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The purpose of this paper is to prove some common point theorems for the generalized cyclic Meir-Keeler-type (𝛼, 𝜑, 𝐴, 𝐵)-
contraction in partially ordered metric spaces. Our results generalize many recent common point theorems in the literature.

1. Introduction and Preliminaries

Throughout this paper, by R+, we denote the set of all
nonnegative real numbers, while N is the set of all natural
numbers. Let (𝑋, 𝑑) be a metric space, let 𝐷 be a subset of
𝑋, and let 𝑓 : 𝐷 → 𝑋 be a map. We say that 𝑓 is contractive
if there exists 𝛼 ∈ [0, 1) such that for all 𝑥, 𝑦 ∈ 𝐷,

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝛼 ⋅ 𝑑 (𝑥, 𝑦) . (1)

The well-known Banach fixed point theorem asserts that if
𝐷 = 𝑋, 𝑓 is contractive, and (𝑋, 𝑑) is complete, then 𝑓
has a unique fixed point in 𝑋. It is well known that the
Banach contraction principle [1] is a very useful and classical
tool in nonlinear analysis. Also, this principle has many
generalizations. For instance, a mapping𝑓 : 𝑋 → 𝑋 is called
a quasicontraction if there exists 𝑘 < 1 such that

𝑑 (𝑓𝑥, 𝑓𝑦)

≤ 𝑘 ⋅max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑓𝑦) ,

𝑑 (𝑥, 𝑓𝑦) , 𝑑 (𝑦, 𝑓𝑥)} ,

(2)

for any 𝑥, 𝑦 ∈ 𝑋. In 1974, Ćirić [2] introduced thesemaps and
proved an existence and uniqueness fixed point theorem.

The following definitions and results will be needed in the
sequel. Let𝐴 and𝐵 be twononempty subsets of ametric space
(𝑋, 𝑑). A mapping 𝑓 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is called a cyclic map

if 𝑓(𝐴) ⊆ 𝐵 and 𝑓(𝐵) ⊆ 𝐴. In 2003, Kirk et al. [3, 4] proved
the following fixed point theorem.

Theorem 1 (see [3, 4]). Let 𝐴 and 𝐵 be two nonempty closed
subsets of a complete metric space (𝑋, 𝑑), and suppose that 𝑓 :
𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 satisfies

(i) 𝑓(𝐴) ⊂ 𝐵 and 𝑓(𝐵) ⊂ 𝐴,
(ii) 𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝑘 ⋅ 𝑑(𝑥, 𝑦) for all 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, and
𝑘 ∈ (0, 1).

Then 𝐴 ∩ 𝐵 is nonempty, and 𝑓 has a unique fixed point in
𝐴 ∩ 𝐵.

Recently, many authors proved some fixed point theo-
rems for cyclicmaps satisfying various contractive conditions
(see, [5–20]).

Let 𝑋 be a nonempty set, and let (𝑋, ⊑) be a partially
ordered set endowedwith ametric𝑑.Then, the triple (𝑋, ⊑, 𝑑)
is called a partially orderedmetric space. Two elements 𝑥, 𝑦 ∈
𝑋 are said to be comparable if either 𝑥 ⊑ 𝑦 or 𝑦 ⊑ 𝑥 holds.
Altun et al. [21] introduced the notion of weakly increasing
mappings and proved some existing theorems.

Definition 2 (see [21]). Let (𝑋, ⊑) be a partially ordered set
and 𝑓, 𝑔 : 𝑋 → 𝑋. Then 𝑓, 𝑔 are said to be weakly increasing
if 𝑓𝑥 ⊑ 𝑔𝑓𝑥 and 𝑔𝑥 ⊑ 𝑓𝑔𝑥 for all 𝑥 ∈ 𝑋.

And the following definition was introduced in [22].
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Definition 3 (see [22]). Let (𝑋, ⊑) be a partially ordered set, let
𝐴, 𝐵 be closed subsets of𝑋with𝑋 = 𝐴∪𝐵, and let𝑓, 𝑔 : 𝑋 →
𝑋. Then the pair (𝑓, 𝑔) is said to be (𝐴, 𝐵)-weakly increasing
if 𝑓𝑥 ⊑ 𝑔𝑓𝑥 for all 𝑥 ∈ 𝐴 and 𝑔𝑥 ⊑ 𝑓𝑔𝑥 for all 𝑥 ∈ 𝐵.

In this paper, we introduce the new notion of generalized
cyclicMeir-Keeler-type (𝛼, 𝜓, 𝐴, 𝐵)-contraction.Thepurpose
of this paper is to prove some common point theorems for the
generalized cyclic Meir-Keeler-type (𝛼, 𝜓, 𝐴, 𝐵)-contraction
in partially ordered metric spaces. Our results generalize
many recent common point theorems in the literature.

2. Main Results

In the sequel, we denote by Ψ the class of functions 𝜓 :
R+
5

→ R+ satisfying the following conditions:

(𝜓
1
) 𝜓 is an increasing, continuous function in each coor-
dinate;

(𝜓
2
) for all 𝑡 ∈ R+, 𝜓(𝑡, 𝑡, 𝑡, 0, 2𝑡) ≤ 𝑡, 𝜓(𝑡, 𝑡, 𝑡, 2𝑡, 0) ≤ 𝑡,
𝜓(0, 0, 𝑡, 𝑡, 0) ≤ 𝑡, and 𝜓(𝑡, 0, 0, 𝑡, 𝑡) ≤ 𝑡;

(𝜓
2
) 𝜓(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
) = 0 if and only if 𝑡

1
= 𝑡
2
= 𝑡
3
= 𝑡
4
=

𝑡
5
= 0.

