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We present relaxation problems in control theory for the second-order differential inclusions, with four boundary conditions,
�̈�(𝑡) ∈ 𝐹(𝑡, 𝑢(𝑡), �̇�(𝑡)) a.e. on [0, 1]; 𝑢(0) = 0, 𝑢(𝜂) = 𝑢(𝜃) = 𝑢(1) and, with𝑚 ≥ 3 boundary conditions, �̈�(𝑡) ∈ 𝐹(𝑡, 𝑢(𝑡), �̇�(𝑡)) a.e. on
[0, 1]; �̇�(0) = 0, 𝑢(1) = ∑

𝑚−2

𝑖=1
𝑎

𝑖
𝑢(𝜉

𝑖
), where 0 < 𝜂 < 𝜃 < 1, 0 < 𝜉

1
< 𝜉

2
< ⋅ ⋅ ⋅ < 𝜉

𝑚−2
< 1 and 𝐹 is a multifunction from [0, 1] ×R𝑛

×

R𝑛 to the nonempty compact convex subsets of R𝑛. We have results that improve earlier theorems.

1. Introduction

Second-order differential inclusions of three boundary con-
ditions were studied by many authors [1–6], using Hartman-
type functions. Such a function was first introduced by [7]
for two boundary conditions. Moreover, in [8] we consider
second-order differential inclusions with four boundary con-
ditions,

�̈� (𝑡) ∈ 𝐹 (𝑡, 𝑢 (𝑡) , �̇� (𝑡)) , a.e. on [0, 𝑇] ,

𝑢 (0) = 𝑥

0
, 𝑢 (𝜂) = 𝑢 (𝜃) = 𝑢 (𝑇) ,

(1)

where 0 < 𝜂 < 𝜃 < 𝑇 and 𝐹 is a multifunction from [0, 𝑇] ×

R𝑛

×R𝑛 to the nonempty compact subsets ofR𝑛, while in [9]
we study four-point boundary value problems for differen-
tial inclusions and differential equations with and without
multivalued moving constraints.

In the present paper, we study relaxation results for the
second-order differential inclusions, with four boundary con-
ditions,

�̈� (𝑡) ∈ 𝐹 (𝑡, 𝑢 (𝑡) , �̇� (𝑡)) , a.e. on [0, 1] ,

𝑢 (0) = 0, 𝑢 (𝜂) = 𝑢 (𝜃) = 𝑢 (1)

(𝑃)

and, with𝑚 ≥ 3 boundary conditions,

�̈� (𝑡) ∈ 𝐹 (𝑡, 𝑢 (𝑡) , �̇� (𝑡)) , a.e. on [0, 1] ,

�̇� (0) = 0, 𝑢 (1) =

𝑚−2

∑

𝑖=1

𝑎

𝑖
𝑢 (𝜉

𝑖
) ,

(𝑄)

where 0 < 𝜂 < 𝜃 < 1, 0 < 𝜉

1
< 𝜉

2
< ⋅ ⋅ ⋅ < 𝜉

𝑚−2
< 1, and

𝐹 is a multifunction from [0, 1] × R𝑛

× R𝑛 to the non-empty
compact subsets of R𝑛.

In conjunctionwith Problem (𝑃) andProblem (𝑄)we also
consider the following problems:

�̈� (𝑡) ∈ ext𝐹 (𝑡, 𝑢 (𝑡) , �̇� (𝑡)) , a.e. on [0, 1] ,

𝑢 (0) = 0, 𝑢 (𝜂) = 𝑢 (𝜃) = 𝑢 (1) ,

(𝑃

𝑒
)

�̈� (𝑡) ∈ ext𝐹 (𝑡, 𝑢 (𝑡) , �̇� (𝑡)) , a.e. on [0, 1] ,

�̇� (0) = 0, 𝑢 (1) =

𝑚−2

∑

𝑖=1

𝑎

𝑖
𝑢 (𝜉

𝑖
) .

(𝑄

𝑒
)

By ext𝐹(𝑡, 𝑢(𝑡), �̇�(𝑡)), we denote the set of extreme points of
𝐹(𝑡, 𝑢(𝑡), �̇�(𝑡)).
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2. Notations and Preliminaries

Throughout this paper we let 𝐼 = [0, 1] and 0 < 𝜉

1
<

𝜉

2
< ⋅ ⋅ ⋅ < 𝜉

𝑚−2
< 1. We will use the following definitions,

notations, and summarize some results.
(i) Amultifunction𝐹 from ametric space (𝑋, 𝑑) to the set

𝑃

𝑓
(𝑌) of all closed subsets of another metric space 𝑌 is lower

semicontinuous (l. s. c.) at 𝑥
0
∈ 𝑋 if for every open subset 𝑉

in 𝑌 with 𝐹(𝑥
0
) ∩ 𝑉 ̸= 0 there exists an open subset 𝑈 in 𝑋

such that 𝑥
0
∈ 𝑈 and 𝐹(𝑥) ∩ 𝑉 ̸= 0 for all 𝑥 ∈ 𝑈. 𝐹 is l. s. c. if

it is l. s. c. at each 𝑥
0
∈ 𝑋.

(ii) 𝐹 is upper semicontinuous (u. s. c.) at 𝑥
0
∈ 𝑋 if for

every open subset 𝑉 in 𝑌 and containing 𝐹(𝑥
0
) there exists

an open subset𝑈 in𝑋 such that 𝑥
0
∈ 𝑈 and 𝐹(𝑥) ⊆ 𝑉, for all

𝑥 ∈ 𝑈. 𝐹 is u. s. c. if it is u. s. c. at each 𝑥
0
∈ 𝑋.

(iii) A multifunction 𝐹 from 𝐼 into the set 𝑃
𝑓
(𝑋) of all

closed subsets of𝑋 is measurable if for all 𝑥 ∈ 𝑋 the function
𝑡 → 𝑑(𝑥, 𝐹(𝑡)) = inf{‖ 𝑥 − 𝑦 ‖: 𝑦 ∈ 𝐹(𝑡)} is measurable
[10–13].

(iv) Let (Ω, Σ) be a measurable space and 𝑋 a separable
Banach space. We say that 𝐹 : Ω → 𝑃

𝑓
(𝑋) is graph measur-

able if

𝑔𝑟 (𝐹) = {(𝑧, 𝑥) ∈ Ω × 𝑋 : 𝑥 ∈ 𝐹 (𝑧)} ∈ Σ ×B (𝑋) , (2)

where B(𝑋) is the Borel 𝜎-field of 𝑋. For further details we
refer to [14–16].

(v) 𝐹 is continuous if it is lower and upper semicontinu-
ous.

(vi) For each 𝐴, 𝐵 ∈ 𝑃

𝑓
(𝑋), the Hausdorff metric is

defined by

𝑑

𝐻
(𝐴, 𝐵) = max[sup

𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝑏, 𝐴)] . (3)

It is known that the space (𝑃
𝑓
(𝑋), 𝑑

𝐻
) is a generalized

metric space, if the sets are not bounded (see, for instance,
[14, 15]).

(vii) A multifunction 𝐹 is Hausdorff continuous (𝑑
𝐻
-

continuous) if it is continuous from 𝑋 into the metric space
(𝑃

𝑓
(𝑌), 𝑑

𝐻
).

(viii) If 𝐹 has compact values in 𝑌, then 𝐹 is 𝑑
𝐻
-con-

tinuous if and only if it is continuous [14, 17].
(ix)We denote by 𝑃

𝑘𝑐
(R𝑛

) the nonempty compact convex
subsets of R𝑛.

(x) The Banach spaces 𝐶(𝐼,R𝑛

), 𝐶1(𝐼,R𝑛

), and 𝐶2(𝐼,R𝑛

)

endowed with the norms

‖𝑢‖

𝐶
= max

𝑡∈𝐼

|𝑢 (𝑡)| , ‖𝑢‖

𝐶
1 = max {‖𝑢‖

𝐶
, ‖�̇�‖

𝐶
} ,

‖𝑢‖

𝐶
2 = max {‖𝑢‖

𝐶
, ‖�̇�‖

𝐶
, ‖�̈�‖

𝐶
} ,

(4)

respectively.
(xi) 𝐿1

𝑤
(𝐼,R𝑛

) denotes the space 𝐿1(𝐼,R𝑛

) equipped with
weak norm ‖ ⋅‖

𝑤
which is defined by

‖ℎ‖

𝑤
= sup{



















∫

𝑏

𝑎

ℎ (𝑡) 𝑑𝑡



















: 0 ≤ 𝑎 ≤ 𝑏 ≤ 1} . (5)

(xii)𝑊2,1

(𝐼,R𝑛

) is the Sobolev space of functions 𝑢 : 𝐼 →
R𝑛,𝑢 and �̇� are both absolutely continuous functions so �̈�(𝑡) ∈

𝐿

1

(𝐼,R𝑛

) and it is equipped with the norm ‖𝑢‖

𝑊
2,1
(𝐼,R𝑛) =

‖𝑢‖

𝐿
1
(𝐼,R𝑛) + ‖�̇�‖𝐿1(𝐼,R𝑛) + ‖�̈�‖𝐿1(𝐼,R𝑛).

