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Introducing a general split feasibility problem in the setting of infinite-dimensional Hilbert spaces, we prove that the sequence
generated by the purposed new algorithm converges strongly to a solution of the general split feasibility problem. Our results
extend and improve some recent known results.

1. Introduction

Let𝐻 and𝐾 be infinite-dimensional real Hilbert spaces, and
let 𝐴 : 𝐻 → 𝐾 be a bounded linear operator. Let {𝐶

𝑖
}
𝑝

𝑖=1
and

{𝑄
𝑖
}
𝑟

𝑖=1
be the families of nonempty closed convex subsets of

𝐻 and𝐾, respectively.
(a) The convex feasibility problem (CFP) is formulated as

the problem of finding a point 𝑥⋆ with the property:

𝑥
⋆
∈

𝑝

⋂

𝑖=1

𝐶
𝑖
. (1)

(b) The split feasibility problem (SEP) is formulated as the
problem of finding a point 𝑥⋆ with the property:

𝑥
⋆
∈ 𝐶, 𝐴𝑥

⋆
∈ 𝑄, (2)

where𝐶 and𝑄 are nonempty closed convex subsets of𝐻 and
𝐾, respectively.

(c) The multiple-set split feasibility problem (MSSFP) is
formulated as the problem of finding a point 𝑥⋆ with the
property:

𝑥
⋆
∈

𝑝

⋂

𝑖=1

𝐶
𝑖
, 𝐴𝑥

⋆
∈

𝑟

⋂

𝑖=1

𝑄
𝑖
. (3)

Note that (MSSFP) reduces to (SEP) if we take 𝑝 = 𝑟 = 1.
There is a considerable investigation on CFP in view of

its applications in various disciplines such as image restora-
tion, computer tomograph, and radiation therapy treatment

planning [1]. The split feasibility problem SFP in the setting
of finite-dimensional Hilbert spaces was first introduced
by Censor and Elfving [2] for modelling inverse problems
which arise from phase retrievals and in medical image
reconstruction [3]. Since then, a lot of work has been done
on finding a solution of SFP and MSSFP; see, for example,
[2–25]. Recently, it is found that the SFP can also be applied
to study the intensity-modulated radiation therapy; see, for
example, [6, 16] and the references therein. Very recently, Xu
[8] considered the SFP in the setting of infinite-dimensional
Hilbert spaces.

The original algorithm given in [2] involves the compu-
tation of the inverse 𝐴−1 provided it exists. In [8], Xu studied
some algorithm and its convergence. In particular, he applied
Mann’s algorithm to the SFP and purposed an algorithm
which is proved to be weakly convergent to a solution of the
SFP. He also established the strong convergence result, which
shows that the minimum-norm solution can be obtained. In
[7], Wang and Xu purposed the following cyclic algorithm to
solve MSSFP:

𝑥
𝑛+1

= 𝑃
𝐶[𝑛]

(𝑥
𝑛
+ 𝛾𝐴
∗
(𝑃
𝑄[𝑛]

− 𝐼)𝐴𝑥
𝑛
) , (4)

where [𝑛] := 𝑛 (mod𝑝), (mod function take values in
{1, 2, . . . , 𝑝}), and 𝛾 ∈ (0, 2/‖𝐴‖

2
). They show that the

sequence {𝑥
𝑛
} convergence weakly to a solution of MSSFP

provided the solution exists. To study strong convergence to
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a solution of MSSFP, first we introduce a general form of the
split feasibility problem for infinite families as follows.

(d) General split feasibility problem (GSFP) is to find a
point 𝑥∗ such that

𝑥
⋆
∈

∞

⋂

𝑖=1

𝐶
𝑖
, 𝐴𝑥

⋆
∈

∞

⋂

𝑖=1

𝑄
𝑖
. (5)

We denote by Ω the solution set of GSFP.
In this paper, using viscosity iterative method defined

by Moudafi [21], we propose an algorithm for finding the
solutions of the general split feasibility problem in a Hilbert
space. We establish the strong convergence of the proposed
algorithm to a solution of GSFP.

