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In this paper, we study the two-dimensional nonlinear Kadomtsov-Petviashivilli-Benjamin-Bona-Mahony (KP-BBM) equation.
This equation is the Benjamin-Bona-Mahony equation formulated in the KP sense. We first obtain exact solutions of this equation
using the Lie group analysis and the simplest equation method. The solutions obtained are solitary waves. In addition, the
conservation laws for the KP-BBM equation are constructed by using the multiplier method.

1. Introduction

It is well known that the nonlinear evolution equations
(NLEEs) are extensively used as models to describe physical
phenomena in various fields of sciences, especially in fluid
mechanics, solid state physics, plasma physics, plasma waves,
and biology. One of the basic physical problems for such
models is to obtain their exact solutions. In this respect, dur-
ing the past few decades, various methods have been devel-
oped by researchers to find explicit solutions for the NLEEs.
See, for example, Wang et al. [1] and references therein.

The purpose of this paper is to study one such
NLEE, namely, the (2+1)-dimensional nonlinear Kadomtsov-
Petviashivilli-Benjamin-Bona-Mahony (KP-BBM) equation
that is, given by

(𝑢
𝑡
+ 𝑢
𝑥
− 𝛼(𝑢2)

𝑥
− 𝛽𝑢
𝑥𝑥𝑡

)
𝑥
+ 𝛾𝑢
𝑦𝑦

= 0. (1)

Here, in (1), 𝛼, 𝛽, and 𝛾 are real valued constants.
The solutions of (1) have been studied in various aspects.

See, for example, the recent papers [2–5]. Wazwaz [2, 3] used
the sine-cosine method, the tanh method and the extended
tanhmethod for finding solitonary solutions of this equation.
Abdou [4] used the extendedmappingmethodwith symbolic
computation to obtain some periodic solutions, solitary wave
solution, and triangular wave solution.

In this paper, Lie group analysis [6–9] in conjunctionwith
the simplest equationmethod [10] is employed to obtain some
exact solutions of (1). In addition to this conservation laws
will be derived for (1) using the multiplier method [11].

2. Symmetry Analysis

In this section, we first calculate the Lie point symmetries of
(1) and later use them to construct exact solutions.

2.1. Lie Point Symmetries. A Lie point symmetry of a partial
differential equation (PDE) is an invertible transformation
of the dependent and independent variables that leaves the
equation unchanged. In general, determining all the symme-
tries of a partial differential equation is a formidable task.
However, Sophus Lie observed that if we restrict ourselves to
symmetries that depend continuously on a small parameter
and that form a group (continuous one-parameter group of
transformations), one can linearize the symmetry conditions
and end up with an algorithm for calculating continuous
symmetries.

The symmetry group of KP-BBM equation (1) will be
generated by the vector field of the form

𝑉 = 𝜉1 𝜕
𝜕𝑥

+ 𝜉2 𝜕
𝜕𝑦

+ 𝜉3 𝜕
𝜕𝑡

+ 𝜂 𝜕
𝜕𝑢

, (2)
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where 𝜉𝑖, 𝑖 = 1, 2, 3 and 𝜂 depend on 𝑥, 𝑦, 𝑡, and 𝑢.
Applying the fourth prolongation pr(4)𝑉 to (1), we obtain
an overdetermined system of linear partial differential equa-
tions. Solving resultant system of linear overdetermined
partial differential equations one obtains the following four
Lie point symmetries:

𝑉
1
= 𝜕
𝜕𝑥

,

𝑉
2
= 𝜕
𝜕𝑦

,

𝑉
3
= 𝜕
𝜕𝑡
,

𝑉
4
= −𝛼𝑦 𝜕

𝜕𝑦
− 2𝛼𝑡 𝜕

𝜕𝑡
+ (2𝛼𝑢 − 1) 𝜕

𝜕𝑢
.

(3)

2.2. Exact Solutions. One of the main reasons for finding
symmetries of a differential equation is to use them for
finding exact solutions. In this subsection, we will utilize the
symmetries calculated in the previous subsection to deduce
exact solutions of (1).

