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The basic assumption of ecological economics is that resource allocation exists social optimal solution, and the social optimal
solution and the optimal solution of enterprises can be complementary. The mathematical methods and the ecological model are
one of the importantmeans in the study of ecological economics. In this paper, we study an ecological model arising from ecological
economics by mathematical method, that is, study the existence of positive solutions for the fractional differential equation with
p-Laplacian operatorDt

𝛽
(𝜑𝑝(Dt

𝛼
𝑥))(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 𝑡 ∈ (0, 1), 𝑥(0) = 0, 𝑥(1) = 𝑎𝑥(𝜉), Dt

𝛼
𝑥(0) = 0, andDt

𝛼
𝑥(1) = 𝑏Dt

𝛼
𝑥(𝜂),

whereDt
𝛼
,Dt
𝛽 are the standard Riemann-Liouville derivatives, p-Laplacian operator is defined as 𝜑𝑝(𝑠) = |𝑠|

𝑝−2
𝑠, 𝑝 > 1, and the

nonlinearity f may be singular at both 𝑡 = 0, 1 and 𝑥 = 0. By finding more suitable upper and lower solutions, we omit some key
conditions of some existing works, and the existence of positive solution is established.

1. Introduction

It is well known that differential equationmodels can describe
many nonlinear phenomena such as applied mathematics,
economic mathematics, and physical and biological pro-
cesses. Undoubtedly, the application of differential equation
in the economics, management science, and engineering that
is most successful especially plays an important role in the
construction of the model for the corresponding phenom-
enon. In fact, many economic processes such as ecological
economics model, risk model, the CIR model, and the Gaus-
sian model in [1] can be described by differential equations.
Recently, fractional-order models have proved to be more
accurate than integer-order models; that is, there are more
degrees of freedom in the fractional-order models. So com-
plicated dynamic phenomenon of fractional-order calculus
system has received more and more attention; see [2–15].

In this paper, we study an ecological model arising from
ecological economics by mathematical method, that is, study
the existence of positive solutions for the following 𝑝-Lapla-
cian fractional boundary value problem:

Dt
𝛽
(𝜑𝑝 (Dt

𝛼
𝑥)) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝑥 (1) = 𝑎𝑥 (𝜉) ,

Dt
𝛼
𝑥 (0) = 0,

Dt
𝛼
𝑥 (1) = 𝑏Dt

𝛼
𝑥 (𝜂) ,

(1)

whereDt
𝛼
, Dt
𝛽 are the standard Riemann-Liouville deriva-

tives with 1 < 𝛼, 𝛽 ≤ 2, 0 ≤ 𝑎, 𝑏 ≤ 1, 0 < 𝜉, and 𝜂 ≤ 1,
and 𝑝-Laplacian operator is defined as 𝜑𝑝(𝑠) = |𝑠|

𝑝−2𝑠, 𝑝 > 1,
(𝜑𝑝)
−1
= 𝜑𝑞, and (1/𝑝) + (1/𝑞) = 1.

The upper and lower solutions method is a powerful tool
to achieve the existence results for boundary value problem;
see [2–6]. Recently, Zhang and Liu [2] considered the exis-
tence of positive solutions for the singular fourth-order 𝑝-
Laplacian equation

[𝜑𝑝 (𝑢
󸀠󸀠
)]
󸀠󸀠
= 𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1, (2)

with the four-point boundary conditions

𝑢 (0) = 0, 𝑢 (1) = 𝑎𝑢 (𝜉) ,

𝑢
󸀠󸀠
(0) = 0, 𝑢

󸀠󸀠
(1) = 𝑏𝑢

󸀠󸀠
(𝜂) ,

(3)

where 𝜑𝑝(𝑡) = |𝑡|
𝑝−2𝑡, 𝑝 > 1, 0 < 𝜉, 𝜂 < 1, and 𝑓 ∈

𝐶((0, 1)×(0, +∞), [0, +∞))may be singular at 𝑡 = 0 and/or 1
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and 𝑢 = 0. By using the upper and lower solutions method
and fixed-point theorems, the existence of positive solutions
to the boundary value problem is obtained. In [2], a upper
and lower solution condition (H3) is used.

