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For 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏, the Schwab-Borchardtmean SB(𝑎, 𝑏) is defined as SB(𝑎, 𝑏) = {√𝑏2 − 𝑎2/cos−1(𝑎/𝑏) if 𝑎 < 𝑏,√𝑎2 − 𝑏2/cosh
−1

(𝑎/𝑏) if a > 𝑏. In this paper, we find the greatest values of 𝛼
1
and 𝛼

2
and the least values of𝛽

1
and𝛽

2
in [0, 1/2] such that𝐻(𝛼

1
𝑎+(1−

𝛼
1
)𝑏, 𝛼
1
𝑏+(1−𝛼

1
)𝑎) < 𝑆

𝐴𝐻
(𝑎, 𝑏) < 𝐻(𝛽

1
𝑎+(1−𝛽

1
)𝑏, 𝛽
1
𝑏+(1−𝛽

1
)𝑎) and𝐻(𝛼

2
𝑎+(1−𝛼

2
)𝑏, 𝛼
2
𝑏+(1−𝛼

2
)𝑎) < 𝑆

𝐻𝐴
(𝑎, 𝑏) < 𝐻(𝛽

2
𝑎+

(1−𝛽
2
)𝑏, 𝛽
2
𝑏+(1−𝛽

2
)𝑎). Similarly, we also find the greatest values of 𝛼

3
and 𝛼

4
and the least values of 𝛽

3
and 𝛽

4
in [1/2, 1] such that

𝐶(𝛼
3
𝑎+(1−𝛼

3
)𝑏, 𝛼
3
𝑏+(1−𝛼

3
)𝑎) < 𝑆

𝐶𝐴
(𝑎, 𝑏) < 𝐶(𝛽

3
𝑎+(1−𝛽

3
)𝑏, 𝛽
3
𝑏+(1−𝛽

3
)𝑎) and𝐶(𝛼

4
𝑎+(1−𝛼

4
)𝑏, 𝛼
4
𝑏+(1−𝛼

4
)𝑎) < 𝑆

𝐴𝐶
(𝑎, 𝑏) <

𝐶(𝛽
4
𝑎+(1−𝛽

4
)𝑏, 𝛽
4
𝑏+ (1−𝛽

4
)𝑎). Here,𝐻(𝑎, 𝑏) = 2𝑎𝑏/(𝑎+𝑏),𝐴(𝑎, 𝑏) = (𝑎+𝑏)/2, and𝐶(𝑎, 𝑏) = (𝑎2 +𝑏2)/(𝑎+𝑏) are the harmonic,

arithmetic, and contraharmonic means, respectively, and 𝑆
𝐻𝐴
(𝑎, 𝑏) = SB(𝐻,𝐴), 𝑆

𝐴𝐻
(𝑎, 𝑏) = SB(𝐴,𝐻), 𝑆

𝐶𝐴
(𝑎, 𝑏) = SB(𝐶, 𝐴), and

𝑆
𝐴𝐶
(𝑎, 𝑏) = SB(𝐴, 𝐶) are four Neuman means derived from the Schwab-Borchardt mean.

1. Introduction

For 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, the Schwab-Borchardt mean SB(𝑎, 𝑏)
is defined as

SB (𝑎, 𝑏) =

{
{
{
{
{

{
{
{
{
{

{

√𝑏
2
− 𝑎
2

cos−1 (𝑎/𝑏)
if 𝑎 < 𝑏,

√𝑎
2
− 𝑏
2

cosh−1 (𝑎/𝑏)
if 𝑎 > 𝑏.

(1)

It is well known that the mean SB(𝑎, 𝑏) is strictly increasing
in both 𝑎 and 𝑏, nonsymmetric, and homogeneous of degree 1
in its variables. Several symmetric bivariate means are special
cases of the Schwab-Borchardt mean; for example,

𝑃 (𝑎, 𝑏) =

𝑎 − 𝑏

2sin−1 [(𝑎 − 𝑏) / (𝑎 + 𝑏)]

= SB (𝐺, 𝐴) is the first Seiffert mean,

𝑇 (𝑎, 𝑏) =

𝑎 − 𝑏

2tan−1 [(𝑎 − 𝑏) / (𝑎 + 𝑏)]

= SB (𝐴, 𝑄) is the second Seiffert mean,

𝑀 (𝑎, 𝑏) =

𝑎 − 𝑏

2sinh−1 [(𝑎 − 𝑏) / (𝑎 + 𝑏)]