(xiii) Let 𝑅 : 𝐼 → 2

R𝑛 be a multifunction and 𝛿1
𝑅
= {ℎ ∈

𝐿

1

(𝐼,R𝑛

) : ℎ(𝑡) ∈ 𝑅(𝑡)}.
(xiv) By a solution of (𝑃) (resp., of (𝑃

𝑒
)) we mean a func-

tion 𝑢 ∈ 𝑊

2,1

(𝐼,R𝑛

) such that �̈�(𝑡) = ℎ(𝑡) a.e. on 𝐼 with ℎ ∈
𝛿

1

𝐹(⋅,𝑢(⋅),�̇�(⋅))
(resp., ℎ ∈ 𝛿

1

ext𝐹(⋅,𝑢(⋅),�̇�(⋅))) and 𝑢(0) = 0, 𝑢(𝜂) =

𝑢(𝜃) = 𝑢(1).
(xv) By a solution of (𝑄) (resp., of (𝑄

𝑒
)) we mean a func-

tion 𝑢 ∈ 𝑊

2,1

(𝐼,R𝑛

) such that �̈�(𝑡) = ℎ(𝑡) a.e. on 𝐼 with ℎ ∈
𝛿

1

𝐹(⋅,𝑢(⋅),�̇�(⋅))
(resp., ℎ ∈ 𝛿

1

ext𝐹(⋅,𝑢(⋅),�̇�(⋅))) and �̇�(0) = 0, 𝑢(1) =

∑

𝑚−2

𝑖=1
𝑎

𝑖
𝑢(𝜉

𝑖
).

(xvi) In the sequel by Δ
𝑃
(resp., Δ

𝑃
𝑒

) we denote the solu-
tion set of Problem (𝑃) (resp., of Problem (𝑃

𝑒
)). Moreover,

by Δ
𝑄
(resp., Δ

𝑄
𝑒

) we denote the solution set of Problem (𝑄)

(resp., of Problem (𝑄

𝑒
)).

Definition 1. Let 𝐸 be a Banach space and let 𝑌 be a metric
space. A multifunction 𝐺 : 𝐼 × 𝑌 → 𝑃

𝑐𝑘
(𝐸) has the Scorza-

Dragoni property (the SD-property) if for every 𝜀 > 0 there
exists a closed set𝐴 ⊂ 𝐼 such that the Lebesgue measure 𝜇(𝐼 \
𝐴) is less than 𝜀 and 𝐺|

𝐴×𝑌
is continuous. The multifunction

𝐺 is called integrably bounded on compacta in 𝑌 if, for any
compact subset 𝑄 ⊂ 𝑌, we can find an integrable function
𝜇

𝑄
: 𝐼 → R+ such that sup{‖ 𝑦 ‖ : 𝑦 ∈ 𝐺(𝑡, 𝑧)} ≤ 𝜇

𝑄
(𝑡), for

almost every 𝑧 ∈ 𝑄.

Theorem 2 (see [18]). Let 𝑌 be a complete metric space, 𝐸 a
separable Banach space, 𝐸

𝜎
the Banach space 𝐸 endowed with

the weak topology, 𝑀 : 𝐼 × 𝑌 → 𝑃

𝑐𝑘
(𝐸

𝜎
), and 𝐾 a compact

subset of𝐶(𝐼, 𝑌). Furthermore, let𝑅 : 𝐾 → 2

𝐿
1
(𝐼,𝐸) be amulti-

function defined by

𝑅 (𝑦) = {𝑔 ∈ 𝐿

1

(𝐼, 𝐸) : 𝑔 (𝑡) ∈ 𝑀 (𝑡, 𝑦 (𝑡)) 𝑎.𝑒. 𝑜𝑛 𝐼} .

(6)

If 𝑀 has the SD-property and is integrably bounded on
compacta in 𝑌, then the set

𝐴

𝐾
= {𝑓 ∈ 𝐶 (𝐾, 𝐿

1

𝑤
(𝐼, 𝐸)) : 𝑓 (𝑦) ∈ 𝑅 (𝑦) ∀𝑦 ∈ 𝐾}

(7)

is nonempty complete subset of the space𝐶(𝐾, 𝐿1
𝑤
(𝐼, 𝐸)). More-

over, 𝐴
𝐾
= 𝐴 ext 𝐾 where 𝐿1

𝑤
(𝐼, 𝐸) is the space of equivalence

classes of Bochner-integrable functions V : 𝐼 → 𝐸 with the
norm ‖ V‖

𝑤
= sup

𝑡∈𝑇
‖∫

𝑡

0

V(𝑠)𝑑𝑠‖ and

𝐴 ext𝐾 = {𝑓 ∈ 𝐶 (𝐾, 𝐿

1

𝑤
(𝐼, 𝐸)) : 𝑓 (𝑦) ∈ ext𝑅 (𝑦) ∀𝑦 ∈ 𝐾} .

(8)

Lemma3 (see [19]). For𝑝 such that1 < 𝑝 < ∞ let {𝑢
𝑛
, 𝑢}

𝑛∈N ⊆

𝐿

𝑝

(𝐼,R𝑛

), sup
𝑛∈N ‖𝑢𝑛‖𝑝 < ∞ and 𝑢

𝑛
→ 𝑢 with respect to the

weak norm ‖ ⋅‖

𝑤
. Then 𝑢

𝑛
→ 𝑢 weakly in 𝐿𝑝(𝐼,R𝑛

).

Next we state a preliminary lemma, for 0 < 𝜂 < 𝜃 < 1,
which is useful in the study of four boundary problems for
the differential equations and the differential inclusions, and
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moreover we summarize some properties of a Hartman-type
function.

Lemma 4 (see [8]). Let𝐺 : 𝐼×𝐼 → R be the function defined
as follows:

as 0 ≤ 𝑡 < 𝜂,

𝐺 (𝑡, 𝜏) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

−𝜏 𝑖𝑓 0 ≤ 𝜏 ≤ 𝑡

−𝑡 𝑖𝑓 𝑡 < 𝜏 ≤ 𝜂

𝑡 (𝜏 − 𝜃) + (𝜏 − 𝜂)

𝜃 − 𝜂

𝑖𝑓 𝜂 < 𝜏 ≤ 𝜃

1 − 𝜏

1 − 𝜃

𝑖𝑓 𝜃 < 𝜏 ≤ 1,

(9)

when 𝜂 ≤ 𝑡 < 𝜃,

𝐺 (𝑡, 𝜏) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

−𝜏 𝑖𝑓 0 ≤ 𝜏 ≤ 𝜂

𝜏 (𝑡 − 𝜃 + 1) + 𝜂 (𝜏 − 𝑡 − 1)

𝜃 − 𝜂

𝑖𝑓 𝜂 < 𝜏 ≤ 𝑡

𝑡 (𝜏 − 𝜃) + (𝜏 − 𝜂)

𝜃 − 𝜂

𝑖𝑓 𝑡 < 𝜏 ≤ 𝜃

1 − 𝜏

1 − 𝜃

𝑖𝑓 𝜃 < 𝜏 ≤ 1,

(10)

lastly if 𝜃 ≤ 𝑡 ≤ 1,

𝐺 (𝑡, 𝜏) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

−𝜏 𝑖𝑓 0 ≤ 𝜏 ≤ 𝜂

𝜂 (𝜏 − 𝑡 − 1) + 𝜏 (𝑡 − 𝜃 + 1)

𝜃 − 𝜂

𝑖𝑓 𝜂 < 𝜏 ≤ 𝜃

1 − 𝜏

1 − 𝜃

+ (𝑡 − 𝜏) 𝑖𝑓 𝜃 < 𝜏 ≤ 𝑡

1 − 𝜏

1 − 𝜃

𝑖𝑓 𝑡 < 𝜏 ≤ 1.

(11)

Then the following hold.
(i) If 𝑢 ∈ 𝑊2,1

(𝐼,R𝑛

) with 𝑢(0) = 𝑥
0
, 𝑢(1) = 𝑢(𝜃) = 𝑢(𝜂),

then

𝑢 (𝑡) = 𝑥

0
+ ∫

1

0

𝐺 (𝑡, 𝜏) �̈� (𝜏) 𝑑𝜏, ∀𝑡 ∈ 𝐼;
(12)

(ii) if 𝑤 ∈ 𝐿

1

(𝐼,R𝑛

), then for all 𝑡 ∈ 𝐼,

∫

1

0

𝐺 (𝑡, 𝜏) 𝑤 (𝜏) 𝑑𝜏 = ∫

𝑡

0

(𝑡 − 𝜏)𝑤 (𝜏) 𝑑𝜏

− ∫

𝜂

0

𝑡 (𝜏 − 𝜂) (𝑡 + 1)

𝜃 − 𝜂

𝑤 (𝜏) 𝑑𝜏

+ ∫

𝜃

0

𝑡 (𝜏 − 𝜃) + (𝜏 − 𝜂)

𝜃 − 𝜂

𝑤 (𝜏) 𝑑𝜏

+ ∫

1

𝜃

1 − 𝜏

1 − 𝜃

𝑤 (𝜏) 𝑑𝜏;

(13)

(iii) sup
𝑡,𝜏∈𝐼

|𝐺(𝑡, 𝜏)| ≤ 2, sup
𝑡,𝜏∈𝐼

|𝜕𝐺(𝑡, 𝜏)/𝜕𝑡| ≤ 1.