There exist a continuous function 𝑎(𝑡) and some fixed
positive number 𝑘, such that 𝑎(𝑡) ≥ 𝑘𝑡(1 − 𝑡), 𝑡 ∈ [0, 1], and

∫
1

0
𝐺 (𝑡, 𝑟) 𝜑

−1
𝑝 (∫

1

0
𝐻(𝑟, 𝑠) 𝑓 (𝑠, 𝑎 (𝑠)) 𝑑𝑠) 𝑑𝑟 = 𝑏 (𝑡) ≥ 𝑎 (𝑡) ,

∫
1

0
𝐺 (𝑡, 𝑟) 𝜑

−1
𝑝 (∫

1

0
𝐻(𝑟, 𝑠) 𝑓 (𝑠, 𝑏 (𝑠)) 𝑑𝑠) 𝑑𝑟 ≥ 𝑎 (𝑡) ,

(4)

where 𝐺(𝑡, 𝑠),𝐻(𝑡, 𝑠) are the associated Green’s functions for
the relevant problems. And then, the condition (H3) was also
adopted by Wang et al. [3] to deal with the 𝑝-Laplacian frac-
tional boundary value problem (1). By using similar method
as [2], the existence results of at least one positive solution for
the above fractional boundary value problem are established.
Recently, replaced (H3) with a simple integral condition, Jia
et al. [8] studied the existence, uniqueness, and asymptotic
behavior of positive solutions for the higher nonlocal frac-
tional differential equation by using upper and lower solu-
tions method.

In this paper, we restart to establish the existence of posi-
tive solutions for the BVP (1) when the nonlinearity𝑓may be
singular at both 𝑡 = 0, 1 and 𝑥 = 0. By finding more suitable
upper and lower solutions of (1), we completely omit the con-
dition (H3) in [2, 3] and integral condition in [8], thus our
work improves essentially the results of [2, 3, 8].

2. Basic Definitions and Preliminaries

In this section, we present some necessary definitions and
lemmas from fractional calculus theory, which can be found
in the recent literatures [7, 16, 17].

Definition 1. The Riemann-Liouville fractional integral of
order 𝛼 > 0 of a function 𝑥 : (0, +∞) → R is given by

𝐼
𝛼
𝑥 (𝑡) =

1

Γ (𝛼)
∫
𝑡

0
(𝑡 − 𝑠)

𝛼−1
𝑥 (𝑠) 𝑑𝑠 (5)

provided that the right-hand side is pointwise defined on (0,
+∞).

Definition 2. The Riemann-Liouville fractional derivative of
order 𝛼 > 0 of a function 𝑥 : (0, +∞) → R is given by

Dt
𝛼
𝑥 (𝑡) =

1

Γ (𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫
𝑡

0
(𝑡 − 𝑠)

𝑛−𝛼−1
𝑥 (𝑠) 𝑑𝑠, (6)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of number
𝛼, provided that the right-hand side is pointwise defined on
(0, +∞).

Lemma 3. (1) If 𝑥 ∈ 𝐿1(0, 1), 𝛼 > 𝛽 > 0, then

𝐼
𝛼
𝐼
𝛽
𝑥 (𝑡) = 𝐼

𝛼+𝛽
𝑥 (𝑡) ,

Dt
𝛽
𝐼
𝛼
𝑥 (𝑡) = 𝐼

𝛼−𝛽
𝑥 (𝑡) ,

Dt
𝛼
𝐼
𝛼
𝑥 (𝑡) = 𝑥 (𝑡) .

(7)

(2) If 𝛼 > 0, 𝛽 > 0, then

Dt
𝛼
𝑡
𝛽−1
=

Γ (𝛽)

Γ (𝛽 − 𝛼)
𝑡
𝛽−𝛼−1

. (8)

Lemma 4. Let 𝛼 > 0, and let 𝑓(𝑥) be integrable, then

𝐼
𝛼
Dt
𝛼
𝑓 (𝑥) = 𝑓 (𝑥) + 𝑐1𝑥

𝛼−1
+ 𝑐2𝑥
𝛼−2
+ ⋅ ⋅ ⋅ + 𝑐𝑛𝑥

𝛼−𝑛
, (9)

where 𝑐𝑖 ∈ R (𝑖 = 1, 2, . . . , 𝑛), and 𝑛 is the smallest integer
greater than or equal to 𝛼.

Definition 5. A continuous function 𝜙(𝑡) is called a lower
solution of the BVP (1), if it satisfies

Dt
𝛽
(𝜑𝑝 (Dt

𝛼
𝜙)) (𝑡) ≤ 𝑓 (𝑡, 𝜙 (𝑡)) , 0 < 𝑡 < 1,

𝜙 (0) ≤ 0, 𝜙 (1) ≤ 𝑎𝜙 (𝜉) ,

Dt
𝛼
𝜙 (0) ≥ 0, Dt

𝛼
𝜙 (1) ≥ 𝑏Dt

𝛼
𝜙 (𝜂) .