= SB (𝑄, 𝐴) is the Neuman-Sándor mean,

𝐿 (𝑎, 𝑏) =

𝑎 − 𝑏

2tanh−1 [(𝑎 − 𝑏) / (𝑎 + 𝑏)]

= SB (𝐴, 𝐺) is the logarithmic mean,
(2)

where 𝐺(𝑎, 𝑏) = √𝑎𝑏, 𝐴(𝑎, 𝑏) = (𝑎 + 𝑏)/2 and 𝑄(𝑎, 𝑏) =

√(𝑎
2
+ 𝑏
2
)/2 denote the classical geometric mean, arithmetic

mean, and quadratic mean, respectively.
The Schwab-Borchardt mean SB(𝑎, 𝑏) was firstly investi-

gated in [1–4]. In [3], the authors pointed out that the loga-
rithmic mean, two Seiffert means, and the Neuman-Sándor
mean are particular cases of the Schwab-Borchardt mean.
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Later, SB and its special cases have been the subject of inten-
sive research. In particular, many inequalities for them can be
found in the literature [3–13].

Let 𝐻(𝑎, 𝑏) = 2𝑎𝑏/(𝑎 + 𝑏), 𝐶(𝑎, 𝑏) = (𝑎
2
+ 𝑏
2
)/(𝑎 + 𝑏)

be the harmonic and contraharmonic means of two positive
numbers 𝑎 and 𝑏, respectively. Then, it is well known that

𝐻 < 𝐺 < 𝐿 < 𝑃 < 𝐴 < 𝑀 < 𝑇 < 𝑄 < 𝐶. (3)

for 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Recently, the second author of this paper reviewed two

elegant papers [14, 15] byNeuman and found that the bivariate
means 𝑆

𝐴𝐻
, 𝑆
𝐻𝐴

, 𝑆
𝐶𝐴
, and 𝑆

𝐴𝐶
, derived from the Schwab-

Borchardt mean are very interesting. They are defined as
follows:

𝑆
𝐴𝐻

= SB (𝐴,𝐻) , 𝑆
𝐻𝐴

= SB (𝐻,𝐴) ,

𝑆
𝐶𝐴

= SB (𝐶, 𝐴) , 𝑆
𝐴𝐶

= SB (𝐴, 𝐶) .
(4)

We call the means 𝑆
𝐴𝐻

, 𝑆
𝐻𝐴

, 𝑆
𝐶𝐴
, and 𝑆

𝐴𝐶
, defined in (4)

the Neuman means. Moreover, if we let V = (𝑎 − 𝑏)/(𝑎 + 𝑏) ∈
(−1, 1), then explicit formulas for 𝑆

𝐴𝐻
, 𝑆
𝐻𝐴

, 𝑆
𝐴𝐶

, and 𝑆
𝐶𝐴

are
in the following:

𝑆
𝐴𝐻

= 𝐴

tanh (𝑝)
𝑝

, 𝑆
𝐻𝐴

= 𝐴

sin (𝑞)
𝑞

, (5)

𝑆
𝐶𝐴

= 𝐴

sinh (𝑟)
𝑟

, 𝑆
𝐴𝐶

= 𝐴

tan (𝑠)
𝑠

, (6)

where 𝑝, 𝑞, 𝑟, and 𝑠 are defined implicitly as sech (𝑝) = 1 −

V2, cos(𝑞) = 1 − V2, cosh(𝑟) = 1 + V2 and sec(𝑠) = 1 + V2,
respectively. Clearly, 𝑝 ∈ (0,∞), 𝑞 ∈ (0, 𝜋/2), 𝑟 ∈ (0, log(2 +
√3)), and 𝑠 ∈ (0, 𝜋/3).

Neuman [14, 15] presented several optimal bounds for
𝑆
𝐻𝐴

, 𝑆
𝐴𝐻

, 𝑆
𝐶𝐴
, and 𝑆

𝐴𝐶
. The bounding quantities are arith-

metic convex, geometric convex, and harmonic convex com-
binations of their generating means. Besides, he also proved
that

𝐻 < 𝑆
𝐴𝐻

< 𝐿 < 𝑆
𝐻𝐴

< 𝑃,

𝑇 < 𝑆
𝐶𝐴

< 𝑄 < 𝑆
𝐴𝐶

< 𝐶,

(7)

for 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
For fixed 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, 𝑥 ∈ [0, 1/2] and 𝑦 ∈ [1/2, 1].