2. Preliminaries

Throughout the paper, we denote by 𝐻 a real Hilbert space
with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖. Let {𝑥

𝑛
} be a sequence

in 𝐻 and 𝑥 ∈ 𝐻. Weak convergence of {𝑥
𝑛
} to 𝑥 is denoted

by 𝑥
𝑛
⇀ 𝑥, and strong convergence by 𝑥

𝑛
→ 𝑥. Let 𝐶 be a

closed and a convex subset of𝐻. For every point 𝑥 ∈ 𝐻, there
exists a unique nearest point in𝐶, denoted by 𝑃

𝐶
𝑥.This point

satisfies
𝑥 − 𝑃

𝐶
𝑥
 ≤

𝑥 − 𝑦
 , ∀𝑦 ∈ 𝐶. (6)

The operator 𝑃
𝐶
is called the metric projection or the nearest

point mapping of 𝐻 onto 𝐶. The metric projection 𝑃
𝐶
is

characterized by the fact that 𝑃
𝐶
(𝑥) ∈ 𝐶 and

⟨𝑦 − 𝑃
𝐶 (𝑥) , 𝑥 − 𝑃

𝐶 (𝑥)⟩ ≤ 0, ∀𝑥 ∈ 𝐻, 𝑦 ∈ 𝐶. (7)

Recall that a mapping 𝑇 : 𝐶 → 𝐶 is called nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶. (8)

It is well known that 𝑃
𝐶
is a nonexpansive mapping. It is

also known that𝐻 satisfies Opial’s condition, that is, for any
sequence {𝑥

𝑛
} with 𝑥

𝑛
⇀ 𝑥, the inequality

lim inf
𝑛→∞

𝑥𝑛 − 𝑥
 < lim inf
𝑛→∞

𝑥𝑛 − 𝑦
 (9)

holds for every 𝑦 ∈ 𝐻 with 𝑦 ̸= 𝑥.

Lemma 1. Let𝐻 be a Hilbert space. Then, for all 𝑥, 𝑦 ∈ 𝐻

𝑥 + 𝑦


2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ . (10)

Lemma 2 (see [22]). Let𝐻 be a Hilbert space, and let {𝑥
𝑛
} be

a sequence in𝐻. Then, for any given sequence {𝜆
𝑛
}
∞

𝑛=1
⊂ (0, 1)

with ∑∞
𝑛=1

𝜆
𝑛
= 1 and for any positive integer 𝑖, 𝑗 with 𝑖 < 𝑗,



∞

∑

𝑛=1

𝜆
𝑛
𝑥
𝑛



2

≤

∞

∑

𝑛=1

𝜆
𝑛

𝑥𝑛


2
− 𝜆
𝑖
𝜆
𝑗


𝑥
𝑖
− 𝑥
𝑗



2

. (11)

Lemma 3 (see [23]). Assume that {𝑎
𝑛
} is a sequence of

nonnegative real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛾
𝑛
𝛿
𝑛
+ 𝛽
𝑛
, 𝑛 ≥ 0, (12)

where {𝛾
𝑛
}, {𝛽
𝑛
}, and {𝛿

𝑛
} satisfy the following conditions:

(i) 𝛾
𝑛
⊂ [0, 1], ∑∞

𝑛=1
𝛾
𝑛
= ∞,

(ii) lim sup
𝑛→∞

𝛿
𝑛
≤ 0 or ∑∞

𝑛=1
|𝛾
𝑛
𝛿
𝑛
| < ∞,

(iii) 𝛽
𝑛
≥ 0 for all 𝑛 ≥ 0 with ∑∞

𝑛=0
𝛽
𝑛
< ∞.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 4 (see [24]). Let {𝑡
𝑛
} be a sequence of real numbers

such that there exists a subsequence {𝑛
𝑖
} of {𝑛} such that 𝑡

𝑛𝑖
<

𝑡
𝑛𝑖+1

for all 𝑖 ∈ N. Then, there exists a nondecreasing sequence
{𝜏(𝑛)} ⊂ N such that 𝜏(𝑛) → ∞, and the following properties
are satisfied by all (sufficiently large) numbers 𝑛 ∈ N:

𝑡
𝜏(𝑛)

≤ 𝑡
𝜏(𝑛)+1

, 𝑡
𝑛
≤ 𝑡
𝜏(𝑛)+1

. (13)

In fact

𝜏 (𝑛) = max {𝑘 ≤ 𝑛 : 𝑡
𝑘
< 𝑡
𝑘+1

} . (14)

Lemma 5 (demiclosedness principle [25]). Let 𝐶 be a non-
empty closed and convex subset of a real Hilbert space 𝐻. Let
𝑇 : 𝐶 → 𝐶 be a nonexpansive mapping such that Fix(𝑇) ̸= 0.
Then, 𝑇 is demiclosed on 𝐶, that is, if 𝑦

𝑛
⇀ 𝑧 ∈ 𝐶, and (𝑦

𝑛
−

𝑇𝑦
𝑛
) → 𝑦, then (𝐼 − 𝑇)𝑧 = 𝑦.

3. Main Result

In the following result, we propose an algorithm and prove
that the sequence generated by the proposed method con-
verges strongly to a solution of the GSFP.

Theorem 6. Let 𝐻 and 𝐾 be real Hilbert spaces, and let 𝐴 :

𝐻 → 𝐾 be a bounded linear operator. Let {𝐶
𝑖
}
∞

𝑖=1
and {𝑄

𝑖
}
∞

𝑖=1

be the families of nonempty closed convex subsets of𝐻 and 𝐾,
respectively. Assume that GSFP (5) has a nonempty solution set
Ω. Suppose that 𝑓 is a self 𝑘-contraction mapping of𝐻, and let
{𝑥
𝑛
} be a sequence generated by 𝑥

0
∈ 𝐻 as

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ 𝛽
𝑛
𝑓 (𝑥
𝑛
)

+

∞

∑

𝑖=1

𝛾
𝑛,𝑖
𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
, 𝑛 ≥ 0,

(15)

where 𝛼
𝑛
+ 𝛽
𝑛
+∑
∞

𝑖=1
𝛾
𝑛,𝑖

= 1. If the sequences {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛,𝑖
},

and {𝜆
𝑛,𝑖
} satisfy the following conditions:

(i) lim
𝑛→∞

𝛽
𝑛
= 0 and ∑∞

𝑛=0
𝛽
𝑛
= ∞,

(ii) for each 𝑖 ∈ N, lim inf
𝑛
𝛼
𝑛
𝛾
𝑛,𝑖

> 0,

(iii) for each 𝑖 ∈ N, {𝜆
𝑛,𝑖
} ⊂ (0, 2/‖𝐴‖

2
) and 0 <

lim inf
𝑛→∞

𝜆
𝑛,𝑖

≤ lim sup
𝑛→∞

𝜆
𝑛,𝑖

< 2/‖𝐴‖
2,

then, the sequence {𝑥
𝑛
} converges strongly to 𝑥

⋆
∈ Ω, where

𝑥
⋆
= 𝑃
Ω
𝑓(𝑥
⋆
).
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Proof. First, we show that {𝑥
𝑛
} is bounded. In fact, let 𝑧 ∈ Ω.

Since {𝜆
𝑛,𝑖
} ⊂ (0, 2/‖𝐴‖

2
), the operators 𝑃

𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 −

𝑃
𝑄𝑖
)𝐴) are nonexpansive, and hence we have

𝑥𝑛+1 − 𝑧


=



𝛼
𝑛
𝑥
𝑛
+ 𝛽
𝑛
𝑓 (𝑥
𝑛
)

+

∞

∑

𝑖=1

𝛾
𝑛,𝑖
𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑧



≤ 𝛼
𝑛

𝑥𝑛 − 𝑧
 + 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑧



+

∞

∑

𝑖=1

𝛾
𝑛,𝑖


𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑧



≤ 𝛼
𝑛

𝑥𝑛 − 𝑧
 + 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑧



+

∞

∑

𝑖=1

𝛾
𝑛,𝑖

𝑥𝑛 − 𝑧


≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑧

 + 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑧



≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑧

 + 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑧)