(10)

Definition 6. A continuous function 𝜓(𝑡) is called an upper
solution of the BVP (1), if it satisfies

Dt
𝛽
(𝜑𝑝 (Dt

𝛼
𝜓)) (𝑡) ≥ 𝑓 (𝑡, 𝜓 (𝑡)) , 0 < 𝑡 < 1

𝜓 (0) ≥ 0, 𝜓 (1) ≥ 𝑎𝜓 (𝜉) ,

Dt
𝛼
𝜓 (0) ≤ 0, Dt

𝛼
𝜓 (1) ≤ 𝑏Dt

𝛼
𝜓 (𝜂) .

(11)

For forthcoming analysis, we first consider the following
linear fractional differential equation:

Dt
𝛼
𝑥 (𝑡) + 𝑦 (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝑥 (1) = 𝑎𝑥 (𝜉) .
(12)

Lemma 7. If 1 < 𝛼 ≤ 2 and 𝑦 ∈ 𝐿1[0, 1], then the boundary
value problem (12) has the unique solution

𝑥 (𝑡) = ∫
1

0
𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (13)

where

𝐺 (𝑡, 𝑠) = 𝑘 (𝑡, 𝑠) +
𝑎𝑘 (𝜉, 𝑠) 𝑡

𝛼−1

1 − 𝑎𝜉𝛼−1
, (14)

𝑘 (𝑡, 𝑠) =

{{{{

{{{{

{

(𝑡 (1 − 𝑠))
𝛼−1
− (𝑡 − 𝑠)

𝛼−1

Γ (𝛼)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(𝑡 (1 − 𝑠))
𝛼−1

Γ (𝛼)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(15)
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Proof. By applying Lemma 4, wemay reduce (12) to an equiv-
alent integral equation

𝑥 (𝑡) = −𝐼
𝛼
𝑦 (𝑡) + 𝑐1𝑡

𝛼−1
+ 𝑐2𝑡
𝛼−2
, 𝑐1, 𝑐2 ∈ R. (16)

From 𝑥(0) = 0 and (16), we have 𝑐2 = 0. Consequently the
general solution of (12) is

𝑥 (𝑡) = −𝐼
𝛼
𝑦 (𝑡) + 𝑐1𝑡

𝛼−1
= −∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 + 𝑐1𝑡

𝛼−1
.

(17)

By (17), one has

𝑥 (1) = −∫
1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 + 𝑐1,

𝑥 (𝜉) = −∫
𝜉

0

(𝜉 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 + 𝑐1𝜉

𝛼−1
.

(18)

And then, we have

𝑐1 =
∫
1

0
(1 − 𝑠)

𝛼−1
𝑦 (𝑠) 𝑑𝑠 − 𝑎 ∫

𝜉

0
(𝜉 − 𝑠)

𝛼−1
𝑦 (𝑠) 𝑑𝑠

Γ (𝛼) (1 − 𝑎𝜉𝛼−1)
. (19)

So, the unique solution of problem (12) is

𝑥 (𝑡) = − ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑦 (𝑠)

Γ (𝛼)
𝑑𝑠 +

𝑡
𝛼−1

1 − 𝑎𝜉𝛼−1

× {∫
1

0

(1 − 𝑠)
𝛼−1
𝑦 (𝑠)

Γ (𝛼)
𝑑𝑠 − 𝑎∫

𝜉

0

(𝜉 − 𝑠)
𝛼−1
𝑦 (𝑠)

Γ (𝛼)
𝑑𝑠}

= − ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑦 (𝑠)

Γ (𝛼)
𝑑𝑠 + ∫

1

0

(1 − 𝑠)
𝛼−1
𝑡𝛼−1𝑦 (𝑠)

Γ (𝛼)
𝑑𝑠

+
𝑎𝑡
𝛼−1

1 − 𝑎𝜉𝛼−1
∫
1

0

(1 − 𝑠)
𝛼−1
𝜉
𝛼−1
𝑦 (𝑠)

Γ (𝛼)
𝑑𝑠

−
𝑎𝑡𝛼−1

1 − 𝑎𝜉𝛼−1
∫
𝜉

0

(𝜉 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠

= ∫
1

0
(𝑘 (𝑡, 𝑠) +

𝑎𝑡𝛼−1𝑦 (𝑠)

1 − 𝑎𝜉𝛼−1
𝑘 (𝜉, 𝑠)) 𝑑𝑠

= ∫
1

0
𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠.

(20)

The proof is completed.

