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The current paper is devoted to the regularity of the mild solution for a stochastic fractional delayed reaction-diffusion equation
driven by Lévy space-time white noise. By the Banach fixed point theorem, the existence and uniqueness of the mild solution are
proved in the proper working function space which is affected by the delays. Furthermore, the time regularity and space regularity
of the mild solution are established respectively. The main results show that both time regularity and space regularity of the mild
solution depend on the regularity of initial value and the order of fractional operator. In particular, the time regularity is affected

by the regularity of initial value with delays.

1. Introduction

Recently, fractional partial differential equations attract more
and more attention. They appear more and more frequently
in different research areas and engineering applications. They
have been applied to model various phenomena in image
analysis, risk management, and statistical mechanics (see,
e.g., [1, 2]). There are many papers concerning the existence
and regularity of the solution for fractional Navier-Stokes,
fractional Ginzburg-Landau equation, fractional Burgers
equation, fractional Langevin equation, and so on (see [3, 4]
and references therein).

Stochastic partial differential equations driven by Gaus-
sian noise and non-Gaussian noise such as Lévy noise have
also attracted a lot of attention. It seems more significant to
investigate fractional partial differential equations with some
random force, and some authors have investigated the exis-
tence and regularity of the solutions for stochastic fractional
partial differential equations ([2, 5-7] and the references
therein). The authors in [6, 7] proved the existence and
uniqueness of the solution for a stochastic fractional partial
differential equation driven by a space-time white noise in
one dimension. Truman and Wu in [8] applied the Banach
fixed point theorem to show the existence and uniqueness of
the mild solution for fractal Burgers equations driven by Lévy
noise on real line. Brzezniak and Debbi in papers [9, 10]
proved the existence and ergodicity of the solution for fractal
Burgers equation driven by Gaussian space-time white noise,

and we refer to [9, 10] for more details. In mathematical biol-
ogy and other fields, delays are often considered in the model
such as maturation time for population dynamics. Some
efforts have been devoted to the development of the theory of
PDEs with delay. Such equations are naturally more difficult
since they are infinite dimensional both in time and space
variables. We refer to the monographs [11,12] for more details.
To our knowledge, there is no paper to study the stochastic
fractional reaction-diffusion equation with delays.

It is worth to point out that the authors in [8] study the
existence of the mild solution for stochastic fractional Burgers
equation driven by Lévy noise, but they could not provide the
regularity of the mild solution. The authors in [7, 13] study
the regularity of the mild solution for stochastic fractional
partial differential equations driven by Gaussian white noise,
but not Lévy noise. There is a natural question, how about
the regularity of the mild solution for the stochastic fraction
delayed reaction-diffusion equation driven by Lévy noise?

Motivated by [8], in the present paper, we will study the
stochastic fractional reaction-diffusion equation with delays

driven by Lévy process followed as:
&% = A u(t,x) + f(t,x,u,)

+g(txuw)Z,, (t,x)e€[0,TIxR,

u(0,x) = uy (x), u(n,x)=¢(n,x), nel-r0] ,(1)



where A, := —(~d?/dx*)*? is the fractional Laplacian oper-
ator with « € (0, 2], the constants A € R, f,g: [0,00) X R x
R — Rare measurable, the functionu, = u(t+#),and Z, , is
the one-dimensional Lévy process (see Section 2 for the def-
inition). Recall that D, reduces to be the Laplacian operator
when « = 2.

In this paper, the existence, uniqueness, time regularity,
and space regularity of the mild solution for (1) are shown
for « € (1,2] in the proper working function space which is
affected by the delays. The main results show that both time
regularity and space regularity of the mild solution for (1)
depend on the regularity of initial value and the order of frac-
tional operator. In particular, the time regularity is affected by
the the regularity of initial value with delays.

The rest of this paper is organized as follows. In Section 2,
we introduce the definition of the Lévy space-time white
noise. Then, some useful properties for the fractional Green
kernel are presented. In Section 3, the proper working func-
tion space is constructed. Then the existence and uniqueness
of the mild solution for (1) are proved by the Banach fixed
point theorem in the proper working function space. Finally,
the time regularity and space regularity of the mild solution
are provided, respectively, in Section 4.