Let 𝑐
1
, 𝑐

2
, 𝑎 ∈ 𝐿

𝑝

(𝐼,R+

), 1 < 𝑝 < ∞, and let 𝐿 be a
linear operator from 𝐶(𝐼,R) × 𝐶(𝐼,R) to 𝐶(𝐼,R) × 𝐶(𝐼,R)

defined by 𝐿(𝑓, 𝑔) = (𝑓, 𝑔) such that, for all 𝑡 ∈ 𝐼,

𝑓 (𝑡) = ∫

𝑇

0

|𝐺 (𝑡, 𝜏)| (𝑐

1
(𝜏) 𝑓 (𝜏) + 𝑐

2
(𝜏) 𝑔 (𝜏)) 𝑑𝜏,

𝑔 (𝑡) = ∫

𝑇

0

















𝜕𝐺 (𝑡, 𝜏)

𝜕𝑡

















(𝑐

1
(𝜏) 𝑓 (𝜏) + 𝑐

2
(𝜏) 𝑔 (𝜏)) 𝑑𝜏.

(14)

If 𝑐
1
= 𝑐

2
= 0, then clearly 𝐿 = 0. We note that if K =

{(ℎ

1
, ℎ

2
) ∈ 𝐶(𝐼,R) × 𝐶(𝐼,R) : ℎ

1
(𝑡), ℎ

2
(𝑡) ≥ 0, ∀𝑡 ∈ 𝐼}, then

𝐿(K) ⊆ K. Moreover, the spectral radius 𝑟(𝐿) = lim ‖𝐿

𝑛

‖

1/𝑛

is an eigenvalue of 𝐿 with an eigenvector inK [20].

3. Relaxation Theorems

In this section, bothTheorems 5 and 7 improve [19, Theorem
4.1] with [21, Theorem 6]. Indeed in [19] Papageorgiou
considered (𝑃) and (𝑃

𝑒
) with the two boundary conditions

𝑢(0) = 𝑢(1) = 0 and in [21] Ibrahim and Gomaa study
the same problems with three boundary conditions 𝑢(0) =
𝑥

0
, 𝑢(𝜂) = 𝑢(1).

Theorem5. Let𝐹 : 𝐼×R𝑛

×R𝑛

→ 𝑃

𝑘𝑐
(R𝑛

) be amultifunction
such that

(i) for each (𝑥, 𝑦) ∈ R𝑛

× R𝑛, the multifunction 𝐹(⋅, 𝑥, 𝑦)
is measurable,

(ii) 𝑑
𝐻
(𝐹(𝑡, 𝑥, 𝑦), 𝐹(𝑡, 𝑥



, 𝑦



)) ≤ 𝛼

1
(𝑡) ‖ 𝑥 − 𝑥



‖ +𝛼

2
(𝑡)

‖𝑦 − 𝑦



‖ a.e. with 𝛼
1
, 𝛼

2
∈ 𝐿

1

(𝐼,R+

) and ‖𝛼
1
+ 𝛼

2
‖<

1/2,
(iii) for each (𝑡, 𝑥, 𝑦) ∈ 𝐼 ×R𝑛

×R𝑛,








𝐹 (𝑡, 𝑥, 𝑦)









= sup {‖V‖ : V ∈ 𝐹 (𝑡, 𝑥, 𝑦)}

≤ 𝑎 (𝑡) + 𝑐

1
(𝑡) ‖𝑥‖ + 𝑐

2
(𝑡)









𝑦









(15)

with 𝑎, 𝑐
1
, 𝑐

2
∈ 𝐿

𝑝

(𝐼,R+

) 1 < 𝑝 < ∞,
(iv) the spectral radius, 𝑟(𝐿), is less than 1.

Then for each solution𝑢 ∈ Δ
𝑃
𝑒

, there is a sequence (𝑢
𝑚
(⋅))

𝑚∈N ⊂

Δ

𝑃
converging to 𝑢(⋅) in (𝐶1(𝐼,R𝑛

), ‖ ⋅‖

𝐶
1).

Proof. From [9, Theorem 2.1], we obtain Δ
𝑃
𝑒

̸= 0. Moreover,
we can say that ‖ 𝐹(𝑡, 𝑥, 𝑦) ‖≤ 𝑎

1
(𝑡) a.e. on 𝐼 for some 𝑎

1
∈

𝐿

𝑝

(𝐼,R+

). Let 𝑢 ∈ Δ
𝑃
. Then

�̈� (𝑡) = ℎ (𝑡) , a.e. on 𝐼,

𝑢 (0) = 0, 𝑢 (𝜂) = 𝑢 (𝜃) = 𝑢 (1) ,

(16)

where ℎ(𝑡) ∈ 𝐹(𝑡, 𝑢(𝑡), �̇�(𝑡)) a.e. on 𝐼. Assume that 𝑓 :

𝐿

1

(𝐼,R𝑛

) → 𝐶

1

(𝐼,R𝑛

) is a function such that, for each
ℎ ∈ 𝐿

1

(𝐼,R𝑛

), 𝑓(ℎ) ∈ 𝑊

1,2

(𝐼,R𝑛

) is the unique solution of
the second-order differential equation

�̈� (𝑡) = ℎ (𝑡) , a.e. on 𝐼,

𝑢 (0) = 0, 𝑢 (𝜂) = 𝑢 (𝜃) = 𝑢 (1) .

(𝑃

ℎ
)
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Let S = {𝑢 ∈ 𝐿

1

(𝐼,R𝑛

) : ‖ 𝑢(𝑡) ‖≤ 𝑎

1
(𝑡) a.e. on 𝐼}. It is easy

to see that 𝑓(S) is convex. Let (𝑢
𝑛
)

𝑛∈N be a sequence in 𝑓(S).
Hence, 𝑢

𝑛
∈ 𝑊

2,1

(𝐼,R𝑛

)with 𝑢
𝑛
(0) = 𝑥

0
, 𝑢

𝑛
(𝜂) = 𝑢

𝑛
(𝜃) = 𝑢

𝑛

(17) and

𝑢

𝑛
(𝑡) = 𝑥

0
+ ∫

𝑡

0

(𝑡 − 𝜏) �̈�

𝑛
(𝜏) 𝑑𝜏

− ∫

𝜂

0

𝑡 (𝜏 − 𝜂) (𝑡 + 1)

𝜃 − 𝜂

�̈�

𝑛
(𝜏) 𝑑𝜏

+ ∫

𝜃

0

𝑡 (𝜏 − 𝜃) + (𝜏 − 𝜂)

𝜃 − 𝜂

�̈�

𝑛
(𝜏) 𝑑𝜏

+ ∫

1

𝜃

1 − 𝜏

1 − 𝜃

�̈�

𝑛
(𝜏) 𝑑𝜏.

(17)

Then,

lim
𝑛→∞

𝑢

𝑛
(𝑡) = ∫

1

0

𝐺 (𝑡, 𝜏) �̈� (𝜏) 𝑑𝜏 = 𝑢 (𝑡) ,
(18)

which means that 𝑓(S) is a compact subset of 𝐶1(𝐼,R𝑛

). Set

P
𝜀
(𝑡) = {𝑥 ∈ 𝐹 (𝑡, V (𝑡) , V̇ (𝑡)) : ‖ℎ (𝑡) − 𝑥‖ < 𝜀

+ 𝑑 (ℎ (𝑡) , 𝐹 (𝑡, V (𝑡) , V̇ (𝑡)))} ,
(19)

where 𝜀 > 0 and V ∈ 𝑓(S). Hence, for each 𝑡 ∈ 𝐼,
P
𝜀
(𝑡) ̸= 0. Assume thatB(𝐼) andB(R𝑛

) are the Borel𝜎-fields
of 𝐼 and R𝑛, respectively. From condition, (𝑖) the function
𝑡 → 𝐹(𝑡, V(𝑡), V̇(𝑡)) is measurable. Hence, 𝑔𝑟𝐹(⋅, V(⋅), V̇(⋅)) ∈
B(𝐼) × B(R𝑛

) and (𝑡, 𝑥) → 𝜀𝑑(ℎ(𝑡), 𝐹(𝑡, V(𝑡), V̇(𝑡)))−
‖ ℎ(𝑡) − 𝑥 ‖ is measurable in 𝑡 and continuous in 𝑥 that
is jointly measurable. Thus, by Aumann’s selection theorem,
there exists a measurable selection 𝑠

𝜀
of P

𝜀
such that 𝑠

𝜀
(𝑡) ∈

P
𝜀
(𝑡) for each 𝑡 ∈ 𝐼. Now we define a multifunction Q

𝜀
:

𝑓(S) → 2

𝐿
1
(𝐼,R𝑛) by the following:

Q
𝜀
(V)

= {𝑥 ∈ 𝛿

1

𝐹(⋅,V(⋅),V̇(⋅)) :

‖ℎ (𝑡) − 𝑥‖<𝜀 + 𝑑 (ℎ (𝑡) , 𝐹 (𝑡, V (𝑡) , V̇ (𝑡))) a.e. on 𝐼} ,

(20)

withQ
𝜀
(V)(𝑡) ̸= 0 for each V ∈ 𝑓(S). From [22, Proposition 4],

Q
𝜀
is 𝑙. 𝑠. 𝑐. and clearly has decomposable values. Applying

[22, Theorem 3], we have a continuous selection 𝑆

𝜀
of Q

𝜀
.