We start with the following definition.

Definition 4 (see [23]). Let 𝑓 : 𝑋 → 𝑋 be a self-mapping of
a set 𝑋 and 𝛼 : 𝑋 × 𝑋 → R+. Then 𝑓 is called 𝛼-admissible
if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝛼 (𝑓𝑥, 𝑓𝑦) ≥ 1. (3)

Definition 5. Let𝐴, 𝐵 be twononempty subsets of a set𝑋with
𝑋 = 𝐴 ∪ 𝐵, let 𝑓 : 𝐴 → 𝐵, 𝑔 : 𝐵 → 𝐴 with 𝑓(𝐴) ⊂ 𝐵 and
𝑔(𝐵) ⊂ 𝐴, and let 𝛼 : 𝑋 × 𝑋 → R+. Then the pair (𝑓, 𝑔) is
called 𝛼-admissible if the following conditions hold:

(1) 𝛼(𝑓𝑥, 𝑓𝑥) ≥ 1, ∀𝑥 ∈ 𝐴 ⇒ 𝛼(𝑔𝑓𝑥, 𝑔𝑓𝑥) ≥ 1,
(2) 𝛼(𝑔𝑦, 𝑔𝑦) ≥ 1, ∀𝑦 ∈ 𝐵 ⇒ 𝛼(𝑓𝑔𝑦, 𝑓𝑔𝑦) ≥ 1.

In 1969, Meir and Keeler [24] introduced the following
notion of Meir-Keeler-type contraction in a metric space
(𝑋, 𝑑).

Definition 6. Letting (𝑋, 𝑑) be a metric space, 𝑓 : 𝑋 → 𝑋.
Then𝑓 is called aMeir-Keeler-type contraction whenever for
each 𝜂 > 0, there exists 𝛾 > 0 such that

𝜂 ≤ 𝑑 (𝑥, 𝑦) < 𝜂 + 𝛾 ⇒ 𝑑 (𝑓𝑥, 𝑓𝑦) < 𝜂. (4)

We now state the new notions of generalized cyclic Meir-
Keeler-type (𝜓,𝐴, 𝐵)-contractions and generalized Meir-
Keeler-type (𝛼, 𝜓, 𝐴, 𝐵)-contractions in partially ordered
metric spaces as follows.

Definition 7. Let (𝑋, ⊑, 𝑑) be a partially ordered metric space,
let 𝐴, 𝐵 be two nonempty subsets of 𝑋 with 𝑋 = 𝐴 ∪ 𝐵, and
let 𝑓 : 𝐴 → 𝐵, 𝑔 : 𝐵 → 𝐴 with 𝑓(𝐴) ⊂ 𝐵 and 𝑔(𝐵) ⊂ 𝐴.
Then the pair (𝑓, 𝑔) is called a generalized cyclicMeir-Keeler-
type (𝜓, 𝐴, 𝐵)-contraction; if for any comparable elements 𝑥,

𝑦 ∈ 𝑋 with 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, we have that for each 𝜂 > 0
there exists 𝛿 > 0 such that

𝜂 ≤ 𝜓 (𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑔𝑦) , 𝑑 (𝑥, 𝑔𝑦) , 𝑑 (𝑦, 𝑓𝑥))

< 𝜂 + 𝛿

⇒ 𝑑 (𝑓𝑥, 𝑔𝑦) < 𝜂,

(5)

where 𝜓 ∈ Ψ.

Definition 8. Let (𝑋, ⊑, 𝑑) be a partially orderedmetric space,
let 𝐴, 𝐵 be two nonempty subsets of 𝑋 with 𝑋 = 𝐴 ∪ 𝐵,
and let 𝑓 : 𝐴 → 𝐵, 𝑔 : 𝐵 → 𝐴 with 𝑓(𝐴) ⊂ 𝐵 and
𝑔(𝐵) ⊂ 𝐴, and 𝛼 : 𝑋 × 𝑋 → R+. Then (𝑓, 𝑔) is called a
generalized cyclic Meir-Keeler-type (𝛼, 𝜓, 𝐴, 𝐵)-contraction
if the following conditions hold:

(1) the pair (𝑓, 𝑔) is 𝛼-admissible;
(2) for any comparable elements 𝑥, 𝑦 ∈ 𝑋with 𝑥 ∈ 𝐴 and
𝑦 ∈ 𝐵, we have that for each 𝜂 > 0 there exists 𝛿 > 0
such that

𝜂 ≤ 𝜓 (𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑔𝑦) , 𝑑 (𝑥, 𝑔𝑦) , 𝑑 (𝑦, 𝑓𝑥))

< 𝜂 + 𝛿

⇒ 𝛼 (𝑓𝑥, 𝑓𝑥) 𝛼 (𝑔𝑦, 𝑔𝑦) 𝑑 (𝑓𝑥, 𝑔𝑦) < 𝜂,

(6)

where 𝜓 ∈ Ψ.

Remark 9. Note that if 𝑓 is a generalized cyclic Meir-Keeler-
type (𝛼, 𝜓, 𝐴, 𝐵)-contraction, then we have that for any
comparable elements 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵,

𝛼 (𝑓𝑥, 𝑓𝑥) 𝛼 (𝑔𝑦, 𝑔𝑦) 𝑑 (𝑓𝑥, 𝑔𝑦)

≤ 𝜓 (𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑔𝑦) , 𝑑 (𝑥, 𝑔𝑦) , 𝑑 (𝑦, 𝑓𝑥)) .

