Ω × (0,∞) ,

𝑢
3𝑡
− 𝑑
3
Δ𝑢
3

= 𝑔
3
𝑢
3
(1 −

𝑢
3

𝑐
1
+ 𝑐
2
𝑢
1

) in Ω × (0,∞) ,

(1)

𝜕𝑢
𝑖

𝜕𝑛
= 0 on 𝜕Ω × (0,∞) , 𝑖 = 1, 2, 3, (2)

𝑢
𝑖 (𝑥, 0) = 𝑢

𝑖0 (𝑥) on Ω, 𝑖 = 1, 2, 3, (3)

where 𝑢
1
(𝑥, 𝑡), 𝑢

2
(𝑥, 𝑡), and 𝑢

3
(𝑥, 𝑡) are the densities of a

mutualist-competitor, a competitor, and a mutualist popula-
tion, respectively.Ω ⊂ R𝑁 is a bounded smooth domain, 𝜕/𝜕𝑛
is an outward normal derivative on 𝜕Ω.

In 1983, Rai et al. [1] firstly presented and studied a general
competitor-competitor-mutualist ordinary differential equa-
tion (ODE) model. Zheng [2] studied the problem (1)–(3)
in the case where all coefficients are positive constants. He
proved the local stability of the unique positive constant
steady-state solution under suitable condition on the reac-
tion rates by the method of spectral analysis for linearized
operator. Xu [3] investigated the global asymptotic stability of
the unique positive constant steady-state solution under some
assumptions by the iteration method. Pao [4] considered the
model with time delays, and, under a very simple condi-
tion on the reaction rates, proved that the time-dependent
solution with any nontrivial initial function converges to the
positive steady-state solution by the method of upper and
lower solutions. Chen and Peng [5] proved some existence
results concerning nonconstant positive steady-states for the
model with cross-diffusion and demonstrated that the cross-
diffusion can create patterns when the corresponding model
without cross-diffusion fails. Li et al. [6] proved that this
model with cross-diffusion possesses at least one coexistence
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state if cross-diffusions and cross-reactions are weak by the
Schauder fixed point theory and the method of upper and
lower solutions and its associated monotone iterations. Fu et
al. [7] investigated the global asymptotic behavior and the
global existence of time-dependent solutions for the model
with cross-diffusion when the space dimension is at most 5.
Very recently, Tian and Ling [8] proved that, under some con-
ditions, a corresponding predator-prey-mutualist model with
cross-diffusion admits at least a nonhomogeneous stationary
solution by the stability analysis for the positive uniform
solution and the Leray-Schauder degree theory and carried
out numerical simulations for a Turing pattern.

For the model (1) with 𝑇-periodic coefficients, Tineo [9]
studied the asymptotic behavior of positive solutions by the
method of upper and lower solutions. Du [10] investigated
the existence of positive 𝑇-periodic solutions by using the
degree and bifurcation theories. Pao [11] proved the existence
of maximal andminimal 𝑇-periodic solutions by the method
of upper and lower solutions. Wang et al. [12] considered the
local asymptotic behavior of the time-dependent solutions
and the existence of periodic solutions to the model in an
unbounded domain. Zhou and Fu [13] investigated the global
asymptotic behavior of the time-dependent solutions and the
existence of periodic solutions for the model with discrete
delays. Very recently, replacing the usual −Δ𝑢 term by a
degenerate elliptic operator as −Δ𝑢

𝑚, Wang and Yin [14]
proved the existence of maximal and minimal 𝑇-periodic
solutions to the model with time delays by the Schauder fixed
point theorem. It is important to note that the uniqueness of
positive periodic solution is not considered in the previous
references.

When 𝑎
3
= 0, (1) reduces to the competition diffusion

system

𝑢
𝑡
− 𝑑
1
Δ𝑢 = 𝑢 (𝑎 − 𝑏𝑢 − 𝑐V) ,

V
𝑡
− 𝑑
2
ΔV = V (𝑑 − 𝑒𝑢 − 𝑓V) ,

(4)

where 𝑎 = 𝑔
1
, 𝑏 = 𝑔

1
/𝑎
1
, 𝑐 = 𝑔

1
/𝑎
2
, 𝑑 = 𝑔

2
, 𝑒 = 𝑔

2
𝑏
1
, and

𝑓 = 𝑔
2
/𝑏
2
. The system (4) is a diffusion extension of the well-

known Lotka-Volterra system

𝑑𝑢

𝑑𝑡
= 𝑢 (𝑎 − 𝑏𝑢 − 𝑐V) ,

𝑑V

𝑑𝑡
= V (𝑑 − 𝑒𝑢 − 𝑓V) .

(5)

In the case that 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are positive 𝑇-periodic
functions, the existence and asymptotic stability of periodic
solutions for (5) was studied by Gopalsamy [15], Alvarez
and Lazer [16], and Ahmad [17] in the 1980’s. The global
asymptotic behavior of (5) was studied by Ahmad and Lazer
[18] and Tineo [19]. Denote 𝑓

𝐿
= inf

𝑥∈𝑋
𝑓(𝑥) and 𝑓

𝑀
=

sup
𝑥∈𝑋

𝑓(𝑥) for any function𝑓 : 𝑋 → R. If 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓
are positive asymptotically 𝑇-periodic functions on R, Peng
and Chen [20] proved that if the conditions

𝑎
𝐿
− 𝜀
0

𝑑
𝑀
+ 𝜀
0

>
𝑐
𝑀
+ 𝜀
0

𝑓
𝐿
− 𝜀
0

,
𝑑
𝐿
− 𝜀
0

𝑎
𝑀
+ 𝜀
0

>
𝑒
𝑀
+ 𝜀
0

𝑏
𝐿
− 𝜀
0

(6)

are satisfied for a certain sufficiently small 𝜀
0
> 0, then any

positive solutions of (5) asymptotically approach the unique
positive periodic solution for the limit periodic system of (5).