2. Preliminaries

In this section, we first introduce the Lévy space-time white
noise. Then, some useful properties for the fractional Green
kernel are presented.

Let (Q, F,{F},50,P) be a complete probability space
with filtration {#},, satisfying the usual condition. For one-
dimensional Lévy process Z,,, it follows from Lévy-Ito
decomposition that there exist a constant f3; and a nonneg-
ative constant f3,, and a one-dimensional space-time white
noise W, , = (0°W/dtdx)(t, x) (W (¢, x) is a Brownian sheet
on [0, 00) x R) such that

Zyy =Pt + LWy, + J zN (t, x,dz)
|z|<1
(2)
+ J zN (t,x,dz),
|z|>1
where
N (t,x, A) == N (t,x,A) — tv (A), (3)

where v(A) := E[N(1, A)] is the Lévy measure of Z, ...
Similar to [14], for any p, we denote

c, = (JR |z|pv(dz))l/P. (4)

In what follows, we assume that

¢ := supc, < 00.
o P (5)
Recalling that
J zN (t,x,dz) = J zN (t,x,dz) + tj zv(dz).
|z|<1 |z|<1 |z|<1
(6)
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By absorbing 8 := — I|Z|< 2¥(dz) into B, we can rewrite (2)
into the following equation:

Zm=ﬁﬁ+&W¢+JzNUwﬁd- @)
R

Let 3, = 0; then (1) can be written as
du(t,x) = [AAu(t,x)+ f(t,x,u,)] dt
+h(t,x,u,) dW,

(8)
+g(t,x,u,)dy,

t,x>

u(n,x) =¢(nx),

where W, | is a one-dimensional space-time white noise and

(t,x) € [0, T] xR,

u (0, x) = uy (x), n e (r,0],

Y, = JR zN(t, x,dz) is a one-dimensional pure jump Lévy
process with Lévy measure of v. We suppose that W generates
a {F},5o-martingale measure in the sense of Walsh [15].

The following assumptions are imposed to the initial data
u, and (7, x), f(u,), h(u,), and g(u,) to show the existence
and uniqueness of the mild solution.

(H1) The initial data u, which is % j-measurable and ¢
satisfy

sup|u(0,x)|2 < 00,
x€R

0
supj ¢ (7, x)"dy < 00. (9)
xeR J-r
(H2) There exists a constant K such that for all t > 0,
2 2 2
1 @) + ) + (] 1o @12l v(@2))
R
0
< K(Iul2 + J Jua (£ + ’7)|2d’7>>
1f @) = £ G + [ () = h () (10)
2
+([ lat) - gl v (@)

<K<|u—v|2+ Jor|u(t+r1)—v(t+;1)|2d11>.

Let the Green kennel G, (¢, x) be the fundamental solu-
tion of the Cauchy problem:
dv

— =AM, (tx) € (0,00) xR,
ot (11)

v(0,x)=8,(x), x€R,

where §,(x) denotes the Dirac function. By Fourier trans-
form,

G, (t,x) = [g‘l (e“"'“)] (x). (12)

A higher order fractional Green kennel is introduced in [16].

The following lemma gives some useful properties about
G, (t, x), which are key technique tools to get the estimation
for the existence and uniqueness of the mild solution.



Abstract and Applied Analysis

Lemmal (see [7]). The Green kernel function G, (t, x) satisfies
the following properties.

(1) Foranyt >0 G,(t,x) = tfl/“Ga(l, )
(2) Forne (1/(a+1),a+1), jOT [ 1G(t, x)I"dt dx < co.

(3) Forany x € R, _[R G, (t,x)dx = 1.
(4) Foranyt,s € R, G,(t, x) * Gy(s,x) = G, (t + 5, ).