(7)

Further, if

𝜓 (𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑔𝑦) , 𝑑 (𝑥, 𝑔𝑦) , 𝑑 (𝑦, 𝑓𝑥)) = 0,

(8)

then 𝑑(𝑓𝑥, 𝑔𝑦) = 0.
On the other hand, if

𝜓 (𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑔𝑦) , 𝑑 (𝑥, 𝑔𝑦) , 𝑑 (𝑦, 𝑓𝑥)) > 0,

(9)

then

𝛼 (𝑓𝑥, 𝑓𝑥) 𝛼 (𝑔𝑦, 𝑔𝑦) 𝑑 (𝑓𝑥, 𝑔𝑦)

< 𝜓 (𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑔𝑦) , 𝑑 (𝑥, 𝑔𝑦) , 𝑑 (𝑦, 𝑓𝑥)) .

(10)

We now state our first main result for the generalized
cyclic Meir-Keeler-type (𝛼, 𝜓, 𝐴, 𝐵)-contraction as follows.
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Theorem 10. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, let 𝐴, 𝐵 be nonempty closed subsets of 𝑋 with
𝑋 = 𝐴 ∪ 𝐵, let 𝛼 : 𝑋 × 𝑋 → R+, and let 𝑓, 𝑔 : 𝑋 → 𝑋

be two mappings such that the pair (𝑓, 𝑔) is a generalized cyclic
Meir-Keeler-type (𝛼, 𝜓, 𝐴, 𝐵)-contraction and (𝐴, 𝐵)-weakly
increasing. Suppose that the following conditions hold:

(i) 𝑓 or 𝑔 is continuous;

(ii) there exists 𝑥
0
∈ 𝐴 with 𝛼(𝑓𝑥

0
, 𝑓𝑥
0
) ≥ 1;

(iii) if 𝛼(𝑥
𝑛
, 𝑥
𝑛
) ≥ 1 for all 𝑛 ∈ N and lim

𝑛→∞
𝑥
𝑛
= ], then

𝛼(𝑓], 𝑓]) ≥ 1 and 𝛼(𝑔], 𝑔]) ≥ 1.

Then 𝑓 and 𝑔 have a common fixed point in𝑋.

Proof. By (ii), there exists 𝑥
0
∈ 𝑋 with 𝛼(𝑓𝑥

0
, 𝑓𝑥
0
) ≥ 1. Since

𝑓(𝐴) ⊂ 𝐵 and the pair (𝑓, 𝑔) is 𝛼-admissible, there exists 𝑥
1
∈

𝐵 such that

𝑥
1
= 𝑓𝑥
0
, 𝛼 (𝑔𝑥

1
, 𝑔𝑥
1
) = 𝛼 (𝑔𝑓𝑥

0
, 𝑔𝑓𝑥
0
) ≥ 1. (11)

Since𝑔(𝐵) ⊂ 𝐴 and the pair (𝑓, 𝑔) is𝛼-admissible, there exists
𝑥
2
∈ 𝐴 such that

𝑥
2
= 𝑔𝑥
1
, 𝛼 (𝑓𝑥

2
, 𝑓𝑥
2
) = 𝛼 (𝑓𝑔𝑥

1
, 𝑓𝑔𝑥
1
) ≥ 1. (12)

Continuing this process, we construct the sequence {𝑥
𝑛
} in𝑋

such that

𝑥
2𝑛+1
= 𝑓𝑥
2𝑛
, 𝑥

2𝑛+2
= 𝑔𝑥
2𝑛+1
,

𝑥
2𝑛
∈ 𝐴, 𝑥

2𝑛+1
∈ 𝐵,

(13)

and for all 𝑛 ∈ N ∪ {0},

𝛼 (𝑥
2𝑛+1
, 𝑥
2𝑛+1
) = 𝛼 (𝑓𝑥

2𝑛
, 𝑓𝑥
2𝑛
) ≥ 1,

𝛼 (𝑥
2𝑛+2
, 𝑥
2𝑛+2
) = 𝛼 (𝑔𝑥

2𝑛+1
, 𝑔𝑥
2𝑛+1
) ≥ 1.

(14)

Since the pair (𝑓, 𝑔) is (𝐴, 𝐵)-weakly increasing, we have that

𝑥
1
= 𝑓𝑥
0
⊑ 𝑔𝑓𝑥

0
= 𝑔𝑥
1
= 𝑥
2
⊑ 𝑓𝑔𝑥

1
= 𝑓𝑥
2
= 𝑥
3
⊑ ⋅ ⋅ ⋅ ,

(15)

and so we conclude that for all 𝑛 ∈ N ∪ {0},

𝑔𝑓𝑥
2𝑛
= 𝑔𝑥
2𝑛+1
= 𝑥
2𝑛+2
⊑ 𝑓𝑔𝑥

2𝑛+1
= 𝑓𝑥
2𝑛+2
= 𝑥
2𝑛+3
. (16)

Step 1. We will show that {𝑥
𝑛
} is a Cauchy sequence in

(𝑋, ⊑, 𝑑).