+ 𝛽
𝑛

𝑓 (𝑧) − 𝑧


≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑧

 + 𝛽
𝑛
𝑘
𝑥𝑛 − 𝑧



+ 𝛽
𝑛

𝑓 (𝑧) − 𝑧


≤ (1 − (1 − 𝑘)) 𝛽𝑛
𝑥𝑛 − 𝑧



+ (1 − 𝑘)
𝛽
𝑛

1 − 𝑘

𝑓 (𝑧) − 𝑧


≤ max {𝑥𝑛 − 𝑧
 ,

1

1 − 𝑘

𝑓 (𝑧) − 𝑧
}

...

≤ max {𝑥0 − 𝑧
 ,

1

1 − 𝑘

𝑓 (𝑧) − 𝑧
} ,

(16)

which implies that {𝑥
𝑛
} is bounded, and we also obtain that

{𝑓(𝑥
𝑛
)} is bounded. Next, we show that for each 𝑖 ∈ N,

lim
𝑛→∞


𝑥
𝑛
− 𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛


= 0. (17)

By using Lemma 2, for every 𝑧 ∈ Ω and 𝑖 ∈ N, we have that

𝑥𝑛+1 − 𝑧


2

=



𝛼
𝑛
𝑥
𝑛
+ 𝛽
𝑛
𝑓 (𝑥
𝑛
)

+

∞

∑

𝑗=1

𝛾
𝑛,𝑗
𝑃
𝐶𝑗
(𝐼 − 𝜆

𝑛,𝑗
𝐴
∗
(𝐼 − 𝑃

𝑄𝑗
)𝐴) 𝑥

𝑛
− 𝑧



2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑧


2
+ 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑧



2

+

∞

∑

𝑗=1

𝛾
𝑛,𝑗


𝑃
𝐶𝑗
(𝐼 − 𝜆

𝑛,𝑗
𝐴
∗
(𝐼 − 𝑃

𝑄𝑗
)𝐴) 𝑥

𝑛
− 𝑧



2

− 𝛼
𝑛
𝛾
𝑛,𝑖


𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑥
𝑛



2

≤ 𝛼
𝑛

𝑥𝑛 − 𝑧


2
+ 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑧



2

+

∞

∑

𝑗=1

𝛾
𝑛,𝑗

𝑥𝑛 − 𝑧


2

− 𝛼
𝑛
𝛾
𝑛,𝑖


𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑥
𝑛



2

≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑧



2
+ 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑧



2

− 𝛼
𝑛
𝛾
𝑛,𝑖


𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑥
𝑛



2

.

(18)

Hence, for each 𝑖 ∈ N, we have

𝛼
𝑛
𝛾
𝑛,𝑖


𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑥
𝑛



2

≤
𝑥𝑛 − 𝑧



2
−
𝑥𝑛+1 − 𝑧



2
+ 𝛽
𝑛

𝑓 (𝑥
𝑛
) − 𝑧



2
.

(19)

Next, we show that there exists a unique 𝑥⋆ ∈ Ω such that
𝑥
⋆
= 𝑃
Ω
𝑓(𝑥
⋆
). We observe that for each 𝑛 ≥ 0, 𝑥⋆ ∈ Ω solves

the GSFP (5) if and only if 𝑥⋆ solves the fixed point equation

𝑥
⋆
= 𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

⋆
, 𝑖 ∈ N, (20)

that is, the solution sets of fixed point equation (20) andGSFP
(5) are the same (see for details [8]). Note that if {𝜆

𝑛,𝑖
} ⊂

(0, 2/‖𝐴‖
2
), then the operators 𝑃

𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴)

are nonexpansive. Since the fixed point set of nonexpansive
operators is closed and convex, the projection onto the
solution set Ω is well defined whenever Ω ̸= 0. We observe
that 𝑃

Ω
(𝑓) is a contraction of 𝐻 into itself. Indeed, since 𝑃

Ω

is nonexpansive,

𝑃Ω (𝑓) (𝑥) − 𝑃
Ω
(𝑓) (𝑦)

 ≤
𝑓 (𝑥) − 𝑓 (𝑦)

 ≤ 𝑘
𝑥 − 𝑦

 .