Let

𝑓 (𝑥) = 𝐻 (𝑥𝑎 + (1 − 𝑥) 𝑏, 𝑥𝑏 + (1 − 𝑥) 𝑎) ,

𝑔 (𝑦) = 𝐶 (𝑦𝑎 + (1 − 𝑦) 𝑏, 𝑦𝑏 + (1 − 𝑦) 𝑎) .

(8)

Then, it is not difficult to verify that 𝑓(𝑥) and 𝑔(𝑦) are con-
tinuous and strictly increasing on [0, 1/2] and [1/2, 1],
respectively. Note that𝑓(0) = 𝐻 < 𝑆

𝐴𝐻
< 𝑆
𝐻𝐴

< 𝐴 = 𝑓(1/2),
𝑔(1/2) = 𝐴 < 𝑆

𝐶𝐴
< 𝑆
𝐴𝐶

< 𝐶 = 𝑔(1). Therefore, it is natural
to ask what are the greatest values of 𝛼

1
and 𝛼

2
and the least

values of𝛽
1
and𝛽
2
in [0, 1/2] such that𝐻(𝛼

1
𝑎+(1−𝛼

1
)𝑏, 𝛼
1
𝑏+

(1 − 𝛼
1
)𝑎) < 𝑆

𝐴𝐻
(𝑎, 𝑏) < 𝐻(𝛽

1
𝑎 + (1 − 𝛽

1
)𝑏, 𝛽
1
𝑏 + (1 − 𝛽

1
)𝑎)

and 𝐻(𝛼
2
𝑎 + (1 − 𝛼

2
)𝑏, 𝛼
2
𝑏 + (1 − 𝛼

2
)𝑎) < 𝑆

𝐻𝐴
(𝑎, 𝑏) <

𝐻(𝛽
2
𝑎+ (1−𝛽

2
)𝑏, 𝛽
2
𝑏+ (1−𝛽

2
)𝑎)? And what are the greatest

values of 𝛼
3
and 𝛼
4
and the least values of 𝛽

3
and 𝛽
4
in [1/2, 1]

such that 𝐶(𝛼
3
𝑎 + (1 − 𝛼

3
)𝑏, 𝛼
3
𝑏 + (1 − 𝛼

3
)𝑎) < 𝑆

𝐶𝐴
(𝑎, 𝑏) <

𝐶(𝛽
3
𝑎+(1−𝛽

3
)𝑏, 𝛽
3
𝑏+(1−𝛽

3
)𝑎) and𝐶(𝛼

4
𝑎+(1−𝛼

4
)𝑏, 𝛼
4
𝑏+

(1 − 𝛼
4
)𝑎) < 𝑆

𝐴𝐶
(𝑎, 𝑏) < 𝐶(𝛽

4
𝑎 + (1 − 𝛽

4
)𝑏, 𝛽
4
𝑏 + (1 − 𝛽

4
)𝑎)?

The main purpose of this paper is to answer these questions.
Our main results are inTheorems 1 and 2.

Theorem 1. Let 𝛼
1
, 𝛼
2
, 𝛽
1
, 𝛽
2
∈ [0, 1/2]. Then, the double

inequality

𝐻(𝛼
1
𝑎 + (1 − 𝛼

1
) 𝑏, 𝛼
1
𝑏 + (1 − 𝛼

1
) 𝑎)

< 𝑆
𝐴𝐻

< 𝐻 (𝛽
1
𝑎 + (1 − 𝛽

1
) 𝑏, 𝛽
1
𝑏 + (1 − 𝛽

1
) 𝑎)

(9)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
1
= 0 and 𝛽

1
≥

[3 − √6]/6. Also the double inequality

𝐻(𝛼
2
𝑎 + (1 − 𝛼

2
) 𝑏, 𝛼
2
𝑏 + (1 − 𝛼

2
) 𝑎)

< 𝑆
𝐻𝐴

< 𝐻 (𝛽
2
𝑎 + (1 − 𝛽

2
) 𝑏, 𝛽
2
𝑏 + (1 − 𝛽

2
) 𝑎)

(10)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
2
≤ [1 −

√1 − 2/𝜋]/2 and 𝛽
2
≥ [3 − √3]/6.