Case 1. Suppose that 𝑥
2𝑛
= 𝑥
2𝑛+1

for some 𝑛 ∈ N in the
inequality (16). Since 𝑥

2𝑛
and 𝑥

2𝑛+1
are comparable in𝑋 with

𝑥
2𝑛
∈ 𝐴 and 𝑥

2𝑛+1
∈ 𝐵, by the Remark 9, we have

𝑑 (𝑥
2𝑛+1
, 𝑥
2𝑛+2
)

= 𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1
)

≤ 𝛼 (𝑓𝑥
2𝑛
, 𝑓𝑥
2𝑛
) 𝛼 (𝑔𝑥

2𝑛+1
, 𝑔𝑥
2𝑛+1
) 𝑑 (𝑓𝑥

2𝑛
, 𝑔𝑥
2𝑛+1
)

≤ 𝜓 (𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1
) , 𝑑 (𝑥

2𝑛
, 𝑓𝑥
2𝑛
) , 𝑑 (𝑥

2𝑛+1
, 𝑔𝑥
2𝑛+1
) ,

𝑑 (𝑥
2𝑛
, 𝑔𝑥
2𝑛+1
) , 𝑑 (𝑥

2𝑛+1
, 𝑓𝑥
2𝑛
))

= 𝜓 (𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1
) , 𝑑 (𝑥

2𝑛
, 𝑥
2𝑛+1
) , 𝑑 (𝑥

2𝑛+1
, 𝑥
2𝑛+2
) ,

𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+2
) , 𝑑 (𝑥

2𝑛+1
, 𝑥
2𝑛+1
))

≤ 𝜓 (0, 0, 𝑑 (𝑥
2𝑛+1
, 𝑥
2𝑛+2
) , 𝑑 (𝑥

2𝑛+1
, 𝑥
2𝑛+2
) , 0) .

(17)

If 𝑑(𝑥
2𝑛+1
, 𝑥
2𝑛+2
) > 0, then 𝜓(0, 0, 𝑑(𝑥

2𝑛+1
, 𝑥
2𝑛+2
), 𝑑(𝑥

2𝑛+1
,

𝑥
2𝑛+2
), 0) > 0. By Remark 9, we get a contradiction. So we

conclude that 𝑑(𝑥
2𝑛+1
, 𝑥
2𝑛+2
) = 0; that is, 𝑥

2𝑛+1
= 𝑥
2𝑛+2

.
Similarly, we may show that 𝑥

2𝑛+2
= 𝑥
2𝑛+3

. Hence {𝑥
𝑛
} is

a constant sequence, and so {𝑥
𝑛
} is a Cauchy sequence in

(𝑋, ⊑, 𝑑).

Case 2. Suppose that 𝑥
2𝑛
̸= 𝑥
2𝑛+1

for all 𝑛 ∈ N in the ine-
quality (16).

Substep 1. We show that the sequence {𝑑(𝑥
𝑛
, 𝑥
𝑛+1
) : 𝑛 ∈ N ∪

{0}} is decreasing.

Subcase 1. If 𝑛 is even, then we let 𝑛 = 2𝑚 for some 𝑚 ∈ N.
Since 𝑥

2𝑚
∈ 𝐴, 𝑥

2𝑚+1
∈ 𝐵, and 𝑥

2𝑚
, 𝑥
2𝑚+1

are comparable in
𝑋, we have

𝑑 (𝑥
𝑛+1
, 𝑥
𝑛+2
)

= 𝑑 (𝑥
2𝑚+1
, 𝑥
2𝑚+2
) = 𝑑 (𝑓𝑥

2𝑚
, 𝑔𝑥
2𝑚+1
)

≤ 𝛼 (𝑓𝑥
2𝑚
, 𝑓𝑥
2𝑚
) 𝛼 (𝑔𝑥

2𝑚+1
, 𝑔𝑥
2𝑚+1
) 𝑑 (𝑓𝑥

2𝑚
, 𝑔𝑥
2𝑚+1
)

< 𝜓 (𝑑 (𝑥
2𝑚
, 𝑥
2𝑚+1
) , 𝑑 (𝑥

2𝑚
, 𝑓𝑥
2𝑚
) , 𝑑 (𝑥

2𝑚+1
, 𝑔𝑥
2𝑚+1
) ,

𝑑 (𝑥
2𝑚
, 𝑔𝑥
2𝑚+1
) , 𝑑 (𝑥

2𝑚+1
, 𝑓𝑥
2𝑚
))

= 𝜓 (𝑑 (𝑥
2𝑚
, 𝑥
2𝑚+1
) , 𝑑 (𝑥

2𝑚
, 𝑥
2𝑚+1
) , 𝑑 (𝑥

2𝑚+1
, 𝑥
2𝑚+2
) ,

𝑑 (𝑥
2𝑚
, 𝑥
2𝑚+2
) , 𝑑 (𝑥

2𝑚+1
, 𝑥
2𝑚+1
))

≤ 𝜓 (𝑑 (𝑥
2𝑚
, 𝑥
2𝑚+1
) , 𝑑 (𝑥

2𝑚
, 𝑥
2𝑚+1
) , 𝑑 (𝑥

2𝑚+1
, 𝑥
2𝑚+2
) ,

𝑑 (𝑥
2𝑚
, 𝑥
2𝑚+1
) + 𝑑 (𝑥

2𝑚+1
, 𝑥
2𝑚+2
) , 0)

= 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) , 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
) ,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
) , 0) .