It is well known that periodic reaction diffusion equations
are of particular interests since they can take into account
seasonal fluctuations occurring in the phenomena appearing
in the models, and they have been extensively studied by
many researchers (see, e.g., [9–14, 19, 21]). However, so far,
the researchwork on asymptotically periodic systems ismuch
fewer than on the periodic ones. In fact, asymptotically
periodic systems describe our world more realistically and
more accurately than periodic ones to some extent.Therefore,
for asymptotically periodic systems, studying the dynamics
behavior is important and necessary (see, e.g., [22–27]).

In this paper, we study the global asymptotic behavior of
positive solutions for the asymptotically periodic system (1).
Under some conditions, it is shown that any positive solutions
of the models asymptotically approach the unique strictly
positive periodic solutions of the corresponding periodic
system.Thismeans that the results inTineo [9] and the results
for ODEmodel in Peng and Chen [20] can be extended to the
asymptotically periodic reaction diffusion system and the 3-
species diffusion system, respectively. Furthermore, using the
method of the present paper, we note that the corresponding
conclusions hold for the time-dependent 𝑛-species Lotka-
Volterra systems. More specifically, we provide a way of how
to use the method of upper and lower solutions to study
asymptotic behavior of solutions for asymptotically periodic
reaction diffusion systems. As one can see, the optimal
bounds and uniqueness of positive periodic solutions will
play an important role in the study of the global asymptotic
behavior of periodic solutions.

2. Permanence and Extinction

For the sake of convenience, we introduce the two signs
∼ and ≺ for functions 𝑢, V : Ω × R → [0,∞). 𝑢 is
said to approach V asymptotically in notation, 𝑢 ∼ V,
if lim

𝑡→∞
|𝑢(𝑥, 𝑡) − V(𝑥, 𝑡)| = 0 uniformly for 𝑥 in Ω.

Furthermore, if (𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑛
) and (𝜓

1
, 𝜓
2
, . . . , 𝜓

𝑛
) are vector

functions, then (𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑛
) ∼ (𝜓

1
, 𝜓
2
, . . . , 𝜓

𝑛
) if and

only if 𝜑
𝑖
∼ 𝜓
𝑖
(𝑖 = 1, 2, . . . , 𝑛). We say that 𝑢(𝑥, 𝑡) is

asymptotically smaller than V(𝑥, 𝑡) and write 𝑢(𝑥, 𝑡) ≺ V(𝑥, 𝑡)
if lim
𝑡→∞

(𝑢(𝑥, 𝑡) − V(𝑥, 𝑡)) ≤ 0 uniformly for 𝑥 ∈ Ω. It is
clear that 𝑢(𝑥, 𝑡) ≺ V(𝑥, 𝑡) if and only, if for any 𝜀 > 0, there
exists a corresponding 𝑡

1
> 0 such that 𝑢(𝑥, 𝑡) < V(𝑥, 𝑡) + 𝜀 on

Ω × [𝑡
1
,∞).

Assume the following.

(H
1
) 𝑑
𝑖
, 𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, and 𝐺

𝑖
are positive smooth and 𝑇-

periodic functions onΩ × R.

(H
2
) 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, and𝑔

𝑖
are positive smooth functions onΩ×R,

and

(𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝑔
𝑖
) ∼ (𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐺
𝑖
) . (7)
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By (H
2
), the limit periodic system of (1), (2) is given as

follows:

𝑢
1𝑡
− 𝑑
1
Δ𝑢
1

= 𝐺
1
𝑢
1
(1 −

𝑢
1

𝐴
1

−
𝐴
2
𝑢
2

1 + 𝐴
3
𝑢
3

) in Ω × (0,∞) ,

𝑢
2𝑡
− 𝑑
2
Δ𝑢
2

= 𝐺
2
𝑢
2
(1 − 𝐵

1
𝑢
1
−
𝑢
2

𝐵
2

) in Ω × (0,∞) ,

𝑢
3𝑡
− 𝑑
3
Δ𝑢
3

= 𝐺
3
𝑢
3
(1 −

𝑢
3

𝐶
1
+ 𝐶
2
𝑢
1

) in Ω × (0,∞) ,

𝜕𝑢
𝑖

𝜕𝑛
= 0 on 𝜕Ω × (0,∞) (𝑖 = 1, 2, 3) .

(8)

As a complement, we state the following main result
which comes from [9, Theorem 0.3].

Theorem 1. Assume that (𝐻
1
) holds, and

𝐴
2𝑀

𝐵
2𝑀

< 1 + 𝐴
3𝐿
𝐶
1𝐿
, (9)

𝐴
1𝑀

𝐵
1𝑀

< 1. (10)

Then (8) has the periodic solutions (𝑢𝑇
1
, 𝑢
2𝑇
, 𝑢𝑇
3
) and (𝑢

1𝑇
,

𝑢𝑇
2
, 𝑢
3𝑇
) such that 𝑢𝑇

𝑖
≥ 𝑢
𝑖
≥ 𝑢
𝑖𝑇

> 0 (𝑖 = 1, 2, 3) for any
positive 𝑇-periodic solution (𝑢

1
, 𝑢
2
, 𝑢
3
) of (8). Moreover, given

that 𝜀 > 0 and a solution (𝑢
1
, 𝑢
2
, 𝑢
3
) of (8) with 𝑢

𝑖
(𝑥, 0) ≥

( ̸≡ )0, there exists 𝑡
1
> 0 such that 𝑢

𝑖𝑇
(𝑥, 𝑡) − 𝜀 < 𝑢

𝑖
(𝑥, 𝑡) <

𝑢𝑇
𝑖
(𝑥, 𝑡) + 𝜀 on Ω × (𝑡

1
,∞).

In order to get the conditions for the permanence of (1)–
(3), we need to make the following optimal bounds.