Therefore,








ℎ (𝑡) − 𝑆

𝜀
(V) (𝑡)









≤ 𝜀 + 𝑑 (ℎ (𝑡) , 𝐹 (𝑡, V (𝑡) , V̇ (𝑡)))

≤ 𝜀 + 𝛼

1
(𝑡) ‖𝑢 (𝑡) − V (𝑡)‖

+ 𝛼

2
(𝑡) ‖�̇� (𝑡) − V̇ (𝑡)‖ a.e. on 𝐼.

(21)

FromTheorem 2, we find a continuous function 𝜉
𝜀
: 𝑓(S) →

𝐿

1

𝑤
(𝐼,R𝑛

) such that 𝜉
𝜀
(V) ∈ ext𝛿1

𝐹(⋅,V(⋅),V̇(⋅)) and ‖ 𝑆𝜀(V)−𝜉𝜀(V) ‖<

𝜀 for each V ∈ 𝑓(S). Define a multifunction 𝑅 : 𝑓(S) →

2

𝐿
1
(𝐼,R𝑛) by

𝑅 (𝑢) = {𝑔 ∈ 𝐿

1

(𝐼,R
𝑛

) : 𝑔 (𝑡)∈𝐹(𝑡, 𝑢 (𝑡) , �̇� (𝑡)) a.e. on 𝐼} .

(22)

Assume that 𝑌 = R𝑛

× R𝑛 and set a multifunction𝑀 : 𝐼 ×

𝑌 → 2

R𝑛 such that 𝑀(𝑡, (𝑥, 𝑦)) = 𝐹(𝑡, 𝑥, 𝑦). From Theo-
rem 3.1 in [23],𝑀 has SD-property. 𝑅 has nonempty convex
values. Let (𝑔

𝑛
)

𝑛∈N be a sequence in 𝑅(𝑢) for some 𝑢 ∈ 𝑓(S).
So, for each 𝑡 ∈ 𝐼,

lim
𝑛→∞

𝑔

𝑛
(𝑡) = 𝑔 (𝑡) ∈ 𝐹 (𝑡, 𝑢 (𝑡) , �̇� (𝑡)) (23)

because 𝐹 has closed values in R𝑛. Therefore, 𝑔 ∈ 𝛿

1

𝐹(⋅,𝑢(⋅),�̇�(⋅))

which implies that 𝑅(⋅) has compact values in R𝑛. We can
apply Theorem 2 to find a continuous function 𝜃 : 𝑓(S) →

𝐿

1

𝑤
(𝐼,R𝑛

) such that 𝜃(𝑢) ∈ ext(𝑅(𝑢)), for all 𝑢 ∈ 𝑓(S). We
see that 𝜃(𝑢)(𝑡) ∈ ext(𝑀(𝑡, (𝑢(𝑡), �̇�(𝑡)))) [24], hence 𝜃(𝑢)(𝑡) ∈
ext𝐹(𝑡, 𝑢(𝑡), �̇�(𝑡)) a.e. on 𝐼. Assume that 𝜂 : 𝑓(S) →

𝑊

1,2

(𝐼,R𝑛

) is the function which for each 𝑢 ∈ 𝑓(S), 𝜂(𝑢) =
𝑔(𝜃(𝑢)). For each 𝑢 ∈ 𝑓(S), we have ‖ 𝜃(𝑢)(𝑡) ‖≤ 𝑎

1
and so

𝜃(𝑢) ∈ S. Then, 𝜂 is a function from 𝑓(S) into 𝑓(S) and also
we see that 𝜂 is continuous [19]. Now let 𝜀

𝑛
→ 0, 𝑆

𝜀
𝑛

= 𝑆

𝑛

and 𝜉
𝑛
= 𝜉

𝜀
𝑛

. Then, for each 𝑛 ∈ N, the function 𝑓𝑜𝜉
𝑛
is a

continuous function from the compact set 𝑓(S) into itself.
From Schauder’s fixed point theorem, 𝑓𝑜𝜉

𝑛
has a fixed point

𝑢

𝑛
, but ext𝛿1

𝐹(⋅,V(⋅),V̇(⋅)) = 𝛿

1

ext𝐹(⋅,V(⋅),V̇(⋅)) [24] so 𝑢𝑛 ∈ Δ

𝑃
𝑒

. By
passing to a subsequence if necessary, we may assume that
𝑢

𝑛
→ �̂� in 𝐶1(𝐼,R𝑛

). Then, we obtain









𝑢

𝑛
(𝑡) − 𝑢 (𝑡)









≤ ∫

1

0

















[∫

𝑡

0

(𝑡 − 𝜏) (𝜉

𝑛
(𝜏) − ℎ (𝜏)) 𝑑𝜏

− ∫

𝜂

0

𝑡 (𝜏 − 𝜂) (𝑡 + 1)

𝜃 − 𝜂

(𝜉

𝑛
(𝜏) − ℎ (𝜏)) 𝑑𝜏

+ ∫

𝜃

0

𝑡 (𝜏 − 𝜃) + (𝜏 − 𝜂)

𝜃 − 𝜂

(𝜉

𝑛
(𝜏) − ℎ (𝜏)) 𝑑𝜏

+∫

1

𝜃

1 − 𝜏

1 − 𝜃

(𝜉

𝑛
(𝜏) − ℎ (𝜏)) 𝑑𝜏]



















𝑑𝑠

≤ ∫

1

0

[∫

𝑡

0

(𝑡 − 𝜏)









𝜉

𝑛
(𝜏) − 𝑆

𝑛
(𝜏)









𝑑𝜏

+ ∫

𝑡

0

(𝑡 − 𝜏)









ℎ (𝜏) − 𝑆

𝑛
(𝜏)









𝑑𝜏

+ ∫

𝜂

0

𝑡 (𝜏 − 𝜂) (𝑡 + 1)

𝜃 − 𝜂

(𝜉

𝑛
(𝜏) − 𝑆

𝑛
(𝜏)) 𝑑𝜏

+ ∫

𝜂

0

𝑡 (𝜏 − 𝜂) (𝑡 + 1)

𝜃 − 𝜂









ℎ (𝜏) − 𝑆

𝑛
(𝜏)









𝑑𝜏
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+ ∫

1

𝜃

1 − 𝜏

1 − 𝜃









𝜉

𝑛
(𝜏) − 𝑆

𝑛
(𝜏)









𝑑𝜏

+∫

1

𝜃

1 − 𝜏

1 − 𝜃









ℎ (𝜏) − 𝑆

𝑛
(𝜏)









𝑑𝜏] 𝑑𝑠.

(24)

But 𝜉
𝑛
−𝑆

𝑛
→ 0with respect to the norm ‖ ⋅‖

𝑤
fromLemma 3

we get 𝜉
𝑛
− 𝑆

𝑛
→ 0 weakly in 𝐿1(𝐼,R𝑛

). So we have

∫

𝑡

0

(𝑡 − 𝜏)









𝜉

𝑛
(𝜏) − 𝑆

𝑛
(𝜏)









𝑑𝜏

+ ∫

𝜂

0

𝑡 (𝜏 − 𝜂) (𝑡 + 1)

𝜃 − 𝜂









𝜉

𝑛
(𝜏) − 𝑆

𝑛
(𝜏)









𝑑𝜏

+ ∫

1

𝜃

1 − 𝜏

1 − 𝜃









𝜉

𝑛
(𝜏) − 𝑆

𝑛
(𝜏)









𝑑𝜏 → 0.