Lemma 8. Let 𝑦 ∈ 𝐿1[0, 1], 1 < 𝛼, 𝛽 ≤ 2, 0 < 𝜉, 𝜂 < 1, and
0 ≤ 𝑎, 𝑏 ≤ 1. The fractional boundary value problem

Dt
𝛽
(𝜑𝑝 (Dt

𝛼
𝑥)) (𝑡) = 𝑦 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝑥 (1) = 𝑎𝑥 (𝜉) ,

Dt
𝛼
𝑥 (0) = 0, Dt

𝛼
𝑥 (1) = 𝑏Dt

𝛼
𝑥 (𝜂) ,

(21)

has unique solution

𝑥 (𝑡) = ∫
1

0
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑦 (𝜏) 𝑑𝜏) 𝑑𝑠, (22)

where

𝐻(𝑡, 𝑠) = 𝑔 (𝑡, 𝑠) +
𝑎𝑔 (𝜂, 𝑠) 𝑡𝛽−1

1 − 𝑏1𝜂
𝛽−1

,

𝑔 (𝑡, 𝑠) =

{{{{

{{{{

{

(𝑡 (1 − 𝑠))
𝛽−1
− (𝑡 − 𝑠)

𝛽−1

Γ (𝛽)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(𝑡 (1 − 𝑠))
𝛽−1

Γ (𝛽)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

(23)

and 𝑏1 = 𝑏𝑝−1, and 𝐺(𝑡, 𝑠) is defined by (14).

Proof. At first, by Lemma 4, (21) is equivalent to the integral
equation

𝜑𝑝 (Dt
𝛼
𝑥 (𝑡)) = 𝐼

𝛽
𝑦 (𝑡) + 𝑐3𝑡

𝛽−1
+ 𝑐4𝑡
𝛽−2
, 𝑐3, 𝑐4 ∈ R. (24)

FromDt
𝛼
𝑥(0) = 0, Dt

𝛼
𝑥(1) = 𝑏Dt

𝛼
𝑥(𝜂), and (24), we have

𝑐4 = 0. Consequently the general solution of (21) is

𝜑𝑝 (Dt
𝛼
𝑥 (𝑡)) = 𝐼

𝛽
𝑦 (𝑡) + 𝑐3𝑡

𝛽−1

= ∫
𝑡

0

(𝑡 − 𝑠)
𝛽−1

Γ (𝛽)
𝑦 (𝑠) 𝑑𝑠 + 𝑐3𝑡

𝛽−1
.

(25)

It follows from (25) that

𝜑𝑝 (Dt
𝛼
𝑥 (1)) = ∫

1

0

(1 − 𝑠)
𝛽−1

Γ (𝛽)
𝑦 (𝑠) 𝑑𝑠 + 𝑐3, (26)

𝜑𝑝 (Dt
𝛼
𝑥 (𝜂)) = ∫

𝜂

0

(𝜂 − 𝑠)
𝛽−1

Γ (𝛽)
𝑦 (𝑠) 𝑑𝑠 + 𝑐3𝜂

𝛼−1
. (27)

Thus (25) and (26) imply

𝑐3 = −
∫
1

0
(1 − 𝑠)

𝛽−1
𝑦 (𝑠) 𝑑𝑠 − 𝑏1 ∫

𝜂

0
(𝜂 − 𝑠)

𝛽−1
𝑦 (𝑠) 𝑑𝑠

Γ (𝛽) (1 − 𝑏1𝜂
𝛽−1)

, (28)

where 𝑏1 = 𝑏
𝑝−1. Similar to Lemma 7, we have

𝜑𝑝 (Dt
𝛼
𝑥 (𝑡)) = −∫

1

0
𝐻(𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠. (29)

Consequently, fractional boundary value problem (21) is
equivalent to the following problem:

Dt
𝛼
𝑥 (𝑡) + 𝜑𝑞 (∫

1

0
𝐻(𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝑥 (1) = 𝑎𝑥 (𝜉) .