(18)
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If 𝑑(𝑥
2𝑚
, 𝑥
2𝑚+1
) < 𝑑(𝑥

2𝑚+1
, 𝑥
2𝑚+2
), then the above inequality

becomes

𝑑 (𝑥
2𝑚+1
, 𝑥
2𝑚+2
)

< 𝜓 (𝑑 (𝑥
2𝑚+1
, 𝑥
2𝑚+2
) , 𝑑 (𝑥

2𝑚+1
, 𝑥
2𝑚+2
) ,

𝑑 (𝑥
2𝑚+1
, 𝑥
2𝑚+2
) , 2𝑑 (𝑥

2𝑚+1
, 𝑥
2𝑚+2
) , 0)

≤ 𝑑 (𝑥
2𝑚+1
, 𝑥
2𝑚+2
) ,

(19)

which is a contradiction. So we have that

𝑑 (𝑥
2𝑚+1
, 𝑥
2𝑚+2
) ≤ 𝑑 (𝑥

2𝑚
, 𝑥
2𝑚+1
) . (20)

Subcase 2. If 𝑛 is odd, then we let 𝑛 = 2𝑚+1 for some𝑚 ∈ N.
Since 𝑥

2𝑚+2
∈ 𝐴, 𝑥

2𝑚+3
∈ 𝐵 and 𝑥

2𝑚+2
, 𝑥
2𝑚+3

are comparable
in𝑋, we have

𝑑 (𝑥
𝑛+2
, 𝑥
𝑛+1
)

= 𝑑 (𝑥
2𝑚+3
, 𝑥
2𝑚+2
) = 𝑑 (𝑓𝑥

2𝑚+2
, 𝑔𝑥
2𝑚+1
)

≤ 𝛼 (𝑓𝑥
2𝑚+2
, 𝑓𝑥
2𝑚+2
) 𝛼 (𝑔𝑥

2𝑚+1
, 𝑔𝑥
2𝑚+1
)

× 𝑑 (𝑓𝑥
2𝑚+2
, 𝑔𝑥
2𝑚+1
)

< 𝜓 (𝑑 (𝑥
2𝑚+2
, 𝑥
2𝑚+1
) , 𝑑 (𝑥

2𝑚+2
, 𝑓𝑥
2𝑚+2
) ,

𝑑 (𝑥
2𝑚+1
, 𝑔𝑥
2𝑚+1
) , 𝑑 (𝑥

2𝑚+2
, 𝑔𝑥
2𝑚+1
) ,

𝑑 (𝑥
2𝑚+1
, 𝑓𝑥
2𝑚+2
))

= 𝜓 (𝑑 (𝑥
2𝑚+2
, 𝑥
2𝑚+1
) , 𝑑 (𝑥

2𝑚+2
, 𝑥
2𝑚+3
) , 𝑑 (𝑥

2𝑚+1
, 𝑥
2𝑚+2
) ,

𝑑 (𝑥
2𝑚+2
, 𝑥
2𝑚+2
) , 𝑑 (𝑥

2𝑚+1
, 𝑥
2𝑚+3
))

≤ 𝜓 (𝑑 (𝑥
2𝑚+2
, 𝑥
2𝑚+1
) , 𝑑 (𝑥

2𝑚+2
, 𝑥
2𝑚+3
) , 𝑑 (𝑥

2𝑚+1
, 𝑥
2𝑚+2
) ,

0, 𝑑 (𝑥
2𝑚+1
, 𝑥
2𝑚+2
) + 𝑑 (𝑥

2𝑚+2
, 𝑥
2𝑚+3
))

= 𝜓 (𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) ,

0, 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
)) .

(21)

If 𝑑(𝑥
2𝑚+1
, 𝑥
2𝑚+2
) < 𝑑(𝑥

2𝑚+2
, 𝑥
2𝑚+3
), then the above inequal-

ity becomes

𝑑 (𝑥
2𝑚+2
, 𝑥
2𝑚+3
)

< 𝜓 (𝑑 (𝑥
2𝑚+2
, 𝑥
2𝑚+3
) , 𝑑 (𝑥

2𝑚+2
, 𝑥
2𝑚+3
) ,

𝑑 (𝑥
2𝑚+3
, 𝑥
2𝑚+3
) , 0, 2𝑑 (𝑥

2𝑚+2
, 𝑥
2𝑚+3
))

≤ 𝑑 (𝑥
2𝑚+2
, 𝑥
2𝑚+3
) ,

(22)

which is a contradiction. So we have that

𝑑 (𝑥
2𝑚+2
, 𝑥
2𝑚+3
) < 𝑑 (𝑥

2𝑚+1
, 𝑥
2𝑚+2
) . (23)

From (20) and (23), we conclude that

𝑑 (𝑥
+1
, 𝑥
𝑛+2
) < 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+1
) . (24)

From the above argument, we have that the sequence {𝑑(𝑥
𝑛
,

𝑥
𝑛+1
) : 𝑛 ∈ N ∪ {0}} is decreasing, and it must converge to

some 𝜂 ≥ 0; that is,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) = 𝜂. (25)

Substep 2. We next claim that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛+1
) = 0. (26)

Notice that 𝜂 = inf{𝑑(𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1
) : 𝑛 ∈ N ∪ {0}}. We claim

that 𝜂 = 0. Suppose, to the contrary, that 𝜂 > 0.
If 𝑛 is even, by the argument of Subcase 1 and the

inequality (25), we have

lim
𝑛→∞

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) , 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
) ,

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
) , 0) = 𝜂.