One way to obtain exact solutions of (1) is by reducing
it to ordinary differential equations. This can be achieved
with the use of Lie point symmetries admitted by (1). It
is well known that the reduction of a partial differential
equation with respect to 𝑟-dimensional (solvable) subalgebra
of its Lie symmetry algebra leads to reducing the number of
independent variables by 𝑟.

First of all, we utilize the symmetry 𝑉 = 𝑉
1
+𝑉
2
+𝑉
3
and

reduce theKP-BBMequation (1) to a PDE in two independent
variables. It can be seen that the symmetry 𝑉 yields the
following three invariants:

𝑓 = 𝑡 − 𝑦, 𝑔 = 𝑥 − 𝑦, 𝜃 = 𝑢. (4)

Now treating 𝜃 as the new dependent variable and 𝑓 and
𝑔 as new independent variables, the KP-BBM equation (1)
transforms to

𝜃
𝑓𝑔

+ 𝜃
𝑔𝑔

− 2𝛼𝜃2
𝑔
− 2𝛼𝜃𝜃

𝑔𝑔
− 𝛽𝜃
𝑓𝑔𝑔𝑔

+ 𝛾𝜃
𝑓𝑓

+ 2𝛾𝜃
𝑓𝑔

+ 𝛾𝜃
𝑔𝑔

= 0,
(5)

which is a nonlinear PDE in two independent variables. We
now use the Lie point symmetries of (5) and transform it to
an ordinary differential equation (ODE). Equation (5) has the
following two translational symmetries:

Γ
1
= 𝜕
𝜕𝑔

,

Γ
2
= 𝜕
𝜕𝑓

.
(6)

The combination 𝜌Γ
1
+Γ
2
, where 𝜌 ̸= 0 is a constant, of the two

symmetries Γ
1
and Γ
2
yields the following two invariants:

𝑟 =
𝜌𝑓 − 𝑔

𝜌
, 𝜓 = 𝜃. (7)

This gives rise to a group invariant solution 𝜓 = 𝜓(𝑟) and
consequently using these invariants, (5) is transformed into
the fourth-order nonlinear ODE

− 2𝛼𝜌𝜓2 − 2𝛼𝜌𝜓𝜓

+ (𝜌 + 𝛾𝜌 − 𝜌2 − 2𝛾𝜌2 + 𝛾𝜌3) 𝜓 + 𝛽𝜓 = 0.
(8)

Integrating the above equation twice and taking the constants
of integration to be zero, we obtain a second-order ODE

𝜌 (−1 − 𝛾 + 𝛾𝜌) (1 − 𝜌) 𝜓 − 𝛼𝜌𝜓2 + 𝛽𝜓 = 0. (9)

Multiplying (9) by 𝜓, integrating once and taking the
constant of integration to be zero, we obtain the first-order
ODE

1
2
𝜌 (−1 − 𝛾 + 𝛾𝜌) (1 − 𝜌) 𝜓2 − 1

3
𝛼𝜌𝜓3 + 1

2
𝛽𝜓2 = 0. (10)

One can integrate the above equation by separating the
variables. After integrating and reverting back to the original
variables, we obtain the following group-invariant solutions
of the KP-BBM equation (1):

𝑢 (𝑥, 𝑦, 𝑡) = 𝐴
1
sech2 [1

2
(±𝐴
2
𝑟 − 𝐴

3
𝐶)] , (11)

where

𝐴
1
= 1
2𝛼3

(−1 + 𝜌) (−1 − 𝛾 + 𝛾𝜌) ,

𝐴
2
=
√𝜌 (1 − 𝜌) (−1 − 𝛾 + 𝛾𝜌)

√𝛽
,

𝐴
3
= √3 (−1 + 𝜌) (−1 − 𝛾 + 𝛾𝜌),

𝑟 =
𝑡𝜌 − 𝑥 + (1 − 𝜌) 𝑦

𝜌
.