Theorem 2. Let 𝛼
3
, 𝛼
4
, 𝛽
3
, 𝛽
4
∈ [1/2, 1]. Then, the double

inequality

𝐶 (𝛼
3
𝑎 + (1 − 𝛼

3
) 𝑏, 𝛼
3
𝑏 + (1 − 𝛼

3
) 𝑎)

< 𝑆
𝐶𝐴

< 𝐶 (𝛽
3
𝑎 + (1 − 𝛽

3
) 𝑏, 𝛽
3
𝑏 + (1 − 𝛽

3
) 𝑎)

(11)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
3
≤ [1 +

√√3/ log(2 + √3) − 1]/2 and𝛽
3
≥ (3+√3)/6. Also the double

inequality

𝐶 (𝛼
4
𝑎 + (1 − 𝛼

4
) 𝑏, 𝛼
4
𝑏 + (1 − 𝛼

4
) 𝑎)

< 𝑆
𝐴𝐶

< 𝐶 (𝛽
4
𝑎 + (1 − 𝛽

4
) 𝑏, 𝛽
4
𝑏 + (1 − 𝛽

4
) 𝑎)

(12)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
4
≤ [1 +

√3√3/𝜋 − 1]/2 and 𝛽
4
≥ (3 + √6)/6.

2. Two Lemmas

In order to prove the desired theorems, we first give two
lemmas.

Lemma 1 (see [16, Theorem 1.25]). For −∞ < 𝑎 < 𝑏 < ∞, let
𝑓, 𝑔 : [𝑎, 𝑏] → R be continuous on [𝑎, 𝑏], and be differentiable
on (𝑎, 𝑏), let 𝑔󸀠(𝑥) ̸= 0 on (𝑎, 𝑏). If 𝑓󸀠(𝑥)/𝑔󸀠(𝑥) is increasing
(decreasing) on (𝑎, 𝑏), then so are

𝑓 (𝑥) − 𝑓 (𝑎)

𝑔 (𝑥) − 𝑔 (𝑎)

,

𝑓 (𝑥) − 𝑓 (𝑏)

𝑔 (𝑥) − 𝑔 (𝑏)

. (13)

If 𝑓󸀠(𝑥)/𝑔󸀠(𝑥) is strictly monotone, then the monotonicity in
the conclusion is also strict.

Lemma 2. (1) The function 𝜑(𝑥) = (𝑥 cosh(𝑥) − sinh(𝑥))/
[𝑥(cosh(𝑥)−1)] is strictly increasing from (0,∞) onto (2/3, 1).
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(2) The function 𝜙(𝑥) = (𝑥 − sin(𝑥))/[𝑥(1 − cos(𝑥))] is
strictly increasing from (0, 𝜋/2) onto (1/3, (𝜋 − 2)/𝜋).

(3) The function 𝜉(𝑥) = (sinh(𝑥) − 𝑥)/[𝑥(cosh(𝑥) − 1)] is
strictly decreasing from (0, log(2 + √3)) onto ([√3 − log(2 +
√3)]/ log(2 + √3), 1/3).

(4)The function 𝜂(𝑥) = (sin(𝑥)−𝑥 cos(𝑥))/[𝑥(1−cos(𝑥))]
is strictly decreasing from (0, 𝜋/3) onto ((3√3 − 𝜋)/𝜋, 2/3).

Proof. From part (1), let 𝜑
1
(𝑥) = 𝑥 cosh(𝑥) − sinh(𝑥) and

𝜑
2
(𝑥) = 𝑥(cosh(𝑥) − 1). Then, 𝜑(𝑥) = 𝜑

1
(𝑥)/𝜑
2
(𝑥), 𝜑

1
(0) =

𝜑
2
(0) = 0, and

𝜑
󸀠

1
(𝑥)

𝜑
󸀠

2
(𝑥)

=

𝑥 sinh (𝑥)
cosh (𝑥) − 1 + 𝑥 sinh (𝑥)

=

1

1 + (cosh (𝑥) − 1) / (𝑥 sinh (𝑥))

=

1

1 + (1/2) tanh (𝑥/2) / (𝑥/2)
.

(14)

It is well known that 𝑥 → tanh(𝑥)/𝑥 is strictly decreasing on
(0,∞). Then, Lemma 1 and (14) lead to the conclusion that
𝜑(𝑥) is strictly increasing on (0,∞). Moreover, by l’Hôptial’s
rule we have 𝜑(0+) = 2/3 and lim

𝑥→+∞
𝜑(𝑥) = 1.

From part (2), similarly let 𝜙
1
(𝑥) = 𝑥−sin(𝑥) and 𝜙

2
(𝑥) =

𝑥(1 − cos(𝑥)). Then 𝜙(𝑥) = 𝜙
1
(𝑥)/𝜙
2
(𝑥), 𝜙

1
(0) = 𝜙

2
(0) = 0

and

𝜙
󸀠

1
(𝑥)

𝜙
󸀠

2
(𝑥)

=

1 − cos (𝑥)
1 − cos (𝑥) + 𝑥 sin (𝑥)

=

1

1 + 𝑥 sin (𝑥) / (1 − cos (𝑥))

=

1

1 + 2 (𝑥/2) / tan (𝑥/2)
.