Lemma 2. If (9) and (10) hold and (𝑢
1
, 𝑢
2
, 𝑢
3
) is a positive

smooth 𝑇-periodic solution of (8), then

𝜀
𝑢𝑖
≤ 𝑢
𝑖
≤ 𝛿
𝑢𝑖

(𝑖 = 1, 2, 3) , (11)

where 𝛿
𝑢1
is the unique positive root of 𝑝

1
𝑥2 +𝑞

1
𝑥+𝑟
1
= 0 and

𝑝
1
= 𝐴
3𝑀

𝐶
2𝑀

,

𝑟
1
= 𝐴
1𝑀

(𝐴
2𝐿
𝐵
2𝐿
− 1 − 𝐴

3𝑀
𝐶
1𝑀

) ,

𝑞
1
= 1 + 𝐴

3𝑀
𝐶
1𝑀

− 𝐴
1𝑀

𝐴
3𝑀

𝐶
2𝑀

− 𝐴
1𝑀

𝐴
2𝐿
𝐵
1𝑀

𝐵
2𝐿
.

(12)

𝜀
𝑢1
is the unique positive root of 𝑝

2
𝑥2 + 𝑞

2
𝑥 + 𝑟
2
= 0, and

𝑝
2
= 𝐴
3𝐿
𝐶
2𝐿
,

𝑟
2
= 𝐴
1𝐿
(𝐴
2𝑀

𝐵
2𝑀

− 1 − 𝐴
3𝐿
𝐶
1𝐿
) ,

𝑞
2
= 1 + 𝐴

3𝐿
𝐶
1𝐿
− 𝐴
1𝐿
𝐴
3𝐿
𝐶
2𝐿
− 𝐴
1𝐿
𝐴
2𝑀

𝐵
1𝐿
𝐵
2𝑀

,

𝛿
𝑢2
= 𝐵
2𝑀

− 𝐵
1𝐿
𝐵
2𝑀

𝜀
𝑢1
,

𝜀
𝑢2
= 𝐵
2𝐿
− 𝐵
1𝑀

𝐵
2𝐿
𝛿
𝑢1
,

𝛿
𝑢3
= 𝐶
1𝑀

+ 𝐶
2𝑀

𝛿
𝑢1
, 𝜀

𝑢3
= 𝐶
1𝐿
+ 𝐶
2𝐿
𝜀
𝑢1
.

(13)

Proof. By themaximum principle (see Lemma 1.2 of [18]), we
have

1 −
𝑢
1𝑀

𝐴
1𝑀

−
𝐴
2𝐿
𝑢
2𝐿

1 + 𝐴
3𝑀

𝑢
3𝑀

≥ 0,

1 −
𝑢
1𝐿

𝐴
1𝐿

−
𝐴
2𝑀

𝑢
2𝑀

1 + 𝐴
3𝐿
𝑢
3𝐿

≤ 0,

1 − 𝐵
1𝐿
𝑢
1𝐿
−
𝑢
2𝑀

𝐵
2𝑀

≥ 0,

1 − 𝐵
1𝑀

𝑢
1𝑀

−
𝑢
2𝐿

𝐵
2𝐿

≤ 0,

1 −
𝑢
3𝑀

𝐶
1𝑀

+ 𝐶
2𝑀

𝑢
1𝑀

≥ 0,

1 −
𝑢
3𝐿

𝐶
1𝐿
+ 𝐶
2𝐿
𝑢
1𝐿

≤ 0.

(14)

Hence, 𝑝
1
𝑢2
1𝑀

+ 𝑞
1
𝑢
1𝑀

+ 𝑟
1
≤ 0. Since 𝑝

1
> 0 and 𝑟

1
< 0 (by

(9)), we can see immediately that 𝑢
1𝑀

≤ 𝛿
𝑢1
. Similarly, if 𝜀

𝑢1
is

the unique positive root of 𝑝
2
𝑥
2
+𝑞
2
𝑥+𝑟
2
= 0, then 𝑢

1𝐿
≥ 𝜀
𝑢1
.

So,

𝜀
𝑢2
≤ 𝑢
2𝐿

≤ 𝑢
2𝑀

≤ 𝛿
𝑢2
,

𝜀
𝑢3
≤ 𝑢
3𝐿

≤ 𝑢
3𝑀

≤ 𝛿
𝑢3
.

(15)

Evidently, 𝜀
𝑢3
> 0. By (9) and (10), we have

𝑝
1

𝐵2
1𝑀

+
𝑞
1

𝐵
1𝑀

+ 𝑟
1
> 0, (16)

from which it follows that 𝜀
𝑢2

> 0. This completes the proof.

Corollary 3. Assume that (9) and (10) hold. If 𝐴
𝑖
, 𝐵
𝑖
, and 𝐶

𝑖

are positive constants, then (9) has the unique positive periodic
solution (𝑟, 𝐵

2
(1−𝐵
1
𝑟), 𝐶
1
+𝐶
2
𝑟), where 𝑟 is the unique positive

root of 𝑝
1
𝑥2 + 𝑞

1
𝑥 + 𝑟
1
= 0.
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The main results in this section are the following theo-
rems.

Theorem 4 (permanence). Assume that (𝐻
1
), (𝐻
2
), (9), and

(10) hold. Then (8) has the positive 𝑇-periodic solutions
(𝑢
1𝑇
, 𝑢𝑇
2
, 𝑢
3𝑇
) and (𝑢𝑇

1
, 𝑢
2𝑇
, 𝑢𝑇
3
) such that 𝑢

𝑖𝑇
≤ 𝑢𝑇
𝑖
(𝑖 =

1, 2, 3). Moreover, if (𝑢
1
, 𝑢
2
, 𝑢
3
) is the solution of (1)–(3) with

smooth initial values 𝑢
𝑖0
(𝑥) ≥ ( ̸≡ )0, then

𝑢
𝑖𝑇
≺ 𝑢
𝑖
≺ 𝑢
𝑇

𝑖
(𝑖 = 1, 2, 3) . (17)

Remark 5. Under the assumptions of Theorem 4, the system
(1), (2) is permanent, the sector ⟨𝑢

𝑇
, 𝑢𝑇⟩ = {𝑢 ∈ 𝐶(Ω × R) :

𝑢
𝑇

≤ 𝑢 ≤ 𝑢𝑇} is a global periodic attractor of (1), (2),
and its trivial and semitrivial periodic solutions are unstable.
Furthermore, if 𝐴

𝑖
, 𝐵
𝑖
, and 𝐶

𝑖
are positive constants, then

(𝑟, 𝐵
2
(1−𝐵
1
𝑟), 𝐶
1
+𝐶
2
𝑟) is the unique globally asymptotically

stable solution of (8).