(25)

Moreover,

∫

1

0

[∫

𝑡

0

(𝑡 − 𝜏)









ℎ (𝜏) − 𝑆

𝑛
(𝜏)









𝑑𝜏

+ ∫

𝜂

0

𝑡 (𝜏 − 𝜂) (𝑡 + 1)

𝜃 − 𝜂

(𝜉

𝑛
(𝜏) − 𝑆

𝑛
(𝜏)) 𝑑𝜏

+∫

1

𝜃

1 − 𝜏

1 − 𝜃









ℎ (𝜏) − 𝑆

𝑛
(𝜏)









𝑑𝜏] 𝑑𝑠

≤ ∫

1

0

[∫

𝑡

0

(𝑡 − 𝜏) (𝜀

𝑛
+ 𝛼

1
(𝜏)









𝑢 (𝜏) − 𝑢

𝑛
(𝜏)









+𝛼

2
(𝜏)









�̇� (𝜏) − �̇�

𝑛
(𝜏)









)

+ ∫

𝜂

0

𝑡 (𝜏 − 𝜂) (𝑡 + 1)

𝜃 − 𝜂

(𝜀

𝑛
+ 𝛼

1
(𝜏)









𝑢 (𝜏) − 𝑢

𝑛
(𝜏)









+𝛼

2
(𝜏)









�̇� (𝜏) − �̇�

𝑛
(𝜏)









)

+ ∫

1

𝜃

1 − 𝜏

1 − 𝜃

(𝜀

𝑛
+ 𝛼

1
(𝜏)









𝑢 (𝜏) − 𝑢

𝑛
(𝜏)









+𝛼

2
(𝜏)









�̇� (𝜏) − �̇�

𝑛
(𝜏)









)] 𝑑𝑠.

(26)

As 𝑛 → ∞, we have

‖�̂� (𝑡) − 𝑢 (𝑡)‖

≤ ∫

1

0

[∫

𝑡

0

(𝑡 − 𝜏) (𝛼

1
(𝜏) ‖𝑢 (𝜏) − �̂� (𝜏)‖

+𝛼

2
(𝜏)











�̇� (𝜏) −

̇

�̂� (𝜏)











) 𝑑𝜏

+ ∫

𝜂

0

𝑡 (𝜏 − 𝜂) (𝑡 + 1)

𝜃 − 𝜂

(𝛼

1
(𝜏) ‖𝑢 (𝜏) − �̂� (𝜏)‖

+𝛼

2
(𝜏)











�̇� (𝜏) −

̇

�̂� (𝜏)











) 𝑑𝜏

+ ∫

1

𝜃

1 − 𝜏

1 − 𝜃

(𝛼

1
(𝜏) ‖𝑢 (𝜏) − �̂� (𝜏)‖

+𝛼

2
(𝜏)











�̇� (𝜏) −

̇

�̂� (𝜏)











) 𝑑𝜏] 𝑑𝑠

≤ ‖𝑢−�̂�‖

𝐶
1
(𝐼,R𝑛) (∫

𝑡

0

(𝑡−𝜏) (𝛼

1
(𝜏)+𝛼

2
(𝜏)) 𝑑𝜏

+∫

𝜂

0

𝑡 (𝜏−𝜂) (𝑡+1)

𝜃−𝜂

(𝛼

1
(𝜏)+𝛼

2
(𝜏)) 𝑑𝜏

+∫

1

𝜃

1 − 𝜏

1 − 𝜃

(𝛼

1
(𝜏) + 𝛼

2
(𝜏)) 𝑑𝜏)

= ‖𝑢−�̂�‖

𝐶
1
(𝐼,R𝑛) ∫

1

0

|𝐺 (𝑡, 𝜏)| (𝛼

1
(𝜏)+𝛼

2
(𝜏)) 𝑑𝜏

≤ 2‖𝑢 − �̂�‖

𝐶
1
(𝐼,R𝑛)









𝛼

1
(𝜏) + 𝛼

2
(𝜏)









.

(27)

Since by assumption (ii), ‖ 𝛼
1
+ 𝛼

2
‖< 1/2 we get 𝑢 = �̂�.

So 𝑢
𝑛
→ 𝑢 in 𝐶1(𝐼,R𝑛

) and 𝑢 ∈ Δ

𝑃
𝑒

where the closure is
taken in𝐶1(𝐼,R𝑛

)whichmeans thatΔ
𝑃
⊆ Δ

𝑃
𝑒

.Therefore, the
proof is complete if we show that Δ

𝑃
is closed. Indeed if

V
𝑛
∈ Δ

𝑃
and V

𝑛
→ V in 𝐶

1

(𝐼,R𝑛

), then V
𝑛
= 𝑓(𝑦

𝑛
) for

𝑦

𝑛
∈ 𝛿

1

𝐹(⋅,V(⋅),V̇(⋅)). From assumption (iii) and the Dunford-
Pettis theorem, {𝑦

𝑛
}

𝑛∈N is weakly sequentially compact in
𝐿

1

(𝐼,R𝑛

). So we can say that {𝑦
𝑛
}

𝑛∈N in 𝐿

1

(𝐼,R𝑛

). By [25,
Theorem 3.1], we get

𝑦 (𝑡) ∈ conv lim{𝑦
𝑛
(𝑡)}

𝑛∈N
⊆ conv lim𝐹 (𝑡, V

𝑛
(𝑡) , V̇

𝑛
(𝑡))

= 𝐹 (𝑡, V (𝑡) , V̇ (𝑡)) a.e. on 𝐼.

(28)

Moreover, 𝑓(𝑦
𝑛
) → 𝑓(𝑦) in 𝐿1(𝐼,R𝑛

) for 𝑦 ∈ 𝐿

1

(𝐼,R𝑛

)

and 𝑦(𝑡) ∈ 𝐹(𝑡, V(𝑡), V̇(𝑡)) a.e. on 𝐼. Hence, V ∈ Δ
𝑃
; that is Δ

𝑃

is closed in 𝐶1(𝐼,R𝑛

).

Now we consider the following assumptions:

(𝐴

1
) 𝛽 ∈ (0, 𝜋/2), 𝑎

𝑖
> 0 and ∑𝑚−2

𝑖=1
𝑎

𝑖
< 1;

(𝐴

2
) ∑

𝑚−2

𝑖=1
𝑎

𝑖
cos𝛽𝜉

𝑖
− cos𝛽 > 0 and 𝐾

𝑚
= 1/∑

𝑚−2

𝑖=1
𝑎

𝑖

cos𝛽𝜉
𝑖
− cos𝛽;

(𝐴

3
) 𝐶

0
= (sin𝛽/𝛽)(1 + 𝐾

𝑚
) and 𝐶

1
= min{𝐾

𝑚
+ 1,

𝐾

𝑚
sin2𝛽};
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(𝐴

4
) 𝑆 = {𝑢 ∈ 𝐶

2

(𝐼,R𝑛

) : �̇�(0) = 0, 𝑢(1) = ∑

𝑚−2

𝑖=1
𝑎

𝑖
𝑢(𝜉

𝑖
)};

(𝐴

5
) G : 𝐼 × 𝐼 → R is defined by

G (𝑡, 𝑠)

=

{

{

{

1

𝛽

sin𝛽 (𝑡 − 𝑠) if 0 ≤ 𝑠 ≤ 𝑡 ≤ 1

0 if 0 ≤ 𝑡 ≤ 𝑠 ≤ 1

+

𝐾

𝑚

𝛽

cos𝛽𝑡

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

sin𝛽 (1 − 𝑠) −
𝑚−2

∑

𝑖=1

𝑎

𝑖
sin𝛽 (𝜉

𝑖
− 𝑠) ,

if 0 ≤ 𝑠 ≤ 𝜉
1
,

sin𝛽 (1 − 𝑠) −
𝑚−2

∑

𝑖=2

𝑎

𝑖
sin𝛽 (𝜉

𝑖
− 𝑠) ,

if 𝜉
1
< 𝑠 ≤ 𝜉

2
,

sin𝛽 (1 − 𝑠) −
𝑚−2

∑

𝑖=3

𝑎

𝑖
sin𝛽 (𝜉

𝑖
− 𝑠) ,

if 𝜉
2
< 𝑠 ≤ 𝜉

3
,

...

sin𝛽 (1 − 𝑠) −
𝑚−2

∑

𝑖=𝑘

𝑎

𝑖
sin𝛽 (𝜉

𝑖
− 𝑠) ,

if 𝜉
𝑘−1

< 𝑠 ≤ 𝜉

𝑘
,

...
sin𝛽 (1 − 𝑠) ,

if 𝜉
𝑚−2

< 𝑠 ≤ 1.

(29)

Lemma 6 (see [26]). If the assumptions (𝐴
1
)–(𝐴

5
) hold, then

(i) 0 ≤ G(𝑡, 𝑠) ≤ 𝐶
0
for all (𝑡, 𝑠) ∈ 𝐼 × 𝐼,

(ii) sup
𝑡,𝑠∈𝐼

|𝜕G(𝑡, 𝑠)/𝜕𝑡| ≤ 𝐶
1
,

(iii) for each 𝑥 ∈ 𝐶

1

(𝐼,R𝑛

) there exists a unique function
𝑢

𝑥
∈ 𝑆 such that

𝑢

𝑥
(𝑡) = ∫

1

0

G (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠,
(30)

(iv) (∫1
0

|G(𝑡, 𝑠)|𝑘𝑑𝑠)
1/𝑘

≤ 𝐶

0
and (∫1

0

|(𝜕G/𝜕𝑡)(𝑡, 𝑠)|𝑘𝑑𝑠)
1/𝑘

≤ 𝐶

1
.