(27)

Since (𝑓, 𝑔) is a generalized cyclic Meir-Keeler-type (𝛼, 𝜓,
𝐴, 𝐵)-contraction, corresponding to 𝜂 use and taking into
account the above (27), there exist 𝛿 > 0 and a natural
number 𝑘 such that

𝜂 ≤ 𝜓 (𝑑 (𝑥
𝑘
, 𝑥
𝑘+1
) , 𝑑 (𝑥

𝑘
, 𝑥
𝑘+1
) , 𝑑 (𝑥

𝑘+1
, 𝑥
𝑘+2
) , 𝑑 (𝑥

𝑘
, 𝑥
𝑘+1
)

+ 𝑑 (𝑥
𝑘+1
, 𝑥
𝑘+2
) , 0) < 𝜂 + 𝛿

⇒ 𝛼 (𝑓𝑥
𝑘
, 𝑓𝑥
𝑘
) 𝛼 (𝑔𝑥

𝑘+1
, 𝑔𝑥
𝑘+1
) 𝑑 (𝑓𝑥

𝑘
, 𝑔𝑥
𝑘+1
) < 𝜂,

(28)

which implies

𝑑 (𝑓𝑥
𝑘
, 𝑔𝑥
𝑘+1
)

≤ 𝛼 (𝑓𝑥
𝑘
, 𝑓𝑥
𝑘
) 𝛼 (𝑔𝑥

𝑘+1
, 𝑔𝑥
𝑘+1
) 𝑑 (𝑓𝑥

𝑘
, 𝑔𝑥
𝑘+1
) < 𝜂.

(29)

So we get a contradiction, since 𝜂 = inf{𝑑(𝑥
𝑛
, 𝑥
𝑛+1
) : 𝑛 ∈

N ∪ {0}. Thus we have that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛+1
) = 0. (30)

If 𝑛 is odd, by the argument of Subcase 2 and the ine-
quality (25), we have

lim
𝑛→∞

𝜓 (𝑑 (𝑥
𝑛+1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) ,

0, 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
)) = 𝜂.

(31)

Similarly, we can prove that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑓𝑥
𝑛+1
) = 0. (32)

Substep 3. We show that {𝑥
𝑛
} is a Cauchy sequence in (𝑋, ⊑,

𝑑). It is sufficient to show that {𝑥
2𝑛
} is a Cauchy sequence in

(𝑋, ⊑, 𝑑).

Suppose, to the contrary, that {𝑥
2𝑛
} is not a Cauchy

sequence in (𝑋, ⊑, 𝑑). Then there exist 𝜖 > 0 and two
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subsequences {𝑥
2𝑚(𝑘)
} and {𝑥

2𝑛(𝑘)
} of {𝑥

2𝑛
} such that 𝑛(𝑘) is

the smallest integer for which 𝑛(𝑘) > 𝑚(𝑘) > 𝑘,

𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)
) ≥ 𝜖, 𝑑 (𝑥

2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)−2

) < 𝜖, (33)

and we get

𝜖 ≤ 𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)
)

≤ 𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)−2

) + 𝑑 (𝑥
2𝑛(𝑘)−2

, 𝑥
2𝑛(𝑘)−1

)

+ 𝑑 (𝑥
2𝑛(𝑘)−1

, 𝑥
2𝑛(𝑘)
)

< 𝜖 + 𝑑 (𝑥
2𝑛(𝑘)−2

, 𝑥
2𝑛(𝑘)−1

) + 𝑑 (𝑥
2𝑛(𝑘)−1

, 𝑥
2𝑛(𝑘)
) .

(34)

Letting 𝑘 → ∞ in the above inequality, we get

lim
𝑛→∞

𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)
) = 𝜖. (35)

On the other hand, we also obtain that

𝜖 ≤ 𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)
)

≤ 𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)−1

) + 𝑑 (𝑥
2𝑛(𝑘)−1

, 𝑥
2𝑛(𝑘)
)

≤ 𝑑 (𝑥
2𝑚(𝑘)+1

, 𝑥
2𝑛(𝑘)−1

) + 𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑚(𝑘)+1

)

+ 𝑑 (𝑥
2𝑛(𝑘)−1

, 𝑥
2𝑛(𝑘)
)

≤ 𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)−1

) + 2𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑚(𝑘)+1

)

+ 𝑑 (𝑥
2𝑛(𝑘)−1

, 𝑥
2𝑛(𝑘)
)

≤ 𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)
) + 2𝑑 (𝑥

2𝑚(𝑘)
, 𝑥
2𝑚(𝑘)+1

)

+ 2𝑑 (𝑥
2𝑛(𝑘)−1

, 𝑥
2𝑛(𝑘)
) .

(36)

Letting 𝑘 → ∞ in the above inequality, we get

lim
𝑛→∞

𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)
)

= lim
𝑛→∞

𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)−1

)

= lim
𝑛→∞

𝑑 (𝑥
2𝑚(𝑘)+1

, 𝑥
2𝑛(𝑘)−1

)

= 𝜖.