(15)

It is well known that 𝑥 → tan(𝑥)/𝑥 is strictly increasing
on (0, 𝜋/2). Then, by Lemma 1 and (15) we know that 𝜙(𝑥)
is strictly increasing on (0, 𝜋/2). Clearly, 𝜙(𝜋/2) = (𝜋 − 2)/𝜋,
while by l’Hôptial’s rule we have 𝜙(0+) = 1/3.

Parts (3) and (4) have been proven in [14,Theorem3].

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. Without loss of generality, we assume
that 𝑎 > 𝑏. Let V = (𝑎 − 𝑏)/(𝑎 + 𝑏) ∈ (0, 1) and 𝜆 ∈ [0, 1/2];
then,

𝐻(𝜆𝑎 + (1 − 𝜆) 𝑏, 𝜆𝑏 + (1 − 𝜆) 𝑎) − 𝑆
𝐴𝐻

= 𝐴 [1 − (1 − 2𝜆)
2
V
2
] − 𝐴

tanh (𝑝)
𝑝

= 𝐴[1 − (1 − 2𝜆)
2
(1 − sech (𝑝)) −

tanh (𝑝)
𝑝

]

= 𝐴 (1 − sech (𝑝)) [
𝑝 cosh (𝑝) − sinh (𝑝)
𝑝 (cosh (𝑝) − 1)

− (1 − 2𝜆)
2
]

(16)

provided that sech(𝑝) = 1 − V2(𝑝 > 0). Thus, inequality (9)
follows from (16) and Lemma 2(1). Similarly,

𝐻(𝜆𝑎 + (1 − 𝜆) 𝑏, 𝜆𝑏 + (1 − 𝜆) 𝑎) − 𝑆
𝐻𝐴

= 𝐴 [1 − (1 − 2𝜆)
2
V
2
] − 𝐴

sin (𝑞)
𝑞

= 𝐴[1 − (1 − 2𝜆)
2
(1 − cos (𝑞)) −

sin (𝑞)
𝑞

]

= 𝐴 (1 − cos (𝑞)) [
𝑞 − sin (𝑞)

𝑞 (1 − cos (𝑞))
− (1 − 2𝜆)

2
]

(17)

provided that cos(𝑞) = 1 − V2 (𝑞 ∈ (0, 𝜋/2)). Thus, inequality
(10) follows from (17) and Lemma 2(2).

Proof of Theorem 2. Without loss of generality, we assume
that 𝑎 > 𝑏. Let V = (𝑎 − 𝑏)/(𝑎 + 𝑏) ∈ (0, 1) and 𝜇 ∈ [1/2, 1],
then

𝐶 (𝜇𝑎 + (1 − 𝜇) 𝑏, 𝜇𝑏 + (1 − 𝜇) 𝑎) − 𝑆
𝐶𝐴

= 𝐴 [1 + (1 − 2𝜇)
2

V
2
] − 𝐴

sinh (𝑟)
𝑟

= 𝐴[1 + (1 − 2𝜇)
2

(cosh (𝑟) − 1) − sinh (𝑟)
𝑟

]

= 𝐴 (cosh (𝑟) − 1) [(1 − 2𝜇)2 − sinh (𝑟) − 𝑟
𝑟 (cosh (𝑟) − 1)

]

(18)

provided that cosh(𝑟) = 1 + V2 (𝑟 ∈ (0, cosh−1(2))). Thus,
inequality (11) follows from (18) and Lemma 2(3). Similarly,

𝐶 (𝜇𝑎 + (1 − 𝜇) 𝑏, 𝜇𝑏 + (1 − 𝜇) 𝑎) − 𝑆
𝐴𝐶

= 𝐴 [1 + (1 − 2𝜇)
2

V
2
] − 𝐴

tan (𝑠)
𝑠

= 𝐴 [1 + (1 − 2𝜇)
2

(sec (𝑠) − 1) − tan (𝑠)
𝑠

]

= 𝐴 (sec (𝑠) − 1) [(1 − 2𝜇)2 − sin (𝑠) − 𝑠 cos (𝑠)
𝑠 (1 − cos (𝑠))

]

(19)

provided that sec(𝑠) = 1 + V2 (𝑠 ∈ (0, 𝜋/3)). Thus, inequality
(12) follows from (19) and Lemma 2(4).
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