(12)

To find another group-invariant solution of the KP-BBM
equation (1), we now make use of the symmetry Γ = 𝑎

1
𝑉
1
+

𝑎
2
𝑉
2
+ 𝑎
3
𝑉
3
+ 𝑎
4
𝑉
4
(𝑎
𝑖
, 𝑖 = 1, . . . , 4 are constants). The

symmetry Γ yields the following three invariants:

𝑓 = 2𝑎
3
𝛼𝑡 − 𝑎

4

2𝑎
3
𝛼(𝑎
2
− 𝑎
3
𝛼𝑦)2

, 𝑔 = 𝑥 +
𝑎
1
ln (𝑎
2
− 𝑎
3
𝛼𝑦)

𝑎
3
𝛼

,

𝜃 = 𝑎2
2
𝑢 − 2𝑎

2
𝑎
3
𝛼𝑦𝑢 + 𝑎2

3
𝛼2𝑦2𝑢 + 𝑎

2
𝑎
3
𝑦 − 1

2
𝑎2
3
𝛼𝑦2.

(13)

Treating 𝜃 as the new dependent variable and 𝑓 and 𝑔 as new
independent variables, the KP-BBM equation (1) transforms
to a nonlinear fourth-order PDE in two independent vari-
ables, namely,

𝑎2
2
𝜃
𝑔𝑔

− 3𝑎2
2
𝑎2
3
𝛼𝛾 + 14𝑎2

3
𝛼2𝛾𝑓𝜃

𝑓
+ 𝑎2
1
𝛾𝜃
𝑔𝑔

− 4𝑎
1
𝑎
3
𝛼𝛾𝑓𝜃
𝑓𝑔

− 2𝛼𝜃𝜃
𝑔𝑔
𝜃
𝑓𝑔

− 2𝛼𝜃2
𝑔
+ 6𝑎2
3
𝛼2𝛾𝜃 + 4𝑎2

3
𝛼2𝛾𝑓2𝜃

𝑓𝑓

− 5𝑎
1
𝑎
3
𝛼𝛾𝜃
𝑔
− 𝛽𝜃
𝑓𝑔𝑔𝑔

= 0.

(14)



Abstract and Applied Analysis 3

Equation (14) has a single Lie point symmetry, namely,

Γ
1
= 𝜕
𝜕𝑔

, (15)

and this symmetry yields the two invariants

𝑟 = 𝑓, 𝜓 = 𝜃, (16)

which gives a group-invariant solution 𝜓 = 𝜓(𝑟) and
consequently (14) is then transformed to

4𝛼𝑟2𝜓 + 14𝛼𝑟𝜓 + 6𝛼𝜓 − 3𝑎2
2
= 0, (17)

which is a second-order linear ODE. Now, solving this
equation and reverting back to the original variables, we
obtain the following solutions of the KP-BBM equation (1):

𝑢 (𝑥, 𝑦, 𝑡) = 𝐴
1
(𝐴
2
+ 𝐶
1
𝑟−3/2 + 𝐶

2
𝑟−1 + 𝐴

3
) , (18)

where 𝐶
1
and 𝐶

2
are constants of integration and

𝐴
1
= 1
𝑎2
2
− 2𝑎
2
𝑎
3
𝛼𝑦 + 𝑎2

3
𝛼2𝑦2

,

𝐴
2
= 1
2
𝑎2
3
𝛼𝑦2 − 𝑎

2
𝑎
3
𝑦,

𝐴
3
=

𝑎2
2

2𝛼
,

𝑟 = 2𝑎
3
𝛼𝑡 − 𝑎

4

2𝑎
3
𝛼(𝑎
2
− 𝑎
3
𝛼𝑦)2

.

(19)

3. Simplest Equation Method

We now use the simplest equation method, which was
introduced by Kudryashov [10] andmodified by Vitanov [12],
to solve the fourth-order ODE (8). The simplest equations
thatwill be used are the Bernoulli andRiccati equations.Their
solutions can be written in elementary functions [13].

Let us consider the solution of (8) in the form

𝜓 (𝑟) =
𝑀

∑
𝑖=0

A
𝑖
(𝐻 (𝑟))𝑖, (20)

where 𝐻(𝑟) satisfies the Bernoulli and Riccati equations, 𝑀
is a positive integer that can be determined by balancing
procedure as in [12], and 𝐴

0
, . . . , 𝐴

𝑀
are parameters to be

determined.