(37)

Since

𝑑 (𝑥
2𝑚(𝑘)+1

, 𝑥
2𝑛(𝑘)−1

)

≤ 𝑑 (𝑥
2𝑚(𝑘)+1

, 𝑥
2𝑛(𝑘)
) + 𝑑 (𝑥

2𝑛(𝑘)
, 𝑥
2𝑛(𝑘)−1

)

≤ 𝑑 (𝑥
2𝑚(𝑘)+1

, 𝑥
2𝑛(𝑘)−1

) + 2𝑑 (𝑥
2𝑛(𝑘)
, 𝑥
2𝑛(𝑘)−1

) ,

(38)

letting 𝑘 → ∞ in the above inequality, we have

lim
𝑛→∞

𝑑 (𝑥
2𝑚(𝑘)+1

, 𝑥
2𝑛(𝑘)
) = 𝜖. (39)

Since 𝑥
2𝑚(𝑘)

∈ 𝐴, 𝑥
2𝑛(𝑘)−1

∈ 𝐵, and 𝑥
2𝑚(𝑘)

, 𝑥
2𝑛(𝑘)−1

are com-
parable in𝑋, we have

𝑑 (𝑥
2𝑚(𝑘)+1

, 𝑥
2𝑛(𝑘)
)

= 𝑑 (𝑓𝑥
2𝑚(𝑘)
, 𝑔𝑥
2𝑛(𝑘)−1

)

≤ 𝛼 (𝑓𝑥
2𝑚(𝑘)
, 𝑓𝑥
2𝑚(𝑘)
) 𝛼 (𝑔𝑥

2𝑛(𝑘)−1
, 𝑔𝑥
2𝑛(𝑘)−1

)

× 𝑑 (𝑓𝑥
2𝑚(𝑘)
, 𝑔𝑥
2𝑛(𝑘)−1

)

< 𝜓 (𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)−1

) , 𝑑 (𝑥
2𝑚(𝑘)
, 𝑓𝑥
2𝑚(𝑘)
) ,

𝑑 (𝑥
2𝑛(𝑘)−1

, 𝑔𝑥
2𝑛(𝑘)−1

) , 𝑑 (𝑥
2𝑚(𝑘)
, 𝑔𝑥
2𝑛(𝑘)−1

) ,

𝑑 (𝑥
2𝑛(𝑘)−1

, 𝑓𝑥
2𝑚(𝑘)
))

= 𝜓 (𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)−1

) , 𝑑 (𝑥
2𝑚(𝑘)
, 𝑥
2𝑚(𝑘)+1

) ,

𝑑 (𝑥
2𝑛(𝑘)−1

, 𝑥
2𝑛(𝑘)
) , 𝑑 (𝑥

2𝑚(𝑘)
, 𝑥
2𝑛(𝑘)
) ,

𝑑 (𝑥
2𝑛(𝑘)−1

, 𝑥
2𝑚(𝑘)+1

)) .

(40)

Letting 𝑘 → ∞ in the above inequality and using (37) and
(39), we get

𝜖 = lim
𝑛→∞

𝑑 (𝑥
2𝑚(𝑘)+1

, 𝑥
2𝑛(𝑘)
) < 𝜓 (𝜖, 0, 0, 𝜖, 𝜖) ≤ 𝜖, (41)

which implies a contradiction. So we get that {𝑥
𝑛
} is a Cauchy

sequence in (𝑋, ⊑, 𝑑).

Step 2. Finally, we prove the existence of common fixed point
of 𝑓 and 𝑔.

Since (𝑋, ⊑, 𝑑) is complete and {𝑥
𝑛
} is a Cauchy sequence

in (𝑋, ⊑, 𝑑), there exists ] ∈ 𝑋 such that
lim
𝑛→∞

𝑥
𝑛
= lim
𝑛→∞

𝑥
2𝑛
= lim
𝑛→∞

𝑥
2𝑛−1
= ]. (42)

From (42) and since 𝛼(𝑥
𝑛
, 𝑥
𝑛
) ≥ 1 for all 𝑛 ∈ N, we have

𝛼(𝑓], 𝑓]) ≥ 1 and 𝛼(𝑔], 𝑔]) ≥ 1.
Since {𝑥

2𝑛
} is a sequence in𝐴 and𝐴 is closed, by (42), we

have that ] ∈ 𝐴. Similarly, since {𝑥
2𝑛+1
} is a sequence in 𝐵 and

𝐵 is closed, by (42), we have that ] ∈ 𝐵. We now claim that ] is
a common fixed point of 𝑓 and 𝑔. Without loss of generality,
we assume that 𝑓 is continuous, and by (42), we have

𝑥
2𝑛+1
= 𝑓𝑥
2𝑛
→ ], as 𝑛 → ∞. (43)

By the uniqueness of the limit, we have that ] = 𝑓].
Since ] ⊑ ] with ] ∈ 𝐴 and ] ∈ 𝐵, we have

𝑑 (], 𝑔]) = 𝑑 (𝑓], 𝑔])

≤ 𝛼 (𝑓], 𝑓]) 𝛼 (𝑔], 𝑔]) 𝑑 (𝑓], 𝑔])

< 𝜓 (𝑑 (], ]) , 𝑑 (], 𝑓]) , 𝑑 (], 𝑔]) ,

𝑑 (], 𝑔]) , 𝑑 (], 𝑓]))

= 𝜓 (0, 0, 𝑑 (], 𝑔]) , 𝑑 (], 𝑔]) , 0)

≤ 𝑑 (], 𝑔]) .

(44)

This implies that ] = 𝑔]. So we complete the proof.
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Applying Theorem 10 and if we let 𝛼(𝑥, 𝑦) = 1, then we
immediately get the following theorem.