(30)

Lemma 7 implies that fractional boundary value problem (21)
has a unique solution

𝑥 (𝑡) = ∫
1

0
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑦 (𝜏) 𝑑𝜏) 𝑑𝑠. (31)

The proof is completed.
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Lemma 9. Let 1 < 𝛼, 𝛽 ≤ 2, 0 < 𝜉, 𝜂 < 1, and 0 ≤ 𝑎,
𝑏 ≤ 1. The functions 𝐺(𝑡, 𝑠) and 𝐻(𝑡, 𝑠) defined by (14) and
(23), respectively, are continuous on [0, 1] × [0, 1] and satisfy

(i)𝐺(𝑡, 𝑠) ≥ 0, 𝐻(𝑡, 𝑠) ≥ 0, for 𝑡, 𝑠 ∈ [0, 1].
(ii) For 𝑡, 𝑠 ∈ [0, 1],

𝜎1 (𝑠) 𝑡
𝛼−1
≤ 𝐺 (𝑡, 𝑠) ≤ 𝜎2 (𝑠) 𝑡

𝛼−1
, (32)

where

𝜎1 (𝑠) =
𝑎𝑘 (𝜉, 𝑠)

1 − 𝑎𝜉𝛼−1
,

𝜎2 (𝑠) =
(1 − 𝑠)

𝛼−1

Γ (𝛼)
+
𝑎𝑘 (𝜉, 𝑠)

1 − 𝑎𝜉𝛼−1
.

(33)

Proof. The proof is obvious, so we omit the proof.

Set

𝑒 (𝑡) = 𝑡
𝛼−1
. (34)

We present the following assumptions:

(S1) 𝑓 : (0, 1) × (0,∞) → [0, +∞) is is continuous
and decreasing in 𝑥.
(S2) For any 𝜅 > 0,

0 < ∫
1

0
𝜎2 (𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝜅𝑒 (𝜏)) 𝑑𝜏) 𝑑𝑠 < +∞.

(35)

From Lemmas 7 and 9, it is easy to obtain the following
conclusion.

Lemma 10. If 𝑥 ∈ 𝐶([0, 1], 𝑅) satisfies

𝑥 (0) = 0, 𝑥 (1) = 𝜑𝑝 (𝑏) 𝑥 (𝜂) , (36)

andDt
𝛽
𝑥(𝑡) ≥ 0 for any 𝑡 ∈ (0, 1), then 𝑥(𝑡) ≤ 0, for 𝑡 ∈ [0, 1].

3. Main Results

Let 𝐸 = 𝐶[0, 1], and

𝑃 = {𝑥 ∈ 𝐸 : there exists positive number 0 < 𝑙𝑥 < 1,

𝐿𝑥>1 such that 𝑙𝑥𝑒 (𝑡)≤𝑥 (𝑡)≤𝐿𝑥𝑒 (𝑡) , 𝑡∈[0, 1]} .
(37)

Clearly, 𝑒(𝑡) ∈ 𝑃, so 𝑃 is nonempty. For any 𝑥 ∈ 𝑃, define an
operator 𝑇 by

(𝑇𝑥) (𝑡) = ∫
1

0
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠,

𝑡 ∈ [0, 1] .

(38)

Theorem 11. Suppose (S1)-(S2) hold. Then the BVP (1) has
at least one positive solution 𝑥, and there exist two positive
constants 0 < 𝜇1 < 1, 𝜇2 > 1, such that

𝜇1𝑒 (𝑡) ≤ 𝑥 (𝑡) ≤ 𝜇2𝑒 (𝑡) , 𝑡 ∈ [0, 1] . (39)

Proof. We firstly assert that𝑇 is well defined on 𝑃 and𝑇(𝑃) ⊂
𝑃, and 𝑇 is decreasing in 𝑥.

In fact, for any 𝑥 ∈ 𝑃, by the definition of 𝑃, there exist
two positive numbers 0 < 𝑙𝑥 < 1, 𝐿𝑥 > 1, such that 𝑙𝑥𝑒(𝑡) ≤
𝑥(𝑡) ≤ 𝐿𝑥𝑒(𝑡) for any 𝑡 ∈ [0, 1]. It follows from Lemma 9 and
(S1)–(S3) that

(𝑇𝑥) (𝑡) = ∫
1

0
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠

≤ 𝑒 (𝑡)∫
1

0
𝜎2 (𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑙𝑥𝑒 (𝜏)) 𝑑𝜏) 𝑑𝑠

< +∞.

(40)

On the other hand, by Lemma 9, we also have

(𝑇𝑥) (𝑡) ≥ 𝑒 (𝑡) ∫
1

0
𝜎1 (𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠

≥ 𝑒 (𝑡) ∫
1

0
𝜎1 (𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝐿𝑥𝑒 (𝜏)) 𝑑𝜏) 𝑑𝑠.