(21)

Hence, there exists a unique element 𝑥⋆ ∈ Ω such that 𝑥⋆ =
𝑃
Ω
𝑓(𝑥
⋆
).

In order to prove that 𝑥
𝑛
→ 𝑥
⋆ as 𝑛 → ∞, we consider

two possible cases.

Case 1. Assume that {‖𝑥
𝑛
− 𝑥
⋆
‖} is a monotone sequence. In

other words, for 𝑛
0
large enough, {‖𝑥

𝑛
− 𝑥
⋆
‖}
𝑛≥𝑛0

is either
nondecreasing or nonincreasing. Since ‖𝑥

𝑛
− 𝑥
⋆
‖ is bounded

we have ‖𝑥
𝑛
− 𝑥
⋆
‖ is convergent. Since lim

𝑛→∞
𝛽
𝑛
= 0 and

{𝑓(𝑥
𝑛
)} is bounded, from (19) we get that

lim
𝑛→∞

𝛼
𝑛
𝛾
𝑛,𝑖


𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑥
𝑛



2

= 0.

(22)
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By assuming that lim inf
𝑛
𝛼
𝑛
𝛾
𝑛,𝑖

> 0, we obtain

lim
𝑛→∞


𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑥
𝑛


= 0, ∀𝑖 ∈ N.

(23)

Now, we show that

lim sup
𝑛→∞

⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝑛
− 𝑥
⋆
⟩ ≤ 0. (24)

To show this inequality, we choose a subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
}

such that

lim
𝑘→∞

⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝑛𝑘
− 𝑥
⋆
⟩

= lim sup
𝑛→∞

⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝑛
− 𝑥
⋆
⟩.

(25)

Since {𝑥
𝑛𝑘
} is bounded, there exists a subsequence {𝑥

𝑛𝑘𝑗
} of

{𝑥
𝑛𝑘
}which converges weakly to𝑤.Without loss of generality,

we can assume that 𝑥
𝑛𝑘
⇀ 𝑤 and 𝜆

𝑛,𝑖
→ 𝜆
𝑖
∈ (0, 2/‖𝐴‖

2
) for

each 𝑖 ∈ N. From (23), we have


𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑥
𝑛



≤

𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛

−𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛



+

𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑥
𝑛



≤

(𝐼 − 𝜆

𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛

− (𝐼 − 𝜆
𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛



+

𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑥
𝑛



≤
𝜆𝑖 − 𝜆

𝑛,𝑖




𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴𝑥
𝑛



+

𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑥
𝑛



→ 0 as 𝑛 → ∞.

(26)

Notice that for each 𝑖 ∈ N, 𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴)

is nonexpansive. Thus, from Lemma 5, we have 𝑤 ∈ Ω.
Therefore, it follows that

lim sup
𝑛→∞

⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝑛
− 𝑥
⋆
⟩

= lim
𝑘→∞

⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝑛𝑘
− 𝑥
⋆
⟩

= ⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑤 − 𝑥

⋆
⟩ ≤ 0.

(27)

Finally, we show that 𝑥
𝑛
→ 𝑃
Ω
𝑓(𝑥
⋆
). Applying Lemma 1, we

have that
𝑥𝑛+1 − 𝑥

⋆

2

=



𝛼
𝑛
(𝑥
𝑛
− 𝑥
⋆
)

+

∞

∑

𝑖=1

𝛾
𝑛,𝑖
(𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
− 𝑥
⋆
)