3.1. Solutions of (8) Using the Equation of Bernoulli as the
Simplest Equation. The balancing procedure [12] yields𝑀 =
2 so the solutions of (20) are of the form

𝜓 (𝑟) = 𝐴
0
+ 𝐴
1
𝐻 + 𝐴

2
𝐻2. (21)

Substituting (21) into (8) and making use of the Bernoulli
equation [13] and then equating all coefficients of the func-
tions 𝐻𝑖 to zero, we obtain an algebraic system of equations
in terms of 𝐴

0
, 𝐴
1
, and 𝐴

2
.

Solving the system of algebraic equations, we obtain

𝐴
0
=
𝑎2𝛽 + 𝜌 + 𝛾𝜌 − 𝜌2 − 2𝛾𝜌2 + 𝛾𝜌3

2𝛼𝜌
,

𝐴
1
=
6𝑎𝑏𝛽
𝛼

,

𝐴
2
=
6𝑏2𝛽
𝛼𝜌

.

(22)

Therefore, the solution of (1) is given by

𝑢 (𝑥, 𝑦, 𝑡)

= 𝐴
0
+ 𝐴
1
( cosh [𝑎 (𝑟 + 𝐶)] + sinh [𝑎 (𝑟 + 𝐶)]
1 − 𝑏 cosh [𝑎 (𝑟 + 𝐶)] − 𝑏 sinh [𝑎 (𝑟 + 𝐶)]

)

+ 𝐴
2
( cosh [𝑎 (𝑟 + 𝐶)] + sinh [𝑎 (𝑟 + 𝐶)]
1 − 𝑏 cosh [𝑎 (𝑟 + 𝐶)] − 𝑏 sinh [𝑎 (𝑟 + 𝐶)]

)
2

,

(23)

where 𝑟 = 𝑡𝜌 − 𝑥 + (1 − 𝜌)𝑦/𝜌, and 𝐶 is a constant of
integration.

3.2. Solutions of (8) Using Riccati Equation as the Simplest
Equation. The balancing procedure yields 𝑀 = 2, so the
solutions of (20) are of the form

𝜓 (𝑟) = 𝐴
0
+ 𝐴
1
𝐻 + 𝐴

2
𝐻2. (24)

Substituting (24) into (8) and making use of the Riccati
equation [13], we obtain algebraic equations in terms of 𝐴

0
,

𝐴
1
, and 𝐴

2
by equating all coefficients of the functions𝐻𝑖 to

zero.
Solving the algebraic equations, one obtains

𝐴
0
=
𝑏2𝛽 + 𝜌 + 𝛾𝜌 − 𝜌2 − 2𝛾𝜌2 + 𝛾𝜌3

2𝛼𝜌
,

𝐴
1
= 0,

𝐴
2
=
2 (2𝑎3𝛽 + 11𝑎2𝑏𝛽 + 2𝑎𝑏2𝛽)

𝛼𝜌 (2𝑎 + 3𝑏)
,

(25)

and hence the solutions of (1) are

𝑢 (𝑥, 𝑦, 𝑡) = 𝐴
0
+ 𝐴
2
(− 𝑏

2𝑎
− 𝜃
2𝑎

tanh [1
2
𝜃 (𝑟 + 𝐶)])

2

,

𝑢 (𝑥, 𝑦, 𝑡)

= 𝐴
0
+ 𝐴
2
(− 𝑏

2𝑎
− 𝜃
2𝑎

tanh(1
2
𝜃𝑟)

+ sech (𝜃𝑟/2)
𝐶 cosh (𝜃𝑟/2) − (2𝑎/𝜃) sinh (𝜃𝑟/2)

)
2

,

(26)

where 𝑟 = 𝑡𝜌 − 𝑥 + (1 − 𝜌)𝑦/𝜌, and 𝐶 is a constant of
integration.
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4. Conservation Laws

In this section, we construct conservation laws for (1). The
multiplier method will be used [11]. See also [14].