(5) For any x € R, there exists a constant C such that

G,(1,x) <

1+ |x|1+zx >

le(x+m—1 (13)

"G, (1,x) s C————.
X ( ) 1+ |x|1+oc

3. Existence of the Mild Solution

In this section, we will first construct the proper working
function space.

Let T be a fixed positive time and B the class of all &,-
adapted cadlag process {u(t, x), (t, x) € [0, T] x R} satisfying

sup E[Iu(t, x)|2] < 00. (14)
(t,x)€[0,TIxR

Let A > 0 be arbitrarily fixed; we define

T
uf? = {J e Msup Elu (¢, x)|2dt}
0 >0

x€R

. (15)
+ H e MEut, x)|2dt}

te(-r,0)

Foranyu € B, |ul} < co.Itis easy to verify that | - |, isa norm
and (B, | - |,) is a Banach space.

Let (Q, F, (F )10, P) and G, (¢, x) be given as in the pre-
vious section. Following the idea in [17], we represent a mild
solution of (8) fort > 0.

Definition 2. An # ,-adapted random field {u(t, x),t > 0,x €

R} is said to be a mild solution of (8) with initial value u,
satisfying (H1) if the following integral equation is fulfilled:

u(t,x) = JRG“ (t,x = y)uy (y)dy
! Lt JRG“(t_S’x‘J’)f(Ms)dyds
# [ [ Gelt=sx =))W (.

+ Jt J] G, (t-s,x—y)g(u,)zN (ds,dy,dz),
oJr )

where the stochastic integral with respect to W (t, x) is under-
stood in the sense of that introduced by Walsh [15].

Theorem 3. Fort > 0 and « € (1,2], assume that (HI) and
(H2) hold, then there exists a unique mild solution u € B for

(8).

Remark 4. In the following proof, C is a local constant which
may change from line to line.

Proof. We will prove the theorem by the following two steps.

Step 1. Suppose that u € B and denote

Tu(t,x) = .[RG“ (tx—y)uy (y)dy + T u(t, x)

17)
+ T ,u(t,x) + T 5u(t,x),
where
t
Tu(t,x) = J J G, (t—s,x-y) f (u,)dyds,
o Jr

TLu(t,x) = Jo JRGa(t—s,x—y)h(us)W(dy,ds), (

18)

-

o= [f ut-sx

x g (uy) zN (ds,dy,dz).

It follows from Holder’s inequality, Lemma 1, (H1), and (H2)
that

E|T u(t,x)|

2

=E Lt .[RG“ (t-s,x—y) f(u)dyds

t
SCJ J G, (t-s,x-y)dyds
0 Jr

[ [ atmsm s

t
SCKJ J G, (t-sx-y)
0o Jr

2

XE<|“(S>)’)|

0
+ J u(s+7, y)|2d11> dyds

-r

t
< CJ sup E <|u (s, )
0 yeR

+ J'_O, v (s +1, y)|2d11) ds

t 0
SCt+CJ j sup E|u (s + 1, y)|’dn ds

0 7 yeR

0 t
SCt+Cj J sup E|u (s, y)['ds dn

-r J-r yeR



0
<Ct+Cr J sup E|u (s, y)|’ds
-1 yeR

t
+Cr J sup E|u (s, y)|*ds
0 yeR
<Ct(r+1)+Cr < oo.
19)

Applying Burkholder-Davis-Gundy inequality, Lemma 1,
(H1), and (H2), we have

E|Tu (t,%)|’

= EILt J{RG“ (t=s,x—y)h(u)W (dsdy) 2

t
SCJ J G2 (t—s,x— y) E|h (u,)[dsdy
0 Jr

t
0

<CK j (t —s)/*supE <Iu (s )
yeR
0 2
+ J [u(s+19) dﬂ) ds

[Jesn-ore

-r

0
<ct 9 4 ¢ j

—-r

x supE|u (s, y)|*ds dn
yeR

t+n 0 1
=Ct17(1/“)+C(J j(t+11—s) “dn

—r —

x supE|u (s, y)|*ds
yeR

t 0 Ve
+J j (s—=n—t) "dny
t

+n J-r

xsupE|u (s, y)lzds)
yeR

t+n
<ct M9 4 ¢ (J (t — )7
-r

x supElu (s, y)|’ds
yeR

t
+ J (s+r—t) 1/
t+n

xsupE|u (s, y)|2ds)
yeR

0
¢y ¢ (J (t —5)' "/
—-r

x supE|u (s, y)|*ds
yeR

t 1-(1/e)
+ (t-1s)
0

x supE|u (s, y)|*ds
yeR
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t
+ J (s+r—1)" W
t+n