2

+ 2𝛽
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑥
⋆
, 𝑥
𝑛+1

− 𝑥
⋆
⟩

≤ (1 − 𝛽
𝑛
)
2𝑥𝑛 − 𝑥

⋆

2

+ 2𝛽
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

⋆
) , 𝑥
𝑛+1

− 𝑥
⋆
⟩

+ 2𝛽
𝑛
⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝑛+1

− 𝑥
⋆
⟩

≤ (1 − 𝛽
𝑛
)
2𝑥𝑛 − 𝑥

⋆

2

+ 2𝛽
𝑛
𝑘
𝑥𝑛 − 𝑥

⋆

𝑥𝑛+1 − 𝑥
⋆

+ 2𝛽
𝑛
⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝑛+1

− 𝑥
⋆
⟩

≤ (1 − 𝛽
𝑛
)
2𝑥𝑛 − 𝑥

⋆

2

+ 𝛽
𝑛
𝑘 {

𝑥𝑛 − 𝑥
⋆

2
+
𝑥𝑛+1 − 𝑥

⋆

2
}

+ 2𝛽
𝑛
⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝑛+1

− 𝑥
⋆
⟩ .

(28)

This implies that

𝑥𝑛+1 − 𝑥
⋆

2

≤
(1 − 𝛽

𝑛
)
2
+ 𝛽
𝑛
𝑘

1 − 𝛽
𝑛
𝑘

𝑥𝑛 − 𝑥
⋆

2

+
2𝛽
𝑛

1 − 𝛽
𝑛
𝑘
⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝑛+1

− 𝑥
⋆
⟩

=
1 − 2𝛽

𝑛
+ 𝛽
𝑛
𝑘

1 − 𝛽
𝑛
𝑘

𝑥𝑛 − 𝑥
⋆

2

+
𝛽
2

𝑛

1 − 𝛽
𝑛
𝑘

𝑥𝑛 − 𝑥
⋆

2

+
2𝛽
𝑛

1 − 𝛽
𝑛
𝑘
⟨𝑓 (𝑧) − 𝑥

⋆
, 𝑥
𝑛+1

− 𝑥
⋆
⟩

≤ (1 −
2 (1 − 𝑘) 𝛽𝑛

1 − 𝛽
𝑛
𝑘

)
𝑥𝑛 − 𝑥

⋆

2

+
2 (1 − 𝑘) 𝛽𝑛

1 − 𝛽
𝑛
𝑘

{
𝛽
𝑛
𝑀

2 (1 − 𝑘)

+
1

1 − 𝑘
⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝑛+1

− 𝑥
⋆
⟩}

≤ (1 − 𝜂
𝑛
)
𝑥𝑛 − 𝑥

⋆

2
+ 𝜂
𝑛
𝛿
𝑛
,

(29)
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where

𝛿
𝑛
=

𝛽
𝑛
𝑀

2 (1 − 𝑘)
+

1

1 − 𝑘
⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝑛+1

− 𝑥
⋆
⟩ , (30)

𝑀 = sup{‖𝑥
𝑛
−𝑥
⋆
‖
2
: 𝑛 ≥ 0} and 𝜂

𝑛
= 2(1−𝑘)𝛽

𝑛
/(1−𝛽

𝑛
𝑘). It

is easy to see that 𝜂
𝑛
→ 0,∑∞

𝑛=1
𝜂
𝑛
= ∞ and lim sup

𝑛→∞
𝛿
𝑛
≤

0. Hence, by Lemma 3, the sequence {𝑥
𝑛
} converges strongly

to 𝑥⋆ = 𝑃
Ω
𝑓(𝑥
⋆
).

Case 2. Assume that {‖𝑥
𝑛
− 𝑥
⋆
‖} is not a monotone sequence.

Then, we can define an integer sequence {𝜏(𝑛)} for all 𝑛 ≥ 𝑛
0

(for some 𝑛
0
large enough) by

𝜏 (𝑛) = max {𝑘 ∈ N; 𝑘 ≤ 𝑛 :
𝑥𝑘 − 𝑥

⋆ <
𝑥𝑘+1 − 𝑥

⋆} .

(31)

Clearly, 𝜏(𝑛) is a nondecreasing sequence such that 𝜏(𝑛) →

∞ as 𝑛 → ∞ and for all 𝑛 ≥ 𝑛
0
,

𝑥𝜏(𝑛) − 𝑥
⋆ <

𝑥𝜏(𝑛)+1 − 𝑥
⋆ . (32)

From (19), we obtain that

lim
𝑛→∞


𝑃
𝐶𝑖
(𝐼 − 𝜆

𝜏(𝑛),𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝜏(𝑛)
− 𝑥
𝜏(𝑛)


= 0.