Theorem 6. Assume that (𝐻
1
) and (𝐻

2
) hold. Then one has

the following conclusions.

(1) (Extinction of 𝑢
2
) Assume that (9) holds and that

𝐴
1𝐿
𝐵
1𝐿

≥ 1. Then (8) has a 𝑇-periodic solution
(𝑈
1
, 𝑈
2
, 𝑈
3
) such that 𝑈

1
> 0, 𝑈

2
= 0, 𝑈

3
> 0, and

lim
𝑡→∞

𝑢𝑖 (𝑥, 𝑡) − 𝑈
𝑖 (𝑥, 𝑡)

 = 0 (𝑖 = 1, 2, 3) (18)

uniformly onΩ, for any positive solution (𝑢
1
, 𝑢
2
, 𝑢
3
) of

(1)–(3).

(2) (Extinction of 𝑢
1
) Assume that (10) holds and that

𝐴
2𝐿
𝐵
2𝐿

≥ 1 + 𝐴
3𝑀

𝐶
1𝑀

+ 𝐴
3𝑀

𝐴
1𝑀

𝐶
2𝑀

. (19)

Then (8) has a 𝑇-periodic solution (𝑈
1
, 𝑈
2
, 𝑈
3
) with

𝑈
1
= 0, 𝑈

2
> 0, and 𝑈

3
> 0 satisfying (18), where

(𝑢
1
, 𝑢
2
, 𝑢
3
) is any positive solution of (1)–(3).

Proof of Theorem 4. By (9) and (10), there exists a sufficiently
small 𝜀

0
> 0 such that, for 𝛿 ∈ (0, 𝜀

0
),

[
(𝐺
1
+ 𝛿) (𝐴

2
+ 𝛿)

𝐺
1
− 𝛿

]
𝑀

[
(𝐺
2
+ 𝛿) (𝐵

2
+ 𝛿)

𝐺
2
− 𝛿

]
𝑀

< 1 + (𝐴
3𝐿
− 𝛿) [

(𝐺
3
− 𝛿)(𝐶

1
− 𝛿)

𝐺
3
+ 𝛿

]
𝐿

,

(20)

[
(𝐺
1
+ 𝛿)(𝐴

1
+ 𝛿)

𝐺
1
− 𝛿

]
𝑀

[
(𝐺
2
+ 𝛿)(𝐵

1
+ 𝛿)

𝐺
2
− 𝛿

]
𝑀

< 1. (21)

Consider two auxiliary systems as follows:

𝑢
1𝑡
− 𝑑
1
Δ𝑢
1

= 𝑢
1
[(𝐺
1
+ 𝛿) −

(𝐺
1
− 𝛿) 𝑢

1

𝐴
1
+ 𝛿

−
(𝐺
1
− 𝛿) (𝐴

2
− 𝛿) 𝑢

2

1 + (𝐴
3
+ 𝛿) 𝑢

3

] in Ω × (0,∞) ,

𝑢
2𝑡
− 𝑑
2
Δ𝑢
2

= 𝑢
2
[ (𝐺
2
− 𝛿) − (𝐺

2
+ 𝛿) (𝐵

1
+ 𝛿) 𝑢

1

−
(𝐺
2
+ 𝛿) 𝑢

2

𝐵
2
− 𝛿

] in Ω × (0,∞) ,

𝑢
3𝑡
− 𝑑
3
Δ𝑢
3

= 𝑢
3
[ (𝐺
3
+ 𝛿)

−
(𝐺
3
− 𝛿) 𝑢

3

(𝐶
1
+ 𝛿) + (𝐶

2
+ 𝛿) 𝑢

1

] in Ω × (0,∞) ,

𝜕𝑢
𝑖

𝜕𝑛
= 0 on 𝜕Ω × (0,∞) (𝑖 = 1, 2, 3) ,

(22)

𝑢
1𝑡
− 𝑑
1
Δ𝑢
1

= 𝑢
1
[(𝐺
1
− 𝛿) −

(𝐺
1
+ 𝛿) 𝑢

1

𝐴
1
− 𝛿

−
(𝐺
1
+ 𝛿) (𝐴

2
+ 𝛿) 𝑢

2

1 + (𝐴
3
− 𝛿) 𝑢

3

] in Ω × (0,∞) ,

𝑢
2𝑡
− 𝑑
2
Δ𝑢
2

= 𝑢
2
[ (𝐺
2
+ 𝛿) − (𝐺

2
− 𝛿) (𝐵

1
− 𝛿) 𝑢

1

−
(𝐺
2
− 𝛿) 𝑢

2

𝐵
2
+ 𝛿

] in Ω × (0,∞) ,

𝑢
3𝑡
− 𝑑
3
Δ𝑢
3

= 𝑢
3
[(𝐺
3
− 𝛿) −

(𝐺
3
+ 𝛿) 𝑢

3

(𝐶
1
− 𝛿) + (𝐶

2
− 𝛿) 𝑢

1

]

in Ω × (0,∞) ,

𝜕𝑢
𝑖

𝜕𝑛
= 0 on 𝜕Ω × (0,∞) (𝑖 = 1, 2, 3) .