xsupElu (s, y)|2ds)
yeR

<C(£V0 4 (4 )0

W) rHl/“)) < 00,

(20)
E|T 5u (t,%)|

2

=E Jt “RG“ (t-—s,x-y)g(u,)zN (ds,dy,dz)

0

t
2
SCJ0 JRGa(t—s,x—y)
2
X E(JR lg (uy)| Izl v(dz)) dyds
<CK Jt (t —s)"/*supE (|u (s, )
0 yER

0
+ J |u (s + 11,)/)|2d11> ds

<C(t7V 4 (¢ 40

A rzf(l/“)) < 0.
(21)
Thus, combining (19) and (20) with (21), we derive
Elu(t, ) < C[t(r+1)+r+¢ "0
+ (t+ )W 4 2 (22)
0]

Taking Laplace transform formula and (22), we deduce that
|Tu (&, )13

T
_ J e Moup|Tu (¢, x)2dt
0 x€R

o0
< CJ e [t (r+1)+r+ ¢
0

)1—(1/oc) 2—(1/a@)

+(t+r +t

+r27(1/“)] dt

<Cl[r+DT@A7+r!

1\ G-
+(er+1)l“<2——>/\ -1/
o
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+ r( ) \-6-(/a)
(04
+7’2_(1/a)A_1]
CAZ A+

AT o,
(23)

that is, Tu € B, which implies that operator 7 : B — B.

Step 2. For any u,v € Band ¢t > 0, it follows from Holder’s
inequality, Lemma 1, and (H2) that

E|J u(t,x) —

Lt JR Gy (t=s,x=y)(f (u;) = f (v,))dyds 2

T vt x)|

=E

t
SCJ J G, (t—s,x—y)dyds
0 Jr

<) [ Gute-sx =) lf ) - £ ) ayas

< oK [/ supt (u(5.9) (5.9

+ J, lu(s+my)-v(s+ 11,)/)|2d11> ds

t
<C <I supElu (s, y) = v (s, y)|'ds
0 yeR

0 [t
+ J J supElu (s, y) = v (s, y)[*ds dr])

-1 yeR

t
~c (0 [ supmlu(s,) - (o nfas
0 yeR

+r J'_O supE|u (s, y) = v (s, y)|2ds) :

r yeR
(24)

By Burkholder-Davis-Gundy inequality, Lemma 1 and (H2),
we have

E|J2u(t x)—T,v(t, x)|

—5|[ [ Gule=sx ) (1) - () W (dys)

0 JR

<C Lt JR G2 (t-s,x - y) Elh(u,) — h (v,)['dy ds

t
< CKJ (t —s) /%)
0

x supE <|u (s y)=v(s y)|2
yER

+ Ji [u(s+m,y)-v(s+n, y)|2d17> ds

t
<C (J (t — ) *supElu (s, y) - v (s, y)|’ds
0 yER
0t
+J J |t+r]—s|71/a
xsupE|u (s, y) - v (s, y)['ds dq)
yeR

t
<C (j (t - s)_l/“supE|u (s,y) -v (S, y)|2ds
0 yER

+Jt+nJ (t+n—s)""

=r

x supElu (s, y) - v (s, y)| dn ds
yeR

t 0 -1
R
t+n J-r

xsupE|” (s,y)-v (5>J’)|2d’I ds)
yeR
t
C (J (t =) supElu (s, y) = v (s, y) s

0 yeR
0 2

. J (t - 5)1‘(1/"‘)supE|u (s y)=v(s,y)|ds
—r yER
t+n 2

+ J' (t =)' "V supElu (s, y) — v (s, y)|'ds
0 yeR

t
W) J supElu (s, y) - v (s, y)|2ds) ’
t+1 yeR

E|./ Su(t,x) - I ,v(t, x)|

[ft-exos

x (g () = g (v)) 2N (ds, dy, dz)