(41)

Take

𝑙
󸀠
𝑥=min{1, ∫

1

0
𝜎1 (𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝐿𝑥𝑒 (𝜏)) 𝑑𝜏) 𝑑𝑠}

𝐿
󸀠
𝑥=max{1, ∫

1

0
𝜎2 (𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑙𝑥𝑒 (𝜏)) 𝑑𝜏) 𝑑𝑠} ,

(42)

then by (40) and (41),

𝑙
󸀠
𝑥𝑒 (𝑡) ≤ (𝑇𝑥) (𝑡) ≤ 𝐿

󸀠
𝑥𝑒 (𝑡) , (43)

which implies that 𝑇 is well defined, and 𝑇(𝑃) ⊂ 𝑃. It follows
from (S1) that the operator𝑇 is decreasing in 𝑥. And by direct
computations, we have

Dt
𝛽
(𝜑𝑝 (Dt

𝛼
(𝑇𝑥))) (𝑡) = 𝑓 (𝑡, (𝑇𝑥) (𝑡)) , 𝑡 ∈ (0, 1) ,

(𝑇𝑥) (0) = 0, (𝑇𝑥) (1) = 𝑎 (𝑇𝑥) (𝜉) ,

Dt
𝛼
(𝑇𝑥) (0) = 0, Dt

𝛼
(𝑇𝑥) (1) = 𝑏Dt

𝛼
(𝑇𝑥) (𝜂) .

(44)

Next we focus on lower and upper solutions of the
fractional boundary value problem (1). Let

𝑚(𝑡) = min {𝑒 (𝑡) , (𝑇𝑒) (𝑡)} ,

𝑛 (𝑡) = max {𝑒 (𝑡) , (𝑇𝑒) (𝑡)} ,
(45)
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then, if 𝑒(𝑡) = (𝑇𝑒)(𝑡), the conclusion of Theorem 11 holds. If
𝑒(𝑡) ̸= (𝑇𝑒)(𝑡), clearly,𝑚(𝑡), 𝑛(𝑡) ∈ 𝑃 and

𝑚(𝑡) ≤ 𝑒 (𝑡) ≤ 𝑛 (𝑡) . (46)

We will prove that the functions 𝜙(𝑡) = 𝑇𝑛(𝑡), 𝜓(𝑡) =
𝑇𝑚(𝑡) are a couple of lower and upper solutions of the
fractional boundary value problem (1), respectively.

From (S1),𝑇 is nonincreasing relative to 𝑥.Thus it follows
from (45)-(46) that

𝜙 (𝑡) = 𝑇𝑛 (𝑡) ≤ 𝑇𝑚 (𝑡) = 𝜓 (𝑡) ,

𝑇𝑛 (𝑡) ≤ 𝑇𝑒 (𝑡) ≤ 𝑛 (𝑡) ,

𝑇𝑚 (𝑡) ≥ 𝑇𝑒 (𝑡) ≥ 𝑚 (𝑡) ,

(47)

and 𝜙(𝑡), 𝜓(𝑡) ∈ 𝑃. And it follows from (44)–(47) that

Dt
𝛽
(𝜑𝑝 (Dt

𝛼
𝜙)) (𝑡) − 𝑓 (𝑡, 𝜙 (𝑡))

=Dt
𝛽
(𝜑𝑝 (Dt

𝛼
(𝑇𝑛))) (𝑡) − 𝑓 (𝑡, (𝑇𝑛) (𝑡))

≤Dt
𝛽
(𝜑𝑝 (Dt

𝛼
(𝑇𝑛))) (𝑡)

− 𝑓 (𝑡, 𝑛 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝜙 (0) = 0, 𝜙 (1) = 𝑎𝜙 (𝜉) , Dt
𝛼
𝜙 (0) = 0,

Dt
𝛼
𝜙 (1) = 𝑏Dt

𝛼
𝜙 (𝜂) ,

Dt
𝛽
(𝜑𝑝 (Dt

𝛼
𝜓)) (𝑡) − 𝑓 (𝑡, 𝜓 (𝑡))

=Dt
𝛽
(𝜑𝑝 (Dt

𝛼
(𝑇𝑚))) (𝑡) − 𝑓 (𝑡, (𝑇𝑚) (𝑡))

≥Dt
𝛽
(𝜑𝑝 (Dt

𝛼
(𝑇𝑚))) (𝑡)

− 𝑓 (𝑡, 𝑚 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝜓 (0) = 0, 𝜓 (1) = 𝑎𝜓 (𝜉) ,

Dt
𝛼
𝜓 (0) = 0, Dt

𝛼
𝜓 (1) = 𝑏Dt

𝛼
𝜓 (𝜂) .

(48)

That is,𝜙(𝑡) and𝜓(𝑡) are a couple of lower andupper solutions
of fractional boundary value problem (1), respectively.