(23)

By (20), (21), and Theorem 1, (22) has the positive 𝑇-
periodic solutions (𝑈

1𝛿
, 𝑢𝛿
2
, 𝑈
3𝛿
) and (𝑈𝛿

1
, 𝑢
2𝛿
, 𝑈𝛿
3
) such that

𝑈
𝑖𝛿

≤ 𝑢
𝑖
≤ 𝑈𝛿
𝑖
(𝑖 = 1, 3) and 𝑢

2𝛿
≤ 𝑢
2
≤ 𝑢𝛿
2
, for any

positive 𝑇-periodic solution (𝑢
1
, 𝑢
2
, 𝑢
3
) of (22). Moreover, if
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(𝑢
1
, 𝑢
2
, 𝑢
3
) is a solution of (22) with nontrivial nonnegative

initial values, then, for any 𝜀 > 0, there exists 𝑡
𝜀
> 0 such that

𝑈
𝑖𝛿 (𝑥, 𝑡) − 𝜀 < 𝑢

𝑖 (𝑥, 𝑡) < 𝑈
𝛿

𝑖
(𝑥, 𝑡) + 𝜀 (𝑖 = 1, 3) ,

𝑢
2𝛿 (𝑥, 𝑡) − 𝜀 < 𝑢

2 (𝑥, 𝑡) < 𝑢
𝛿

2
(𝑥, 𝑡) + 𝜀,

(24)

for all 𝑥 ∈ Ω and 𝑡 > 𝑡
𝜀
. Similarly, (23) has the positive 𝑇-

periodic solutions (𝑢
1𝛿
, 𝑈𝛿
2
, 𝑢
3𝛿
) and (𝑢𝛿

1
, 𝑈
2𝛿
, 𝑢𝛿
3
) such that

𝑢
𝑖𝛿

≤ 𝑢
𝑖
≤ 𝑢𝛿
𝑖
(𝑖 = 1, 3) and 𝑈

2𝛿
≤ 𝑢
2
≤ 𝑈𝛿
2
, for any

positive𝑇-periodic solution (𝑢
1
, 𝑢
2
, 𝑢
3
) of (23). Furthermore,

if (𝑢
1
, 𝑢
2
, 𝑢
3
) is a solution of (23) with nontrivial nonnegative

initial values, then, for the previous 𝜀 > 0, there exists 𝑡
𝜀
> 0

such that, for all 𝑥 ∈ Ω and 𝑡 > 𝑡
𝜀
,

𝑢
𝑖𝛿 (𝑥, 𝑡) − 𝜀 < 𝑢

𝑖 (𝑥, 𝑡) < 𝑢
𝛿

𝑖
(𝑥, 𝑡) + 𝜀 (𝑖 = 1, 3) ,

𝑈
2𝛿 (𝑥, 𝑡) − 𝜀 < 𝑢

2 (𝑥, 𝑡) < 𝑈
𝛿

2
(𝑥, 𝑡) + 𝜀.

(25)

Now we prove

𝑢
𝑖𝛿
≤ 𝑢
𝑖𝑇
≤ 𝑈
𝑖𝛿
, 𝑢

𝛿

𝑖
≤ 𝑢
𝑇

𝑖
≤ 𝑈
𝛿

𝑖
, (26)

where (𝑢
1𝑇
, 𝑢𝑇
2
, 𝑢
3𝑇
) and (𝑢𝑇

1
, 𝑢
2𝑇
, 𝑢𝑇
3
) are positive 𝑇-periodic

solutions of (8) (seeTheorem 1). Let (𝑈
1
, 𝑢
2
, 𝑈
3
), (𝑝
1
, 𝑝
2
, 𝑝
3
),

and (𝑢
1
, 𝑈
2
, 𝑢
3
) be the solutions of (22), (8), and (23),

respectively, which all satisfy the same initial conditions. It
is easily testified that (𝑈

1
, 𝑈
2
, 𝑈
3
), (𝑢
1
, 𝑢
2
, 𝑢
3
) are the upper

and lower solutions of (8) and (3), respectively. So from [28,
Corollary 5.2.10], we see that

𝑢
𝑖
≤ 𝑝
𝑖
≤ 𝑈
𝑖 (𝑖 = 1, 2, 3) . (27)

For sufficiently small𝑚 > 0 and 𝛿 > 0, define

𝑟
1
= [

(𝐺
1
+ 𝛿)(𝐴

1
+ 𝛿)

𝐺
1
− 𝛿

]
𝑀

,

𝑟
2
= [

(𝐺
2
+ 𝛿)(𝐵

2
+ 𝛿)

𝐺
2
− 𝛿

]
𝑀

,

𝑟
3
= [

(𝐺
3
+ 𝛿)(𝐶

1
+ 𝛿)

𝐺
3
− 𝛿

]
𝑀

+ [
(𝐺
3
+ 𝛿)(𝐶

2
+ 𝛿)

𝐺
3
− 𝛿

]
𝑀

𝑟
1
,

𝑠
0
= [

(𝐺
3
− 𝛿)(𝐶

1
− 𝛿)

𝐺
3
+ 𝛿

]
𝐿

+ [
(𝐺
3
− 𝛿)(𝐶

2
− 𝛿)

𝐺
3
+ 𝛿

]
𝐿

𝑚.

(28)

Choose (𝑢
10
(𝑥), 𝑢
20
(𝑥), 𝑢
30
) = (𝑟

1
, 𝑚, 𝑟
2
). Then (𝑟

1
, 𝑟
2
, 𝑟
3
)

and (𝑚,𝑚, 𝑠) are the ordered upper and lower solutions of
(22) and (3) (also of (23) and (3) and of (8) and (3)). Applying
the same technique from [18, Theorem 4.1], we can prove
that the solution (𝑈

1
, 𝑢
2
, 𝑈
3
) of (22) and (3), the solution

(𝑢
1
, 𝑈
2
, 𝑢
3
) of (23) and (3), and the solution (𝑝

1
, 𝑝
2
, 𝑝
3
) of (8)

and (3) satisfy, respectively,

lim
𝑛→∞

(𝑈
1 (𝑥, 𝑡 + 𝑛𝑇) , 𝑢2 (𝑥, 𝑡 + 𝑛𝑇) , 𝑈3 (𝑥, 𝑡 + 𝑛𝑡))