Consider a 𝑘th-order system of PDEs of 𝑛 independent
variables 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and𝑚 dependent variables 𝑢 =
(𝑢1, 𝑢2, . . . , 𝑢𝑚), namely,

𝐸
𝛼
(𝑥, 𝑢, 𝑢

(1)
, . . . , 𝑢

(𝑘)
) = 0, 𝛼 = 1, . . . , 𝑚, (27)

where 𝑢
(1)
, 𝑢
(2)
, . . . , 𝑢

(𝑘)
denote the collections of all first,

second, . . ., 𝑘th-order partial derivatives, that is, 𝑢𝛼
𝑖
= 𝐷
𝑖
(𝑢𝛼),

𝑢𝛼
𝑖𝑗

= 𝐷
𝑗
𝐷
𝑖
(𝑢𝛼), . . ., respectively, with the total derivative

operator with respect to 𝑥𝑖 is given by

𝐷
𝑖
= 𝜕
𝜕𝑥𝑖

+ 𝑢𝛼
𝑖

𝜕
𝜕𝑢𝛼

+ 𝑢𝛼
𝑖𝑗

𝜕
𝜕𝑢𝛼
𝑗

+ ⋅ ⋅ ⋅ , 𝑖 = 1, . . . , 𝑛, (28)

where the summation convention is usedwhenever appropri-
ate [9].

The following are known (see, e.g., [9] and the references
therein).

The Euler-Lagrange operator, for each 𝛼, is given by

𝛿
𝛿𝑢𝛼

= 𝜕
𝜕𝑢𝛼

+∑
𝑠≥1

(−1)𝑠𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

𝜕
𝜕𝑢𝛼
𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

, 𝛼 = 1, . . . , 𝑚.

(29)

The 𝑛-tuple vector 𝑇 = (𝑇1, 𝑇2, . . . , 𝑇𝑛), 𝑇𝑗 ∈ A, 𝑗 = 1, . . . , 𝑛,
is a conserved vector of (27) if 𝑇𝑖 satisfies

𝐷
𝑖
𝑇𝑖|
(27)

= 0. (30)

Equation (30) defines a local conservation law of system (27).
A multiplier Λ

𝛼
(𝑥, 𝑢, 𝑢

(1)
, . . .) has the property that

Λ
𝛼
𝐸
𝛼
= 𝐷
𝑖
𝑇𝑖 (31)

holds identically. Here, we will consider multipliers of
the second order, that is, Λ

𝛼
= Λ

𝛼
(𝑡, 𝑥, 𝑢, V, 𝑤, 𝑢

𝑥
, V
𝑥
,

𝑤
𝑥
, 𝑢
𝑥𝑥
, V
𝑥𝑥
, 𝑤
𝑥𝑥
). The right hand side of (31) is a divergence

expression. The determining equation for the multiplier Λ
𝛼

is

𝛿 (Λ
𝛼
𝐸
𝛼
)

𝛿𝑢𝛼
= 0. (32)

Once the multipliers are obtained, the conserved vectors are
calculated via a homotopy formula [11].

4.1. Construction of Conservation Laws for KP-BBM Equa-
tion. We now construct conservation laws for the (2+1)-
dimensional nonlinear KP-BBM equation (1). The zeroth-
order multiplier for (1) is, Λ(𝑡, 𝑥, 𝑦, 𝑢), that is, given by

Λ = 𝐶
1
𝑥 + 𝐶

1
𝑡𝑥 −

𝐶
1
𝑦2

2𝛾
+ 𝑦𝐹
2
(𝑡) + 𝐹

3
(𝑡) , (33)

where 𝐶
1
is a constant, and 𝐹

2
(𝑡) and 𝐹

3
(𝑡) are arbitrary

functions of 𝑡. Corresponding to the abovemultiplier, we have
the following conserved vectors of (33):