Now let us define a function

𝐹 (𝑡, 𝑥) =

{{

{{

{

𝑓 (𝑡, 𝜙 (𝑡)) , 𝑥 < 𝜙 (𝑡) ,

𝑓 (𝑡, 𝑥 (𝑡)) , 𝜙 (𝑡) ≤ 𝑥 ≤ 𝜓 (𝑡) ,

𝑓 (𝑡, 𝜓 (𝑡)) , 𝑥 > 𝜓 (𝑡) .

(49)

It follows from (S1) and (49) that 𝐹 : (0, 1) × [0, +∞) →
[0, +∞) is continuous.

We will show that the fractional boundary value problem

Dt
𝛽
(𝜑𝑝 (Dt

𝛼
𝑥)) (𝑡) = 𝐹 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝑥 (1) = 𝑎𝑥 (𝜉) ,

Dt
𝛼
𝑥 (0) = 0, Dt

𝛼
𝑥 (1) = 𝑏Dt

𝛼
𝑥 (𝜂) ,

(50)

has a positive solution. Let us consider the operator

B𝑥 (𝑡) = ∫
1

0
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠. (51)

Thus B : 𝐶[0, 1] → 𝐶[0, 1], and the fixed point of the
operatorB is a solution of the BVP (50). Noting that Φ ∈ 𝑃,
then there exists a constant 0 < 𝑙Φ < 1, such that Φ(𝑡) ≥
𝑙Φ𝑒(𝑡), 𝑡 ∈ [0, 1]. Thus for all 𝑥 ∈ 𝐸, it follows from Lemma 9,
(49), and (S2) that

B𝑥 (𝑡) = ∫
1

0
𝐺 (𝑡, 𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠

≤ 𝑒 (𝑡) ∫
1

0
𝜎2 (𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝐹 (𝜏, 𝑥 (𝜏)) 𝑑𝜏) 𝑑𝑠

≤ 𝑒 (𝑡) ∫
1

0
𝜎2 (𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑙Φ𝑒 (𝜏)) 𝑑𝜏) 𝑑𝑠

< +∞.

(52)

That is, the operatorB is uniformly bounded.
From the uniform continuity of 𝐺(𝑡, 𝑠) and Lebesgue

dominated convergence theorem, we easily obtain that B
is equicontinuous. Thus by the means of the Arzela-Ascoli
theorem, we haveB : 𝐸 → 𝐸 is completely continuous. The
Schauder fixed point theorem implies that B has at least a
fixed point 𝑥, such that 𝑥 = B𝑥.

At the end, we claim that

𝜙 (𝑡) ≤ 𝑥 (𝑡) ≤ 𝜓 (𝑡) , 𝑡 ∈ [0, 1] . (53)

In fact, since 𝑥 is fixed point ofB and (44), we get

𝑥 (0) = 0, 𝑥 (1) = 𝑎𝑥 (𝜉) ,

Dt
𝛼
𝑥 (0) = 0, Dt

𝛼
𝑥 (1) = 𝑏Dt

𝛼
𝑥 (𝜂) ,

𝜓 (0) = 0, 𝜓 (1) = 𝑎𝜓 (𝜉) ,

Dt
𝛼
𝜓 (0) = 0, Dt

𝛼
𝜓 (1) = 𝑏Dt

𝛼
𝜓 (𝜂) .

(54)

Otherwise, suppose that 𝑥(𝑡) > 𝜓(𝑡). According to the
definition of 𝐹, we have

Dt
𝛽
(𝜑𝑝 (Dt

𝛼
𝑥)) (𝑡) = 𝐹 (𝑡, 𝑥 (𝑡)) = 𝑓 (𝑡, 𝜓 (𝑡)) . (55)

On the other hand, it follows from 𝜓 is an upper solution to
(1) that

Dt
𝛽
(𝜑𝑝 (Dt

𝛼
𝜓)) (𝑡) ≥ 𝑓 (𝑡, 𝜓 (𝑡)) . (56)

Let 𝑧(𝑡) = 𝜑𝑝(Dt
𝛼
𝜓(𝑡)) − 𝜑𝑝(Dt

𝛼
𝑥(𝑡)); it follows from (55)

and (56) that

Dt
𝛽
𝑧 (𝑡) = Dt

𝛽
(𝜑𝑝 (Dt

𝛼
𝜓)) (𝑡)

−Dt
𝛽
(𝜑𝑝 (Dt

𝛼
𝑥)) (𝑡) ≥ 0,

𝑧 (0) = 0, 𝑧 (1) = 𝜑𝑝 (𝑏) 𝑧 (𝜂) .