= (𝑈
𝛿

1
(𝑥, 𝑡) , 𝑢2𝛿 (𝑥, 𝑡) , 𝑈

𝛿

3
(𝑥, 𝑡)) ,

lim
𝑛→∞

(𝑢
1 (𝑥, 𝑡 + 𝑛𝑡) , 𝑈2 (𝑥, 𝑡 + 𝑛𝑇) , 𝑢3 (𝑥, 𝑡 + 𝑛𝑇))

= (𝑢
𝛿

1
(𝑥, 𝑡) , 𝑈2𝛿 (𝑥, 𝑡) , 𝑢

𝛿

3
(𝑥, 𝑡)) ,

lim
𝑛→∞

(𝑝
1 (𝑥, 𝑡 + 𝑛𝑇) , 𝑝2 (𝑥, 𝑡 + 𝑛𝑇) , 𝑝3 (𝑥, 𝑡 + 𝑛𝑇))

= (𝑢
𝑇

1
(𝑥, 𝑡) , 𝑢2𝑇 (𝑥, 𝑡) , 𝑢

𝑇

3
(𝑥, 𝑡)) .

(29)

It follows from (27) that 𝑢𝛿
𝑖
≤ 𝑢𝑇
𝑖
≤ 𝑈𝛿
𝑖
(𝑖 = 1, 3) and that

𝑢
2𝛿

≤ 𝑢
2𝑇

≤ 𝑈
2𝛿
. Similarly, choose (𝑢

10
(𝑥), 𝑢
20
(𝑥), 𝑢
30
(𝑥)) =

(𝑚, 𝑟
2
, 𝑠); we can prove the other inequalities of (26).

Denote by 𝜀
1𝑢𝑖
, 𝛿
1𝑢𝑖
, 𝜀
2𝑢𝑖
, and 𝛿

2𝑢𝑖
the optimal bounds for

the positive periodic solutions of problems (22) and (23),
respectively, (see Lemma 2). Then

𝛿
2𝑢𝑖

≤ 𝛿
𝑢𝑖
≤ 𝛿
1𝑢𝑖
,

𝜀
2𝑢𝑖

≤ 𝜀
𝑢𝑖
≤ 𝜀
1𝑢𝑖

(𝑖 = 1, 3) ,

𝛿
1𝑢2

≤ 𝛿
𝑢2
≤ 𝛿
2𝑢2

, 𝜀
1𝑢2

≤ 𝜀
𝑢2
≤ 𝜀
2𝑢2

.

(30)

Moreover,

𝜀
2𝑢𝑖

≤ 𝑢
𝑖𝛿
≤ 𝑈
𝛿

𝑖
≤ 𝛿
1𝑢𝑖

(𝑖 = 1, 3) ,

𝜀
1𝑢2

≤ 𝑢
2𝛿
≤ 𝑈
𝛿

2
≤ 𝛿
2𝑢2

,

𝑢
𝑖𝛿1

< 𝑢
𝑖𝛿2
, 𝑈

𝛿1

𝑖
> 𝑈
𝛿2

𝑖

(31)

for 0 < 𝛿
2
< 𝛿
1
< 𝜀
0
. By using the dominated convergence

theorem and the bootstrap arguments (see [18]), we have

lim
𝛿→0+

(𝑈
𝛿

1
, 𝑢
2𝛿
, 𝑈
𝛿

3
) = (𝑢

𝑠

1
, 𝑢
2𝑠
, 𝑢
𝑠

3
) ,

lim
𝛿→0+

(𝑢
1𝛿
, 𝑈
𝛿

2
, 𝑢
3𝛿
) = (𝑢

1𝑠
, 𝑢
𝑠

2
, 𝑢
3𝑠
)

(32)

uniformly for (𝑥, 𝑡) onΩ×R, and (𝑢
1𝑠
, 𝑢𝑠
2
, 𝑢
3𝑠
) and (𝑢𝑠

1
, 𝑢
2𝑠
, 𝑢𝑠
3
)

are the positive 𝑇-periodic solutions of (8).
From Theorem 1, we see that 𝑢

𝑖𝑇
≤ 𝑢
𝑖𝑠
and 𝑢𝑠

𝑖
≤ 𝑢𝑇
𝑖
(𝑖 =

1, 2, 3). It follows from (26) and (32) that 𝑢
𝑖𝑠

≤ 𝑢
𝑖𝑇
, 𝑢𝑇
𝑖

≤

𝑢𝑠
𝑖
(𝑖 = 1, 2, 3). So,

𝑢
𝑠

𝑖
= 𝑢
𝑇

𝑖
, 𝑢

𝑖𝑠
= 𝑢
𝑖𝑇 (𝑖 = 1, 2, 3) . (33)

Therefore, given that 𝜀 > 0, by (32) and (33), there exists
𝛿
0
∈ (0, 𝜀

0
) such that

𝑢
𝑖𝑇
−
𝜀

2
< 𝑢
𝑖𝛿0

≤ 𝑈
𝛿0

𝑖
< 𝑢
𝑇

𝑖
+
𝜀

2
(𝑖 = 1, 2, 3) . (34)

Since (𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝑔
𝑖
) ∼ (𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐺
𝑖
), for the previous 𝛿

0
, there

exists 𝑇
𝛿0
> 0 such that, for 𝑡 > 𝑇

𝛿0
,

𝐴
𝑖
− 𝛿
0
< 𝑎
𝑖
< 𝐴
𝑖
+ 𝛿
0
, . . . , 𝐺

𝑖
− 𝛿
0
< 𝑔
𝑖
< 𝐺
𝑖
+ 𝛿
0
. (35)



6 Abstract and Applied Analysis

Denote by (𝑢
1
, 𝑢
2
, 𝑢
3
) the solution of (1)–(3), and denote

by (𝑢∗
1
, 𝑢
2∗
, 𝑢∗
3
), (𝑈
1
, 𝑈
2
, 𝑈
3
), and (𝑢

1∗
, 𝑢∗
2
, 𝑢
3∗
) the solutions

of problems (22), (8), and (23), respectively, which all satisfy
the same initial conditions 𝑢