Proof. (ii) Since

𝜕G (𝑡, 𝑠)

𝜕𝑡

= {

cos𝛽 (𝑡 − 𝑠) if 0 ≤ 𝑠 ≤ 𝑡 ≤ 1

0 if 0 ≤ 𝑡 ≤ 𝑠 ≤ 1

− 𝐾

𝑚
sin𝛽𝑡

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

sin𝛽 (1−𝑠)−
𝑚−2

∑

𝑖=1

𝑎

𝑖
sin𝛽 (𝜉

𝑖
− 𝑠),

if 0 ≤ 𝑠 ≤ 𝜉
1
,

sin𝛽 (1−𝑠)−
𝑚−2

∑

𝑖=2

𝑎

𝑖
sin𝛽 (𝜉

𝑖
− 𝑠),

if 𝜉
1
< 𝑠 ≤ 𝜉

2
,

sin𝛽 (1−𝑠)−
𝑚−2

∑

𝑖=3

𝑎

𝑖
sin𝛽 (𝜉

𝑖
− 𝑠),

if 𝜉
2
< 𝑠 ≤ 𝜉

3
,

...

sin𝛽 (1−𝑠)−
𝑚−2

∑

𝑖=𝑘

𝑎

𝑖
sin𝛽 (𝜉

𝑖
− 𝑠),

if 𝜉

𝑘−1
< 𝑠 ≤ 𝜉

𝑘
,

...
sin𝛽 (1 − 𝑠) ,

if 𝜉

𝑚−2
< 𝑠 ≤ 1,

(31)

then sup
𝑡,𝑠∈𝐼

𝜕G(𝑡, 𝑠)/𝜕𝑡 ≤ 1 + 𝐾
𝑚
. Furthermore,

𝜕G (𝑡, 𝑠)

𝜕𝑡

≥ 𝐾

𝑚
sin𝛽𝑡 [

𝑚−2

∑

𝑖=1

𝑎

𝑖
sin (𝜉

𝑖
− 𝑠) − sin𝛽 (1 − 𝛽)]

≥ −𝐾

𝑚
sin2𝛽

(32)

and thus sup
𝑡,𝑠∈𝐼

|𝜕G(𝑡, 𝑠)/𝜕𝑡| ≤ 𝐶
1
.

Theorem7. Assume that the assumptions (𝐴
1
) and (𝐴

2
) hold.

Let 𝐹 be a multifunction from 𝐼×R𝑛

×R𝑛 to 𝑃
𝑘𝑐
(R𝑛

) satisfying
the following conditions:

(a) for each (𝑥, 𝑦) ∈ R × R, the multifunction 𝐹(⋅, 𝑥, 𝑦) is
measurable;

(b) for each 𝑡 ∈ 𝐼, the function (𝑥, 𝑦) → 𝐹(𝑡, 𝑥, 𝑦) is
continuous with respect to the Hausdorff metric 𝑑

𝐻
;

(c) for each (𝑡, 𝑥, 𝑦) ∈ 𝐼 ×R𝑛

×R𝑛









𝐹 (𝑡, 𝑥, 𝑦)









≤ sup {‖V‖ : V ∈ 𝐹 (𝑡, 𝑥, 𝑦)}

≤ 𝑎 (𝑡) + 𝑐

1
(𝑡) ‖𝑥‖ + 𝑐

2
(𝑡)









𝑦









;

(33)

(d) the spectral radius 𝑟(𝐿) of 𝐿 is less than one.
Then Problem (𝑄

𝑒
) admits a solution in 𝑆.
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Proof. We can say that ‖ 𝐹(𝑡, 𝑥, 𝑦) ‖≤ 𝑎

1
(𝑡) a.e. on 𝐼 for some

𝑎

1
∈ 𝐿

𝑝

(𝐼,R+

) [9]. Let 𝑥 ∈ 𝐶1(𝐼,R𝑛

) and let 𝑢 ∈ 𝐶2(𝐼,R𝑛

) be
the unique solution of the problem

�̈� (𝑡) = 𝑥 (𝑡) , a.e. on 𝐼,

�̇� (0) = 0, 𝑢 (1) =

𝑚−2

∑

𝑖=1

𝑎

𝑖
𝑢 (𝜉

𝑖
) .

(∗)

From Lemma 6, we have 𝑢(𝑡) = ∫

1

0

G(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠, ∀𝑡 ∈ 𝐼.
Thus, we define a function 𝑓 : 𝐶

1

(𝐼,R𝑛

) → 𝐶

2

(𝐼,R𝑛

) such
that 𝑓(𝑥) is the unique solution of (∗). Let

V = {𝑥 ∈ 𝐶

1

(𝐼,R
𝑛

) : ‖𝑥 (𝑡)‖ ≤ 𝑎

1
(𝑡) a.e. on 𝐼} . (34)

From the Dunford-Pettis theorem,V is weakly compact and
then 𝑓(V) is convex and compact subset of 𝐶2(𝐼,R𝑛

). Let
Y = R𝑛

× R𝑛. If K = 𝑓(V), R : K → 2

𝐿
1
(𝐼,R𝑛) and

M : 𝐼 ×Y → 2

R𝑛 , where R(𝑢) = {𝑔 ∈ 𝐿

1

(𝐼,R𝑛

) : 𝑔(𝑡) ∈

𝐹(𝑡, 𝑢(𝑡), �̇�(𝑡)) a.e. on 𝐼} and M(𝑡, (𝑥, 𝑦)) = 𝐹(𝑡, 𝑥, 𝑦), then
M has SD-property [23]. It is easy to show that R is
nonempty and convex subset of 𝐿1(𝐼,R𝑛

). If 𝑓
𝑛
is a sequence

in R(𝑢) for some 𝑢 ∈ K, then lim
𝑛→∞

𝑓

𝑛
(𝑡) = 𝑓(𝑡) ∈

𝐹(𝑡, 𝑢(𝑡), �̇�(𝑡)), where the values of 𝐹 are closed. Therefore,
the values ofR are weakly compact. According toTheorem 5
there exists a continuous function 𝑟 : K → 𝐿

1

𝑤
(𝐼,R𝑛

)

with 𝑟(𝑢) ∈ ext(R(𝑢)), for all 𝑢 ∈ K. Thus, 𝑟(𝑢)(𝑡) ∈

ext(M(𝑡, 𝑢(𝑡), �̇�(𝑡))) a.e. on 𝐼 [24] which implies 𝑟(𝑢)(𝑡) ∈

ext(𝐹(𝑡, 𝑢(𝑡), �̇�(𝑡))) a.e. on 𝐼. If 𝑢 ∈ 𝑓(V), then ‖ 𝑟(𝑢)(𝑡) ‖≤ 𝑎
1

and so 𝑟(𝑢) ∈ V. Put 𝜃 : 𝑓(V) → 𝑊

2,1

(𝐼,R𝑛

) such that
𝜃(𝑢) = 𝑓(𝑟(𝑢)), thus 𝜃 is a continuous function from 𝑓(V)

into 𝑓(V) [19]. From Schauder’s fixed point theorem, there
exists 𝑥 ∈ 𝑓(V) such that 𝑥 = 𝜃(𝑥) = 𝑓(𝑟(𝑥)) which
means that there is 𝑥 ∈ 𝑆 ⊆ 𝐶

2

(𝐼,R𝑛

) such that �̈�(𝑡) ∈

ext(𝐹(𝑡, 𝑥(𝑡), �̇�(𝑡))).

Theorem 8. In the setting of Theorem 7, if one replaces condi-
tion (b) by the following condition:

(b) 𝑑
𝐻
(𝐹(𝑡, 𝑥, 𝑦), 𝐹(𝑡, 𝑥, 𝑦)) ≤ 𝑘

1
‖ 𝑥 − 𝑥



‖ +

𝑘

2
‖𝑦 − 𝑦



‖ a.e. with 𝑘
1
≥ 0, 𝑘

2
≥ 0 and |𝑘

1
+ 𝑘

2
| < 1/2𝐶

0
.

Then Δ
𝑄
𝑒

is nonempty and Δ
𝑄
𝑒

= Δ

𝑄
where the closure

taken in 𝐶2(𝐼,R𝑛

).