=E

2

SCLtJRGi(t—s,x—y)
E<JR lg (u,) = g (vy)| Izl v(dz))zdy ds

t
< CKJ (t —s) /e
0

x supE <|u (s,9) = v(sy)
yeR

* JO [us+my)=v(s+ n,y)|2d17) ds

(J. (t — ) " *supElu (s, y) - v (s, y)|"ds

yeR



0
+ J (t- 5)1_(1/“)su£E|u (s,9) = v(s, )|’ ds
bAS

=T

t+n
+ J- (t - 5)17(1/“)supE|u (s, )= v(s y)|2ds
0 yeR

t
i) J supE|u (s, y) - v (s, y)|2ds) .
t

+1 yeR
(25)

Thus, it follows that

E|Tu(t,x)-Tv(t x|

t
C ((r +1) J- supElu (s, y) — v (s, J’)lzds
0 yeR
0
+rJ supE|u(S y)-v(s )’)| ds
- yeR
t 1 2
+ J (t-s) /“supE|u (s,9) =v(s,y)['ds
0 yeR
0 2
+ J (t- s)l’(l/"‘)supE|u () =v(sy)ds
—r yeR

t+n
+ J (t = )Y supElu (s, y) - v (s, y)[ ds
0 yeER

t
+rt ) J supE|u (s, y) = v (s, y)|2ds> .
t+1 yeR
(26)
Finally, direct computation implies that

2
[Tu(t,x) - Tv(t,x)y

T
= J e_MsupE|97u (t,x)—=Tv (t,x)l2
0 yeR

T
scj e‘“<(r+1)
0

J supE|u s,y) = v(s, y)|’ds
0 yeR

0
+r J supElu (s, y) - v (s, )| ds

-7 yeR

+ Lt (t-s)"

x supE|u (s, y) - v (s, y)|’ds
yER

0
+ J (t-s) "

-r

x supE|u (s, y) - v (s, y)|’ds
yeR
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+ J.m7 (t—s)' "
0

x supE|u (s, y) - v (s, y)|ds
yeR

+ rl—(l/a)

t
X J supE|u (s, y) = v (s, y)|2ds) dt
t

+7 yeR
R}
SC[J e Mdt
0

T
X ((r +1) J e_AssupElu (s, 9)=v(s, y)|2ds
yeR

0

0
+r J e_’lssupE|u (s, 9)—v (s,y)|2ds>
yER

=T

-1
+J e Mgy

0

T
J et supElu s,y) = v(s y)|’ds

0

X

)
+J oM A1) gy
0

0

x| e supE|u (s,9) = v (s, y)[’ds

+ —At 1- (l/tx)dt

[,
[on

T+n
X J - supE|u (s,9) = v (s, y)[’ds
0

R
+J tdt x 7
0

T
xj - supE|u(s y)=v(s )] ds]

sof(132+ i)

T
X J e MsupE|u (s, y) — v (s, y)|'ds
yeR

r, T@-(/)
(5 )

0
X J e MsupE|u (s, y) - v (s, y)'ds
-r yER
RN (1/2))

AZ (1/x)

T 2
x J e “supE|u (s, y) - v(s, y)|"ds
0 yeR
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P/ T N 5
+ J e “supElu(s,y) - v(s, y)| ds]
R

A T+n y€
Cl T —As 2
<35 J e “supElu (s, y) - v(s, y)|"ds
0 yER

0
+ J e MsupElu (s, y) - v (s, y)|2ds>
yeER

=T

1 2
= _AKI |1/l - Vl/\,
(27)

where C, = 2C-max{r +1,T(1 - (1/a)), [(2 - (1/a)), r'~1/®)}
and K; =1 - (1/a).
Let A that large enough such that
G
ﬁ <1, (28)

which implies that the operator 7 : B — B is contraction.
By the Banach fixed point theorem, there exists a unique
fixed point in B. Moreover, the fixed point is the unique mild
solution of (8). O

Remark 5. 1f there are no delays, Theorem 3 can be solved in
the following working function space:

T
uly = | supBu e, 0, (29)
0 xeR

where u € B, which implies that the delays affect the working
function space.