𝑖
(𝑥, 𝑇
𝛿0
+1) = 𝑢

𝑖0
(𝑥) ≥ ( ̸≡ )0 (𝑖 =

1, 2, 3). Analogous to (27), we have 𝑢
𝑖∗
≤ 𝑢
𝑖
≤ 𝑢∗
𝑖
(𝑖 = 1, 2, 3)

for 𝑡 > 𝑇
𝛿0
. By (24), there exists 𝑇

1
> 𝑇
𝛿0
+ 1 such that

𝑈
𝑖𝛿0

−
𝜀

2
< 𝑢
∗

𝑖
< 𝑈
𝛿0

𝑖
+
𝜀

2
(𝑖 = 1, 3) ,

𝑢
2𝛿0

−
𝜀

2
< 𝑢
2∗

< 𝑢
𝛿0

2
+
𝜀

2

(36)

for 𝑡 > 𝑇
1
. Similarly, by (25), there exists 𝑇

2
> 𝑇
𝛿0
+ 1 such

that

𝑢
𝑖𝛿0

−
𝜀

2
< 𝑢
𝑖∗
< 𝑢
𝛿0

𝑖
+
𝜀

2
(𝑖 = 1, 3) ,

𝑈
2𝛿0

−
𝜀

2
< 𝑢
∗

2
< 𝑈
𝛿0

2
+
𝜀

2

(37)

for 𝑡 > 𝑇
2
. Hence, by (34)–(37), we have

𝑢
𝑖𝑇
− 𝜀 < 𝑢

𝑖∗
≤ 𝑢
𝑖
≤ 𝑢
∗

𝑖
< 𝑢
𝑇

𝑖
+ 𝜀 (38)

for 𝑡 > max{𝑇
1
, 𝑇
2
}. This completes the proof.

3. Global Stability

In order to get conditions of global stability for (1)–(3), we
need the following result.

Lemma 7. Let (𝑢, V, 𝑤) be a 𝑇-periodic solution for the linear
problem

𝑢
𝑡
− 𝑑
1
Δ𝑢 − Σ𝑎

𝑖
𝑢
𝑥𝑖
= 𝑀
1 (−𝐴𝑢 + 𝐵V − 𝐶𝑤) ,

V
𝑡
− 𝑑
2
ΔV − Σ𝑏

𝑖
V
𝑥𝑖
= 𝑀
2 (𝐷𝑢 − 𝐸V) ,

𝑤
𝑡
− 𝑑
3
Δ𝑤 − Σ𝑐

𝑖
𝑤
𝑥𝑖
= 𝑀
3 (𝐹𝑢 − 𝐺𝑤) ,

𝜕𝑢

𝜕𝑛
=
𝜕V

𝜕𝑛
=
𝜕𝑤

𝜕𝑛
= 0 on 𝜕Ω × R,

(39)

where 𝑑
𝑖
, 𝑀
𝑖
, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, and 𝐺 are positive smooth 𝑇-

periodic functions onΩ×R and where 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are smooth

𝑇-periodic functions. If

𝐵(
𝐷

𝐸
)
𝑀

+ 𝐶(
𝐹

𝐺
)
𝑀

< 𝐴, (40)

then 𝑢 = V = 𝑤 = 0.

Proof. Let (𝑢, V, 𝑤) be a smooth 𝑇-periodic solution of (39),
and let positive constants 𝜀,𝑚, 𝑘, and 𝑙 be chosen so that

𝑀
1𝐿 (𝐴 − 𝐵𝑘 − 𝐶𝑙) ≥ 𝜀, 𝑀

2𝐿 (𝐸𝑘 − 𝐷) ≥ 𝜀𝑘,

𝑀
3𝐿 (𝐺𝑙 − 𝐹) ≥ 𝜀𝑙, 𝑢

𝑀
≤ 𝑚,

V
𝑀
≤ 𝑚𝑘, 𝑤

𝑀
≤ 𝑚𝑙.

(41)

Such choices are obviously possible because (40) holds.

It is easy to verify that𝑚(1, 𝑘, 𝑙)𝑒−𝜀𝑡 and −𝑚(1, 𝑘, 𝑙)𝑒−𝜀𝑡 are
a pair of ordered upper and lower solutions of (39). Thus,
−𝑚𝑒
−𝜀𝑡 ≤ 𝑢(𝑥, 𝑡) ≤ 𝑚𝑒−𝜀𝑡. This implies that 𝑢(𝑥, 𝑡) = 0

because 𝑢(𝑥, 𝑡) is 𝑇-periodic in 𝑡.
Similarly, V = 0 = 𝑤. This completes the proof.

Lemma 8 (uniqueness). Assume that (9) and (10) hold. If

𝐵
1𝑀

𝐵
2𝑀

𝜀
𝑢2

+
𝐴
3𝑀

𝐶
2𝑀

𝛿2
𝑢3

(1 + 𝐴
3𝐿
𝜀
𝑢3
) 𝜀2
𝑢3

<
𝜀
𝑢1
(1 + 𝐴

3𝐿
𝜀
𝑢3
)

𝐴
1𝑀

𝐴
2𝑀

𝛿
𝑢1
𝛿
𝑢2

,

(42)

then the problem (8) has a unique positive 𝑇-periodic solution.

Proof. Let 𝛼 = 𝑢𝑇
1
/𝑢
1𝑇
−1, 𝛽 = 1−𝑢

2𝑇
/𝑢𝑇
2
and 𝛾 = 𝑢𝑇

3
/𝑢
3𝑇
−1.