Proof. From Theorem 7, we have Δ

𝑄
𝑒

̸= 0. Moreover,
‖ 𝐹(𝑡, 𝑥, 𝑦) ‖≤ 𝑏

1
(𝑡) a.e. on 𝐼 for some 𝑏

1
∈ 𝐿

𝑝

(𝐼,R+

).
Let 𝑢 ∈ Δ

𝑄
. Then

�̈� (𝑡) = ℎ (𝑡) , a.e. on 𝐼,

�̇� (0) = 0, 𝑢 (1) =

𝑚−2

∑

𝑖=1

𝑎

𝑖
𝑢 (𝜉

𝑖
) ,

(35)

where ℎ(𝑡) ∈ 𝐹(𝑡, 𝑢(𝑡), �̇�(𝑡)) a.e. on 𝐼. Assume that 𝑓 :

𝐶

1

(𝐼,R𝑛

) → 𝐶

2

(𝐼,R𝑛

) is a function such that, for each

ℎ ∈ 𝐶

1

(𝐼,R𝑛

), 𝑓(ℎ) ∈ 𝐶

2

(𝐼,R𝑛

) is the unique solution of
the second-order differential equation

�̈� (𝑡) = ℎ (𝑡) , a.e. on 𝐼,

�̇� (0) = 0, 𝑢 (1) =

𝑚−2

∑

𝑖=1

𝑎

𝑖
𝑢 (𝜉

𝑖
) .

(𝑄

ℎ
)

Let 𝑆 = {𝑢 ∈ 𝐶

1

(𝐼,R𝑛

) :‖ 𝑢(𝑡) ‖≤ 𝑏

1
(𝑡) a.e. on 𝐼}. So 𝑓(𝑆)

is convex. Let (𝑢
𝑛
)

𝑛∈N be a sequence in 𝑓



(𝑆). Hence, 𝑢
𝑛
∈

𝐶

2

(𝐼,R𝑛

) with 𝑢
𝑛
(0) = 0, �̇�

𝑛
(0) = 0, 𝑢

𝑛
(1) = ∑

𝑚−2

𝑖=1
𝑎

𝑖
𝑢

𝑛
(𝜉

𝑖
).

Then from Lemma 6,

lim
𝑛→∞

𝑢

𝑛
(𝑡) = ∫

1

0

G (𝑡, 𝜏) �̈� (𝜏) 𝑑𝜏 = 𝑢 (𝑡) ,
(36)

hence, 𝑓(𝑆) is a compact subset of 𝐶2(𝐼,R𝑛

). Set

Q
𝜀
(𝑡) = {𝑥 ∈ 𝐹 (𝑡, V (𝑡) , V̇ (𝑡)) :

‖ℎ (𝑡) − 𝑥‖ < 𝜀 + 𝑑 (ℎ (𝑡) , 𝐹 (𝑡, V (𝑡) , V̇ (𝑡)))} ,

(37)

where 𝜀 > 0 and V ∈ 𝑓



(𝑆). Hence, for each 𝑡 ∈ 𝐼,
Q
𝜀
(𝑡) ̸= 0. Assume thatB(𝐼) andB(R𝑛

) are the Borel 𝜎-fields
of 𝐼 and R𝑛, respectively. From condition (i), the function
𝑡 → 𝐹(𝑡, V(𝑡), V̇(𝑡)) is measurable. Hence, 𝑔𝑟𝐹(⋅, V(⋅), V̇(⋅)) ∈
B(𝐼) × B(R𝑛

) and (𝑡, 𝑥) → 𝜀𝑑(ℎ(𝑡), 𝐹(𝑡, V(𝑡), V̇(𝑡)))−
‖ ℎ(𝑡) − 𝑥 ‖ is measurable in 𝑡 and continuous in 𝑥 that
is jointly measurable. Thus, by Aumann’s selection theorem,
there exists a measurable selection 𝑠

𝜀
of Q

𝜀
such that 𝑠

𝜀
(𝑡) ∈

Q
𝜀
(𝑡) for each 𝑡 ∈ 𝐼. Now we define a multifunction Q

𝜀
:

𝑓



(𝑆) → 2

𝐶
1
(𝐼,R𝑛) by the following:

Q
𝜀
(V) = {𝑥 ∈ 𝛿

1

𝐹(⋅,V(⋅),V̇(⋅)) : ‖ℎ (𝑡) − 𝑥‖

< 𝜀 + 𝑑 (ℎ (𝑡) , 𝐹 (𝑡, V (𝑡) , V̇ (𝑡))) a.e. on 𝐼} ,

(38)

withQ
𝜀
(V)(𝑡) ̸= 0 for each V ∈ 𝑓(𝑆). From [22, Proposition 4],

Q
𝜀
is 𝑙. 𝑠. 𝑐. and clearly has decomposable values. Applying

[22, Theorem 3], we have a continuous selection 𝑆

𝜀
of Q

𝜀
.

Therefore,








ℎ (𝑡) − 𝑆

𝜀
(V) (𝑡)









≤ 𝜀 + 𝑑 (ℎ (𝑡) , 𝐹 (𝑡, V (𝑡) , V̇ (𝑡)))

≤ 𝜀 + 𝑘

1
(𝑡) ‖𝑢 (𝑡) − V (𝑡)‖

+ 𝑘

2
(𝑡) ‖�̇� (𝑡) − V̇ (𝑡)‖ a.e. on 𝐼.

(39)

From Theorem 2, we find a continuous function 𝜉



𝜀
:

𝑓



(𝑆) → 𝐿

1

𝑤
(𝐼,R𝑛

) such that 𝜉
𝜀
(V) ∈ ext 𝛿1

𝐹(⋅,V(⋅),V̇(⋅)) and
‖ 𝑆

𝜀
(V)−𝜉

𝜀
(V) ‖< 𝜀 for each V ∈ 𝑓(𝑆). Define a multifunction

𝑅



: 𝑓



(𝑆) → 2

𝐶
1
(𝐼,R𝑛) by

𝑅



(𝑢)={𝑔 ∈ 𝐶

1

(𝐼,R
𝑛

) : 𝑔 (𝑡)∈𝐹 (𝑡, 𝑢 (𝑡) , �̇� (𝑡)) a.e. on 𝐼} .

(40)
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As in Theorem 5, let 𝑌 = R𝑛

× R𝑛 and set a multifunction
𝑀 : 𝐼×𝑌 → 2

R𝑛 such that𝑀(𝑡, (𝑥, 𝑦)) = 𝐹(𝑡, 𝑥, 𝑦). From [23,
Theorem 3.1], 𝑀 has SD-property. 𝑅 has nonempty convex
values. Let (𝑔

𝑛
)

𝑛∈N be a sequence in 𝑅(𝑢) for some 𝑢 ∈ 𝑓(𝑆).
So, for each 𝑡 ∈ 𝐼,

lim
𝑛→∞

𝑔

𝑛
(𝑡) = 𝑔 (𝑡) ∈ 𝐹 (𝑡, 𝑢 (𝑡) , �̇� (𝑡)) (41)

because 𝐹 has closed values in R𝑛. Therefore, 𝑔 ∈ 𝛿

1

𝐹(⋅,𝑢(⋅),�̇�(⋅))

which implies 𝑅(⋅) has compact values in R𝑛. We can apply
Theorem 2 to find a continuous function 𝜃



: 𝑓



(𝑆) →

𝐿

1

𝑤
(𝐼,R𝑛

) such that 𝜃(𝑢) ∈ ext(𝑅(𝑢)), for all 𝑢 ∈ 𝑓



(𝑆).
We see that 𝜃(𝑢)(𝑡) ∈ ext(𝑀(𝑡, (𝑢(𝑡), �̇�(𝑡)))) [24], hence
𝜃



(𝑢)(𝑡) ∈ ext𝐹(𝑡, 𝑢(𝑡), �̇�(𝑡)) a.e. on 𝐼. Assume that 𝜂 :

𝑓



(𝑆) → 𝐶

2

(𝐼,R𝑛

) is the function which for each 𝑢 ∈ 𝑓(𝑆),
𝜂



(𝑢) = 𝑔(𝜃



(𝑢)). For each 𝑢 ∈ 𝑓(𝑆), we have ‖ 𝜃(𝑢)(𝑡) ‖≤ 𝑏
1

and so 𝜃(𝑢) ∈ 𝑆. Then, 𝜂 is a function from 𝑓



(𝑆) into 𝑓(𝑆)
and also we see that 𝜂 is continuous [19]. Now let 𝜀

𝑛
→ 0,

𝑆

𝜀
𝑛

= 𝑆

𝑛
and 𝜉

𝑛
= 𝜉



𝜀
𝑛

. Then, for each 𝑛 ∈ N, the function
𝑓



𝑜𝜉



𝑛
is a continuous function from the compact set 𝑓(𝑆)

into itself. From Schauder’s fixed point theorem, 𝑓𝑜𝜉
𝑛
has

a fixed point 𝑢
𝑛
, but ext 𝛿1

𝐹(⋅,V(⋅),V̇(⋅)) = 𝛿

1

ext𝐹(⋅,V(⋅),V̇(⋅)) [24] so
𝑢

𝑛
∈ Δ

𝑃
𝑒

. Assume that 𝑢
𝑛
→ �̂� in𝐶2(𝐼,R𝑛

). From Lemma 6,
we obtain








𝑢

𝑛
(𝑡) − 𝑢 (𝑡)









≤ ∫

1

0

[∫

1

0

|G (𝑡, 𝜏)|











𝜉



𝑛
(𝜏) − 𝑆

𝑛
(𝜏)











𝑑𝜏

+∫

1

0

|G (𝑡, 𝜏)|









(𝑆

𝑛
(𝜏) − ℎ (𝜏))









𝑑𝜏] 𝑑𝑠.