4. The Regularity of the Mild Solution

In this section, we will show the time regularity and space reg-
ularity of the mild solution for (8). In order to prove the reg-
ularity, we need the following assumptions:

(H3) there exists some y < 1/2

su[gE (|u0 (x +2) —ug (x)|2) < clzl™s (30)
X€

(H4) for 0 > 0, let |¢(n, x)| < 0o and there exists some 7 <
1 such that

-0
sup J Elu(n+6,x)—u(n, x)|2d17 <clof; (3D
x€R J-r
(H5) | f @ty ysup) = f(E5, 95 ”t2)|2 < c(lty =t + luty) -
0
w(t) P+ [ lu(t, +n) — u(t, +n)Pdy).

To the end, we will give an important lemma from [7].

Lemma 6. (1) For 1 < n < a + 1, jooo jR IG,(1 + v,2) -
G,(v,z)|"dz dv < co.

(2) For (a+ 1)/2 < n < a+1, _[Ooo _[R G, (v,z + 1) -
G,(v,2)|"dz dv < co.

Theorem 7. Assume that the conditions (H1)-(H5) are satis-
fied; then for o € (1,2] and t > 0, there exists a continuous
modification u(t, x), which is f-Holder continuous in t, where

B = min{y/a, 7, (1/2) - (1/2a)}.
Proof. Fort > 0, it follows that, for any x € R and 6 > 0,
|t + 0, x) — u(t,x)]

<|] Gult+0.x-3) =G ltx =) w (» ]

+ JHGJR(Ga(t+0—s,x—y)

0

~Go(t=s,x=y)) f (u) dyds

+ jtJR(G“(t+9—s,x—y)

0

G, (E—5,% - y)) (1) W (dsdy) ‘

+

LHG JR G, (t+0-s,x-y)h(u,)W (ds dy)l

+

[ [ Geter0-sx-3) -Gt 5.5 5)

0

xg (u,) zN (ds, dz) dy’

+

LHG ”RG,,, (t+60-s,x-y)g(u,)zN (ds,dz) dyl

= ¢f + Pg + G5 + Py + By + o
(32)

Next, we will estimate each term qbé (j = 01,...,5),
respectively.
Combining Hoélder inequality, Lemma 1 with (H3) yields

Elg[

_ EHR G, (6.2) “R Gy (tx - y)

2

x (i (7 = 2) ~ g () dy | dz
< CE <JR G, (0,z) HR G, (t.x-y)

(g (= 2) =y () dy | e

X <JR G, (0,2) dz>



<C |, Gu(6,2)supEluy (3~ 2) =y () e
R yeR

cj G, (6,2)|2[?dz = cj 071G, (1,2) 22 dz
R

< oM J e < o
R 1+ 2|
(33)
Next, we consider ¢. Let s’ = s — 6; then,
t
|¢é' < J J Gy (t—s,x-y)
0 Jr
x(f (s+0,y,u5,0) = f (s, y,1)) dy ds|
0
+ J J G,(t+0-s,x-y)
0 Jr
xf (s, y,u,)dyds
= o' + 97
(34)