(33)

Following an argument similar to that in Case 1, we have

lim sup
𝑛→∞

⟨𝑓 (𝑥
⋆
) − 𝑥
⋆
, 𝑥
𝜏(𝑛)+1

− 𝑥
⋆
⟩ ≤ 0. (34)

And by similar argument, we have
𝑥𝜏(𝑛)+1 − 𝑥

⋆

2

≤ (1 − 𝜂
𝜏(𝑛)

)
𝑥𝜏(𝑛) − 𝑥

⋆

2
+ 𝜂
𝜏(𝑛)

𝛿
𝜏(𝑛)

,

(35)

where 𝜂
𝜏(𝑛)

→ 0, ∑∞
𝑛=1

𝜂
𝜏(𝑛)

= ∞ and lim sup
𝑛→∞

𝛿
𝜏(𝑛)

≤ 0.
Hence, by Lemma 3, we obtain lim

𝑛→∞
‖𝑥
𝜏(𝑛)

− 𝑥
⋆
‖ = 0 and

lim
𝑛→∞

‖𝑥
𝜏(𝑛)+1

− 𝑥
⋆
‖ = 0. Now, from Lemma 4, we have

0 ≤
𝑥𝑛 − 𝑥

⋆

≤ max {𝑥𝜏(𝑛) − 𝑥
⋆ ,

𝑥𝑛 − 𝑥
⋆}

≤
𝑥𝜏(𝑛)+1 − 𝑥

⋆ .

(36)

Therefore, {𝑥
𝑛
} converges strongly to 𝑥⋆ = 𝑃

Ω
𝑓(𝑥
⋆
).

For finite collections we have the following consequence
of Theorem 6.

Theorem 7. Let 𝐻 and 𝐾 be real Hilbert spaces, and let 𝐴 :

𝐻 → 𝐾 be a bounded linear operator. Let {𝐶
𝑖
}
𝑝

𝑖=1
be a family

of nonempty closed convex subsets in 𝐻, and let {𝑄
𝑖
}
𝑝

𝑖=1
be a

family of nonempty closed convex subsets in 𝐾. Assume that
MSSFP has a nonempty solution set Ω. Let 𝑢 be an arbitrary
element in𝐻, and let {𝑥

𝑛
} be a sequence generated by 𝑥

0
∈ 𝐻

and
𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ 𝛽
𝑛
𝑢

+

𝑝

∑

𝑖=1

𝛾
𝑛,𝑖
𝑃
𝐶𝑖
(𝐼 − 𝜆

𝑛,𝑖
𝐴
∗
(𝐼 − 𝑃

𝑄𝑖
)𝐴) 𝑥

𝑛
, 𝑛 ≥ 0,

(37)

where 𝛼
𝑛
+ 𝛽
𝑛
+∑
𝑝

𝑖=1
𝛾
𝑛,𝑖

= 1. If the sequences {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛,𝑖
},

and {𝜆
𝑛,𝑖
} satisfy the following conditions:

(i) lim
𝑛→∞

𝛽
𝑛
= 0 and ∑∞

𝑛=0
𝛽
𝑛
= ∞,

(ii) for all 𝑖 ∈ {1, 2, . . . , 𝑝}, lim inf
𝑛
𝛼
𝑛
𝛾
𝑛,𝑖

> 0,

(iii) for all 𝑖 ∈ {1, 2, . . . , 𝑝}, {𝜆
𝑛,𝑖
} ⊂ (0, 2/‖𝐴‖

2
) and

0 < lim inf
𝑛→∞

𝜆
𝑛,𝑖

≤ lim sup
𝑛→∞

𝜆
𝑛,𝑖

<
2

‖𝐴‖
2
, (38)

then the sequence {𝑥
𝑛
} converges strongly to 𝑥

⋆
∈ Ω, where

𝑥
⋆
= 𝑃
Ω
𝑢.
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