(42)

But 𝜉
𝑛
− 𝑆

𝑛
→ 0 with respect to the norm ‖ ⋅‖

𝑤
and from

Lemma 3 we get 𝜉
𝑛
−𝑆

𝑛
→ 0weakly in𝐶1(𝐼,R𝑛

). So we have

∫

1

0

|G (𝑡, 𝜏)|











𝜉



𝑛
(𝜏) − 𝑆

𝑛
(𝜏)











𝑑𝜏 → 0.
(43)

Moreover, as 𝑛 → ∞ we have

‖�̂� (𝑡)−𝑢 (𝑡)‖≤‖𝑢 − �̂�‖

𝐶
1
(𝐼,R𝑛) ∫

1

0

|G (𝑡, 𝜏)| (𝑘

1
(𝜏)+𝑘

2
(𝜏)) 𝑑𝜏

≤ ‖𝑢 − �̂�‖

𝐶
1
(𝐼,R𝑛)









𝑘

1
(𝜏) + 𝑘

2
(𝜏)









𝐶

0
.

(44)
Since by assumption (ii), ‖ 𝑘

1
+ 𝑘

2
‖ < 1/2𝐶

0
, thus from

Lemma 6, we get 𝑢 = �̂�. So 𝑢
𝑛
→ 𝑢 in 𝐶2(𝐼,R𝑛

) and 𝑢 ∈ Δ
𝑄
𝑒

where the closure is taken in 𝐶

2

(𝐼,R𝑛

) which means that
Δ

𝑃
⊆ Δ

𝑃
𝑒

. If V
𝑛
∈ Δ

𝑄
and V

𝑛
→ V in 𝐶

2

(𝐼,R𝑛

), then
V
𝑛
= 𝑓



(𝑦

𝑛
) for 𝑦

𝑛
∈ 𝛿

1

𝐹

(⋅,V(⋅),V̇(⋅)). From assumption (iii) and

the Dunford-Pettis theorem, {𝑦
𝑛
}

𝑛∈N is weakly sequentially
compact in 𝐶2(𝐼,R𝑛

). By [25, Theorem 3.1], we get

𝑦 (𝑡) ∈ conv lim{𝑦
𝑛
(𝑡)}

𝑛∈N
⊆ conv lim𝐹 (𝑡, V

𝑛
(𝑡) , V̇

𝑛
(𝑡))

= 𝐹 (𝑡, V (𝑡) , V̇ (𝑡)) a.e. on 𝐼.

(45)

Moreover, 𝑓(𝑦
𝑛
) → 𝑓



(𝑦) in 𝐶2(𝐼,R𝑛

) for 𝑦 ∈ 𝐶

2

(𝐼,R𝑛

)

and 𝑦(𝑡) ∈ 𝐹(𝑡, V(𝑡), V̇(𝑡)) a.e. on 𝐼. Hence, V ∈ Δ
𝑄
; that is, Δ

𝑄

is closed in 𝐶2(𝐼,R𝑛

).

Acknowledgments

The author is deeply indebted and thankful to the deanship
of the scientific research and his helpful and distinct team of
employees at Taibah University, Al-Madinah Al-Munawarah,
Saudia Arabia. This research work was supported by a Grant
no. 3029/1434.

References

[1] A. M. Gomaa, Set-valued functions and set-valued differential
equations [Ph.D. thesis], Faculty of Science, Cairo University,
1999.

[2] A. G. Ibrahim and A. M. Gomaa, “Existence theorems for a
functional multivalued three-point boundary value problem of
second order,” Journal of the EgyptianMathematical Society, vol.
8, no. 2, pp. 155–168, 2000.

[3] A. G. Ibrahim and A. G. Gomaa, “Extremal solutions of classes
of multivalued differential equations,”AppliedMathematics and
Computation, vol. 136, no. 2-3, pp. 297–314, 2003.

[4] A. M. Gomaa, “On the solution sets of three-point boundary
value problems for nonconvex differential inclusions,” Journal
of the Egyptian Mathematical Society, vol. 12, no. 2, pp. 97–107,
2004.

[5] D. L. Azzam, C. Castaing, and L. Thibault, “Three boundary
value problems for second order differential inclusions in
Banach spaces,” Control and Cybernetics, vol. 31, no. 3, pp. 659–
693, 2002.

[6] B. Satco, “Second order three boundary value problem in
Banach spaces via Henstock and Henstock-Kurzweil-Pettis
integral,” Journal ofMathematical Analysis andApplications, vol.
332, no. 2, pp. 919–933, 2007.

[7] P. Hartman, Ordinary Differential Equations, John Wiley and
Sons, New York, NY, USA, 1964.

[8] A. M. Gomaa, “On the solution sets of four-point boundary
value problems for nonconvex differential inclusions,” Interna-
tional Journal of Geometric Methods in Modern Physics, vol. 8,
no. 1, pp. 23–37, 2011.

[9] A.M. Gomaa, “On four-point boundary value problems for dif-
ferential inclusions and differential equations with and without
multivalued moving constraints,” Czechoslovak Mathematical
Journal, vol. 62, no. 137, pp. 139–154, 2012.

[10] C. J. Himmelberg and F. S. Van Vleck, “Selection and implicit
function theorems for multifunctions with Souslin graph,” Bul-
letin de l’Académie Polonaise des Sciences, vol. 19, pp. 911–916,
1971.

[11] C. J. Himmelberg and F. S. VanVleck, “Some selection theorems
for measurable functions,” Canadian Journal of Mathematics,
vol. 21, pp. 394–399, 1969.

[12] C. J. Himmelberg and F. S. VanVleck, “Extreme points of multi-
functions,” Indiana University Mathematics Journal, vol. 22, pp.
719–729, 1973.

[13] K. Kuratowski and C. Ryll-Nardzewski, “A general theorem on
selectors,” Bulletin de l’Académie Polonaise des Sciences, vol. 13,
pp. 397–403, 1965.

[14] E. Klein and A. C. Thompson,Theory of Correspondences, John
Wiley and Sons, New York, NY, USA, 1984.

[15] C. Castaing and M. Valadier, Convex Analysis and Measur-
able Multifunctions, vol. 580 of Lecture Notes in Mathematics,
Springer, Berlin, Germany, 1977.



Abstract and Applied Analysis 9

[16] J.-P. Aubin and A. Cellina, Differential Inclusions Set-Valued
Maps and Viability Theory, vol. 264, Springer, Berlin, Germany,
1984.

[17] F. S. De Blasi and J. Myjak, “On continuous approximations for
multifunctions,” Pacific Journal of Mathematics, vol. 123, no. 1,
pp. 9–31, 1986.

[18] A. A. Tolstonogov, “Extremal selectors of multivalued map-
pings and the “bang-bang” principle for evolution inclusions,”
Bulletin de l’Académie Polonaise des Sciences, Série des Sciences
Mathématiques, vol. 317, no. 3, pp. 589–593, 1991.

[19] D. Kravvaritis and N. S. Papageorgiou, “Boundary value prob-
lems for nonconvex differential inclusions,” Journal of Mathe-
matical Analysis and Applications, vol. 185, no. 1, pp. 146–160,
1994.

[20] S. R. Bernfeld andV. Lakshmikantham,An Introduction to Non-
linear Boundary Value, Academic Press, New York, NY, USA,
1974.

[21] A. G. Ibrahim and A.M. Gomaa, “Topological properties of the
solution sets of some differential inclusions,” Pure Mathematics
and Applications, vol. 10, no. 2, pp. 197–223, 1999.

[22] A. Bressan andG. Colombo, “Extensions and selections ofmaps
with decomposable values,” Studia Mathematica, vol. 90, no. 1,
pp. 69–86, 1988.

[23] N. S. Papageorgiou, “Onmeasurable multifunctions with appli-
cations to randommultivalued equations,”Mathematica Japon-
ica, vol. 32, no. 3, pp. 437–464, 1987.
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[25] N. S. Papageorgiou, “Convergence theorems for Banach space
valued integrable multifunctions,” International Journal of
Mathematics and Mathematical Sciences, vol. 10, no. 3, pp. 433–
442, 1987.

[26] L. X. Truong, L. T. P. Ngoc, and N. T. Long, “Positive solutions
for an 𝑚-point boundary-value problem,” Electronic Journal of
Differential Equations, vol. 2008, no. 111, 10 pages, 2008.