By Holder inequality, Lemma 1, (H4), and (H5), we have

o[

t
SCJ J G, (t—s,x—y)dyds

0 JR

xj J' G,(t-s,x-y)
0 JR
X E|f (s +6, y,u0,9) = f (5 yu,) 'y ds

-

t
< CJ (92 + supE|u (s + 6, y) —u(s, y)|°
0

yER

0
+J supE [u(s+0+1,y)
-1 yeR

~u(s+mn, y)|2d17> ds
C <T92 +(r+1)

t
X J supE|u (s + 0, y) - u (s, y)|'ds
0

yER

)
+ rj supElu (s + 6, y) —u(s, y)|’ds

-r yeR

0
+ J supE|u (s +6,y) —u(s, y)|2ds>
-0 yeR

sC<02+62”+0

t
+ J supE|u (s +6,y) —u(s, y)|2ds) ,
0

yeR
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ol

0
SCJ J G, (t+6—sx-y)dyds
R

0

0
XJ JRG“ (t+6-s,x—y)E|f (u)|'dyds

0

<co J: J

0 0
CGJ supE( (s, 9)|" + J lu(s+mn, y)|2d11> ds

0 yeR

(t+6 - s,x—y)E|f (u,)|dyds

<Co ((r + 1) supE|u (s, y)|’ds
yeR

+r J supE|u (s, y)|2ds)

T yeR

<C (92 + 9) .
(35)

Taking the transformation s = v, y = 6'/%z, by Burk-
holder-Davis-Gundy inequality, Lemmas 1 and 6, and (H2),
we obtain

2
E|gg|
t
SCJ J E(G,(t+0-sx-y)
0 Jr
-G, (t—s,x- y))2h2 (u,)dsdy

< ck |

0

J (G, (t+0-s,x-y)
R
Gy (t-s,x-y))
E <|u(s)|2 + f |u (s + 17)|2d;1> dyds
¢
SCJ J (G, (t+0-s,x-y) -G, (t-s,x—y))
0 Jr
E <|u $)F + jo ot ()t
Jt| () d ’>d d
+ | Ju () dn’ ) dyds

0
<C ((T +1) sup Efu(s, y)|2 + supj |ue (17, y)|2d;1)
[0, T]xR yeR J-r

<[ [ Guls+0.) - Golo) dy s

0
<C <9*”°‘9 joo J (G, (v+1,2) - G, (v,2))dz dv>
0 R

<com,



Abstract and Applied Analysis
2
E|¢s|
t+0
SCJ J E(G,(t+60-sx-y)
¢t Jr
G, (t=s,x-y))[n(u,)"dsdy
t+0
SCJ J E(G,(t+60-sx-y)
t IR

G, (t=s.x-y))

x (Iu (s ) + JO Ju (s + ;1)|2d;1> dy ds

t+60
SCJ J E(G,(t+60-sx-y)
¢ Jr
Gy (t=s,x-y))’

) t+6 N2
><<|u(s,y)| +J_r |u(11 )| dn >dyds

<C <(T +1+6) sup Elu(sy)|
(0,T+0] xR

0
+supj Iu(n,y)lzdn>
yeR J-r

<[ [ EGu(5+6.5) -G (s ) dyas

<C1+6)6" "
1
x J J E(G,(1+v,z) -G, (v, z))zdz dv
0 Jr

< C (0" 4 g1
(36)

Then, by the same method, we have

E|¢>§|2 < L JR (G, (t+0-s,x-y)-G, (t—s,x—y))2
2
x E<JR lg (u,)] |2l v(dz)) dsdy

t
SCKJ J (G, (t+0-s,x-y)
0 Jr
G, (t-s,x-y))
2 (° 2
><E<|u(s)| +J |u(s+n) dq)dyds
SC@I_(I/“),

B[ < C (00 1 201
(37)

Thus, from the previous estimates, let § = min{y/a, 7, (1/2) -

(1/20)}:

Elu(t +6,x) —u(t,x)*

t , (38)
<C [Gzﬁ + J supElu (s +0,y) —u(s,y)| ds|.
0 yeR
Hence, it follows from Gronwall’s Lemma that
Elu(t+6,x) —u(t,x)]* < Co*. (39)
Then, for t > 0, we have
Jua (¢ + 6, %) —u (6, %)}
T pl2
= (J e_MsupE|u (t+0,x)—ult, x)|2ds)
0 xeR
< CoP.
(40)
O

Finally, we study the space regularity of the mild solution
for (8).