(57)
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It follows from Lemma 10 that

𝑧 (𝑡) ≤ 0, (58)

and then

𝜑𝑝 (Dt
𝛼
𝜓 (𝑡)) − 𝜑𝑝 (Dt

𝛼
𝑥 (𝑡)) ≤ 0. (59)

Notice that 𝜑𝑝 is monotone increasing; we have

Dt
𝛼
𝜓 (𝑡) ≤Dt

𝛼
𝑥 (𝑡) , that is, Dt

𝛼
(𝜓 − 𝑥) (𝑡) ≤ 0. (60)

It follows from Lemma 10 and (54) that

𝜓 (𝑡) − 𝑥 (𝑡) ≥ 0. (61)

Thus we have 𝑥(𝑡) ≤ 𝜓(𝑡) on [0, 1], which contradicts 𝑥(𝑡) >
𝜓(𝑡). Hence, 𝑥(𝑡) > 𝜓(𝑡) is impossible.

By the same way, we also have 𝑥(𝑡) ≥ 𝜙(𝑡) on [0, 1]. So

𝜙 (𝑡) ≤ 𝑥 (𝑡) ≤ 𝜓 (𝑡) , 𝑡 ∈ [0, 1] . (62)

Consequently, 𝐹(𝑡, 𝑥(𝑡)) = 𝑓(𝑡, 𝑥(𝑡)), 𝑡 ∈ [0, 1]. Then 𝑥(𝑡) is a
positive solution of the problem (1).

Finally, by 𝜓, 𝜙 ∈ 𝑃, we have

𝜇1𝑒 (𝑡) = 𝑙𝜙𝑒 (𝑡) ≤ 𝜙 (𝑡) ≤ 𝑥 (𝑡) ≤ 𝜓 (𝑡) ≤ 𝐿𝜓𝑒 (𝑡) = 𝜇2𝑒 (𝑡) ,

(63)

where

0 < 𝜇1 < 1, 𝜇2 > 1. (64)

Remark 12. In Theorem 11, we find more suitable lower and
upper solutions, then we refine the proved process, and the
key condition (H3) in [2, 3] is removed, but the existence of
positive solution is still obtained, thus our result is essential
improvement of [2, 3].

Theorem 13. If 𝑓(𝑡, 𝑥) : [0, 1] × [0, +∞) → [0, +∞) is
continuous, decreasing in 𝑥 and 𝑓(𝑡, 𝜅) ̸≡ 0, for any 𝜅 > 0,
then the boundary value problem (1) has at least one positive
solution 𝑥(𝑡), and there exist two positive constants 0 < 𝜇1 < 1,
𝜇2 > 1, such that

𝜇1𝑒 (𝑡) ≤ 𝑥 (𝑡) ≤ 𝜇2𝑒 (𝑡) , 𝑡 ∈ [0, 1] . (65)

Proof. The proof is similar to Theorem 11, so we omit it here.

Example 14. Consider the following boundary value prob-
lem:

Dt
5/4
(𝜑𝑝 (Dt

3/2
𝑥)) (𝑡) =

1

𝑡1/4
3√𝑥2 (𝑡)

+ sin 𝑡, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝑥 (1) =
1

8
𝑥 (
1

4
) ,

Dt
3/2
(0) = 0, Dt

3/2
𝑥 (1) =

1

3
Dt
3/2
𝑥(
3

4
) .

(66)

Let 𝛼 = 3/2, 𝛽 = 5/4, and

𝑓 (𝑡, 𝑥) =
1

𝑡1/4
3√𝑥2

+ sin 𝑡, 𝑒 (𝑡) = 𝑡
1/2
. (67)

Obviously, (S1) holds.
For any 𝜅 > 0,

0 < ∫
1

0
𝜎2 (𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝜅𝑒 (𝜏)) 𝑑𝜏) 𝑑𝑠

= ∫
1

0
𝜎2 (𝑠) 𝜑𝑞 (∫

1

0
𝐻(𝑠, 𝜏) (𝜅

−2/3
𝜏
−7/12

+ sin 𝜏) 𝑑𝜏) 𝑑𝑠

< +∞,

(68)

which implies that (S2) holds.
ByTheorem 11, that the boundary value problem (66) has

at least one positive solution.

At the end of this work we also remark that the extension
of the pervious results to the nonlinearities depending on the
time delayed differential system for energy price adjustment
or impulsive differential equation in financial field requires
some further nontrivial modifications, and the reader can
try to obtain results in our direction. We also anticipate
that the methods and concepts here can be extended to the
systems with economic processes such as risk model, the CIR
model, and the Gaussian model as considered by Almeida
and Vicente [1].
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