By Theorem 1, we have

𝛼
𝑡
− 𝑑
1
Δ𝛼 −

2𝑑
1

𝑈
1𝑇

Σ𝑢
1𝑇𝑥𝑖

𝛼
𝑥𝑖

=
𝑔
1
𝑢𝑇
1

𝑢
1𝑇

[
−𝑢
1𝑇
𝛼

𝐴
1

+
𝐴
2
𝑢𝑇
2
𝛽

1 + 𝐴
3
𝑢𝑇
3

−
𝐴
2
𝐴
3
𝑢𝑇
2
𝑢
3𝑇
𝛾

(1 + 𝐴
3
𝑢𝑇
3
) (1 + 𝐴

3
𝑢
3𝑇
)
] ,

𝛽
𝑡
− 𝑑
2
Δ𝛽 −

2𝑑
2

𝑈𝑇
2

Σ𝑢
𝑇

2𝑥𝑖
𝛽
𝑥𝑖

=
𝑔
2
𝑢
2𝑇

𝑢𝑇
2

[𝐵
1
𝑢
1𝑇
𝛼 −

𝑢𝑇
2
𝛽

𝐵
2

] ,

𝛾
𝑡
− 𝑑
3
Δ𝛾 −

2𝑑
3

𝑈
3𝑇

Σ𝑢
3𝑇𝑥𝑖

𝛾
𝑥𝑖

=
𝑔
3
𝑢𝑇
3

(𝐶
1
+ 𝐶
2
𝑢
1𝑇
) 𝑢
3𝑇

[
𝐶
2
𝑢
1𝑇
𝑢𝑇
3
𝛼

𝐶
1
+ 𝐶
2
𝑢𝑇
1

− 𝑢
3𝑇
𝛾] ,

𝜕𝛼

𝜕𝑛
=
𝜕𝛽

𝜕𝑛
=
𝜕𝛾

𝜕𝑛
= 0 on 𝜕Ω × (0,∞) .

(43)

It follows from Lemmas 2 and 7 and the conditions (9), (10),
and (42) that 𝛼 = 𝛽 = 𝛾 = 0. This completes the proof.

Theorem 9. If all conditions of Theorem 4 and (42) are
satisfied, then

(𝑢
1𝑇
, 𝑢
𝑇

2
, 𝑢
3𝑇
) = (𝑢

𝑇

1
, 𝑢
2𝑇
, 𝑢
𝑇

3
) ∼ (𝑢

1
, 𝑢
2
, 𝑢
3
) (44)

for any positive solution (𝑢
1
, 𝑢
2
, 𝑢
3
) of (1)–(3).

Proof. By some elementary calculations, we know that
Theorem 9 is an immediate corollary of Theorem 4 and
Lemma 8.
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Example 10. Consider the following asymptotically periodic
system:

𝑢
1𝑡
− (2 + sin 𝑡) 𝑢1𝑥𝑥

= (1 + sin2 (𝑡 + 𝑥) 𝑒
−𝑡
2

) 𝑢
1
(1 − 𝑢

1
−

𝑢
2

1 + 𝑢
3

) ,

𝑢
2𝑡
− (2 − sin 𝑡) 𝑢2𝑥𝑥

= 𝑢
2
(1 − (

3

8
+

1

24
cos2 (𝑡 + 𝑥)) 𝑢1 − 𝑢

2
) in (0, 1) × R,

𝑢
3𝑡
− 𝑢
3𝑥𝑥

= 𝑢
3
(1 −

𝑢
3

5/12 + (7/12) sin2 (𝑡 − 𝑥) + 𝑢
1

) ,

𝑢
𝑖𝑥 (0, 𝑡) = 𝑢

𝑖𝑥 (1, 𝑡) = 0 on R (𝑖 = 1, 2, 3) .

(45)

It is not hard to verify that all conditions of Theorem 9 are
satisfies. Thus, any positive solution of (45) asymptotically
approach the unique positive periodic solution of the limit
periodic system of (45).

4. Case 𝑎
3
= 0

The following results are natural generalizations of the main
results in [20] which can be proved in the similar way as to
proveTheorems 4 and 9.

Theorem 11. Assume the following.
(A
1
) 𝑑
1
, 𝑑
2
, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹 are positive smooth 𝑇-

periodic functions on Ω × R.
(A
2
) 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are positive smooth functions onΩ×

R:
(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) ∼ (𝐴, 𝐵, 𝐶,𝐷, 𝐸, 𝐹) ,

(
𝐹

𝐷
)
𝐿

> (
𝐶

𝐴
)
𝑀

, (
𝐵

𝐴
)
𝐿

> (
𝐸

𝐷
)
𝑀

.
(46)

Then the limit periodic system of (4)

𝑈
𝑡
− 𝑘
1
Δ𝑈 = 𝑈 (𝐴 − 𝐵𝑈 − 𝐶𝑉) 𝑖𝑛 Ω × R,

𝑉
𝑡
− 𝑘
2
Δ𝑉 = 𝑉 (𝐷 − 𝐸𝑈 − 𝐹𝑉) 𝑖𝑛 Ω × R,

𝜕𝑈

𝜕𝑛
= 0 =

𝜕𝑉

𝜕𝑛
𝑜𝑛 𝜕Ω × R

(47)

has the positive 𝑇-periodic maxmini solution (𝑈𝑇, 𝑉
𝑇
) and

minimax solution (𝑈
𝑇
, 𝑉𝑇). Moreover, if (𝑢, V) is any positive

solution of (4) with smooth initial value (𝑢
0
, V
0
), then 𝑈

𝑇
≺

𝑢 ≺ 𝑈𝑇 and 𝑉
𝑇
≺ V ≺ 𝑉𝑇. In addition, if

(
𝐶

𝐴
)
𝑀

(
𝐸

𝐷
)
𝑀

[(
𝐹

𝐷
)
𝑀

− (
𝐶

𝐴
)
𝐿

] [(
𝐵

𝐴
)
𝑀

− (
𝐸

𝐷
)
𝐿

]

< (
𝐵

𝐴
)
𝐿

(
𝐹

𝐷
)
𝐿

[(
𝐹

𝐷
)
𝐿

− (
𝐶

𝐴
)
𝑀

] [(
𝐵

𝐴
)
𝐿

− (
𝐸

𝐷
)
𝑀

] ,

(48)

then (47) has the unique positive 𝑇-periodic solution (𝑈, 𝑉)

and

(𝑢 (⋅, 𝑡) , V (⋅, 𝑡)) ∼ (𝑈 (⋅, 𝑡) , 𝑉 (⋅, 𝑡)) . (49)
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