Theorem 8. Assume that the conditions (H1)-(H3) are satis-
fied; then for « € (1,2] and t > 0, there exists a continuous
modification u(t, x), which is p-Hélder continuous in x, where
p = min{y, 9, a — 1}.

Proof. It follows that, for any t € [0,T] and { > 0,

[u(t,x+ Q) —u(t,x)|

<[] @ulbx+t=3)=Goltx =) m ()]

+

JJJR(Ga(t—s,x+C—y)

G (t=s,x=y)) f (u)) dyds

+

[ Gute-sxrg-y)

-G, (t—s,x—y))h(u,) W (dsdy) ’

+

[, o srcn

-G, (t—s,x-)) g(u,) zN (ds, dz) dy‘

(41)
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By (H3) and Lemma 1, we have Then, by the mean value of the theorem and Lemma 1, we
) have that

Bt = B[ Gt =)l (r+ 0 - 1y ()] dy

0

t
0 -
II = J j 5_2(1_6)/“<—Ga Ls % (y+e)
SSUEE(|“0()’+C)—LLO()/)|2) R dy ( )
ye

42
5 (42) xs‘l/“()zsdy ds (e€(0,0)
<([| Gultx-y)ay) :
R _ (zej J' (@1-er9)-D/a

<, 0 Jr

- 5 29
By (H2), Hélder’s inequality and Lemmal, we set € = X < —G, (1, y)) dyds
(1/2)(x+1) - & (9 is small enough) and 9 € (0, 1) and we can ay
derive 2 (1 —aocr))

2 <C J s imembiags,
B4 “h

(45)

0
<C ((1 +T) sup Elu(t,x)|* + supJ |u (n,y)|2d11>
[0.T]xR yeR J-r Choosing 9 < a — § such that (2(1 —e +9) — 1)/« < 1, then

2

t
G, (s -G, (s, y))dyd
<[ [ Gty +0-Gulsmayas e 6)
t
-1/« -1/«
<C J-o IR s (Goc (1’5 ' (r+ C)) Combining (44) and (46), we have
2
—Ga(l,sfl/“y)) dyds E|¢é'2 <c®. (47)
t
=C J J s (Goc (1, sy + C)) Taking the change of variable s = {“v, y = z(, and by Burk-
0 R holder-Davis-Gundy inequality, Lemmas 1 and 6, (HI), and

-G (1, 571/“}/))(1_9) (H2), we derive

x 000 (G (1,57 (3 +.7))

E|¢§|2 < <Lt J-RE<G"‘ (t-s,x+({-y)

- ey ey |
Ga(l,s y)) y ds

o[ L0

-G, (1, s_l/“y)|2(179)dy ds)

([t

2
Golt-sx-))
xE|h (uy)['dy ds)

< c<(T+ 1) sup Elu(t,x)|’
[0,T1xR

0 2
-G, (1, s_l/“y)|29dy ds) +§E£ .L (o 7)] dn)
t
=l x . <(], [ (Gelsr0) -Gl ayas)
(43) 0 JR
By Lemma 1, recall that 2e < « + 1, and we have <C ((72“0‘ Jm J G2+ 1)
B o Jr %7

I<C (Jt J sV G (1, )" Vay ds)
0R (44) -G, (,2))dz dv)

t
< CJ sV g < oo 2a1)
0 < CEY,
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E'¢§|2 < CL J-R (G (t-s,x+{-y)
Gy (t=s,x-y))
xE(jR |g(us)|zv(dz)> dsdy

< CcZ((xfl) )
(48)

Combining (42)-(48), we have
Elu(t,x+{) —uf(t, x)|2 <C ((2" + ¥4 (2(“_1)) . (49)
Then, we have, for t € [0,T],

lut,x+0) —ut,x)f <C (0P +% +{“DP) < g,
(50)

where p = min{y, 9, — 1}. O

Remark 9. Theorems 7 and 8 show that the regularity of initial
value and the order of fractional operator can affect both time
regularity and space regularity of the mild solution for (1). In
particular, the time regularity is affected by the regularity of
initial value with delays.
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