𝑇𝑡
1
= 1
8𝛾

{ − 4𝛾𝑡𝑢 − 4𝛾𝑢 + 2𝛽𝛾𝑡𝑢
𝑥𝑥

− 2𝛽𝛾𝑡𝑥𝑢
𝑥𝑥𝑥

+ 4𝛾𝑡𝑥𝑢
𝑥

+ 2𝛽𝛾𝑢
𝑥𝑥

− 2𝛽𝛾𝑥𝑢
𝑥𝑥𝑥

+ 4𝛾𝑥𝑢
𝑥
+ 𝛽𝑦2𝑢

𝑥𝑥𝑥
− 2𝑦2𝑢

𝑥
} ,

𝑇𝑥
1
= 1
8𝛾

{8𝛼𝑦2𝑢
𝑥
𝑢 − 16𝛼𝛾𝑡𝑥𝑢

𝑥
𝑢 − 16𝛼𝛾𝑥𝑢

𝑥
𝑢

+ 8𝛼𝛾𝑡𝑢2 + 8𝛼𝛾𝑢2 − 8𝛾𝑡𝑢 − 4𝛾𝑥𝑢 − 8𝛾𝑢

+ 4𝛽𝛾𝑡𝑢
𝑡𝑥
+ 4𝛽𝛾𝑢

𝑡𝑥
− 6𝛽𝛾𝑡𝑥𝑢

𝑡𝑥𝑥

− 6𝛽𝛾𝑥𝑢
𝑡𝑥𝑥

+ 8𝛾𝑡𝑥𝑢
𝑥
+ 4𝛾𝑡𝑥𝑢

𝑡
+ 4𝛾𝑥𝑢

𝑡

+ 3𝛽𝑦2𝑢
𝑡𝑥𝑥

− 2𝑦2𝑢
𝑡
− 4𝛽𝛾𝑢

𝑥

+ 2𝛽𝛾𝑥𝑢
𝑥𝑥

+ 8𝛾𝑥𝑢
𝑥
− 4𝑦2𝑢

𝑥
} ,

𝑇𝑦
1
= 1
2
{2𝑦𝑢 + 2𝛾𝑡𝑥𝑢

𝑦
+ 2𝛾𝑥𝑢

𝑦
− 𝑦2𝑢

𝑦
} ;

𝑇𝑡
2
= 1
2
{2𝑦𝐹
2
(𝑡) 𝑢
𝑥
− 𝛽𝑦𝐹

2
(𝑡) 𝑢
𝑥𝑥𝑥

} ,

𝑇𝑥
2
= 1
4
{ − 8𝛼𝑦𝐹

2
(𝑡) 𝑢
𝑥
𝑢 − 2𝑦𝐹

2
𝑢 − 3𝛽𝑦𝐹

2
(𝑡) 𝑢
𝑡𝑥𝑥

+ 4𝑦𝐹
2
(𝑡) 𝑢
𝑥
+ 2𝑦𝐹

2
(𝑡) 𝑢
𝑡
+ 𝛽𝑦𝐹

2
𝑢
𝑥𝑥
} ,

𝑇𝑦
2
= 𝛾𝑦𝐹

2
(𝑡) 𝑢
𝑦
− 𝛾𝐹
2
(𝑡) 𝑢;

𝑇𝑡
3
= 1
4
{2𝐹
3
(𝑡) 𝑢
𝑥
− 𝛽𝐹
3
(𝑡) 𝑢
𝑥𝑥𝑥

} ,

𝑇𝑥
3
= 1
4
{− 8𝛼𝐹

3
(𝑡) 𝑢
𝑥
𝑢 − 2𝐹

3
𝑢 − 3𝛽𝐹

3
(𝑡) 𝑢
𝑡𝑥𝑥

+ 4𝐹
3
(𝑡) 𝑢
𝑥

+ 2𝐹
3
(𝑡) 𝑢
𝑡
+ 𝛽𝐹
3
𝑢
𝑥𝑥
} ,

𝑇𝑦
3
= 𝛾𝐹
3
(𝑡) 𝑢
𝑦
.

(34)

Remark 1. Due to the presence of the arbitrary function in
themultiplier, one can obtain an infinitelymany conservation
laws for the (2+1)-dimensional nonlinear KP-BBM equation.

5. Concluding Remarks

In this paper, we obtained the solutions of the two-
dimensional nonlinear Kadomtsov-Petviashivilli-Benjamin-
Bona-Mahony (KP-BBM) equation by employing the Lie
group analysis and the simplest equation method. The
solutions obtained are solitary waves and nontopological
solutions. The conservation laws for the underlying equation
were also derived by using the multiplier method.
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