Theorem 11. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, let 𝐴, 𝐵 be nonempty closed subsets of 𝑋 with
𝑋 = 𝐴 ∪ 𝐵, and let 𝑓, 𝑔 : 𝑋 → 𝑋 be two mappings
such that the pair (𝑓, 𝑔) is a generalized cyclic Meir-Keeler-type
(𝜓, 𝐴, 𝐵)-contraction and (𝐴, 𝐵)-weakly increasing. If 𝑓 or 𝑔 is
continuous, then 𝑓 and 𝑔 have a common fixed point in𝑋.

We next state our second main result for the generalized
cyclic Meir-Keeler-type (𝛼, 𝜓, 𝐴, 𝐵)-contraction as follows.

Theorem 12. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, let 𝐴, 𝐵 be nonempty closed subsets of 𝑋 with
𝑋 = 𝐴 ∪ 𝐵, let 𝛼 : 𝑋 × 𝑋 → R+, and let 𝑓, 𝑔 : 𝑋 → 𝑋

be two mappings such that the pair (𝑓, 𝑔) is a generalized cyclic
Meir-Keeler-type (𝛼, 𝜓, 𝐴, 𝐵)-contraction and (𝐴, 𝐵)-weakly
increasing. Suppose that the following conditions hold:

(i) if {𝑥
𝑛
} is a nondecreasing sequence in 𝑋 and

lim
𝑛→∞

𝑥
𝑛
= ], then 𝑥

𝑛
⊑ ];

(ii) there exists 𝑥
0
∈ 𝐴 with 𝛼(𝑓𝑥

0
, 𝑓𝑥
0
) ≥ 1;

(iii) if 𝛼(𝑥
𝑛
, 𝑥
𝑛
) ≥ 1 for all 𝑛 ∈ N and lim

𝑛→∞
𝑥
𝑛
= ], then

𝛼(𝑓], 𝑓]) ≥ 1 and 𝛼(𝑔], 𝑔]) ≥ 1.

Then 𝑓 and 𝑔 have a common fixed point in𝑋.

Proof. From the same proof ’s process of Theorem 10, we can
construct a nondecreasing sequence {𝑥

𝑛
} in 𝑋 with 𝑥

2𝑛
∈ 𝐴,

𝑥
2𝑛+1
∈ 𝐵, and 𝑥

𝑛
→ ] for some ] ∈ 𝑋. Since 𝑥

𝑛
→ ] and

𝐴, 𝐵 are nonempty closed subsets of 𝑋, we have 𝑥
2𝑛
→ ],

𝑥
2𝑛+1

→ ], and ] ∈ 𝐴∩𝐵. By the condition (i), we get 𝑥
𝑛
⊑ ]

for all 𝑛 ∈ N.
Since 𝑥

2𝑛
∈ 𝐴 and ] ∈ 𝐵, we have

𝑑 (𝑥
2𝑛+1
, 𝑔])

= 𝑑 (𝑓𝑥
2𝑛
, 𝑔])

≤ 𝛼 (𝑓𝑥
2𝑛
, 𝑓𝑥
2𝑛
) 𝛼 (𝑔], 𝑔]) 𝑑 (𝑓𝑥

2𝑛
, 𝑔])

< 𝜓 (𝑑 (𝑥
2𝑛
, ]) , 𝑑 (𝑥

2𝑛
, 𝑓𝑥
2𝑛
) , 𝑑 (], 𝑔]) ,

𝑑 (𝑥
2𝑛
, 𝑔]) , 𝑑 (], 𝑓𝑥

2𝑛
))

= 𝜓 (𝑑 (𝑥
2𝑛
, ]) , 𝑑 (𝑥

2𝑛
, 𝑥
2𝑛+1
) , 𝑑 (], 𝑔]) ,

𝑑 (𝑥
2𝑛
, 𝑔]) , 𝑑 (], 𝑥

2𝑛+1
)) .

(45)

Letting 𝑛 → ∞ in the above inequality, we get

𝑑 (], 𝑔]) < 𝜓 (0, 0, 𝑑 (], 𝑔]) , 𝑑 (], 𝑔]) , 0) ≤ 𝑑 (], 𝑔]) . (46)

This implies that 𝑑(], 𝑔]) = 0; that is, ] = 𝑔]. Similarly, we
may show that ] = 𝑓]. So ] is a common fixed point of 𝑓 and
𝑔.

Applying Theorem 12, it is easy to get the following
theorem.

Theorem 13. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, let 𝐴, 𝐵 be nonempty closed subsets of 𝑋 with
𝑋 = 𝐴 ∪ 𝐵, and let 𝑓, 𝑔 : 𝑋 → 𝑋 be two mappings
such that the pair (𝑓, 𝑔) is a generalized cyclic Meir-Keeler-type
(𝜓, 𝐴, 𝐵)-contraction and (𝐴, 𝐵)-weakly increasing. Suppose
that the following condition holds:

if {𝑥
𝑛
} is a nondecreasing sequence in 𝑋 and

lim
𝑛→∞

𝑥
𝑛
= ], then 𝑥

𝑛
⊑ ].

Then 𝑓 and 𝑔 have a common fixed point in𝑋.
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[19] M. Păcurar and I. A. Rus, “Fixed point theory for cyclic 𝜙-
contractions,” Nonlinear Analysis. Theory, Methods & Applica-
tions, vol. 72, no. 3-4, pp. 1181–1187, 2010.

[20] M. Derafshpour, S. Rezapour, and N. Shahzad, “Best proximity
points of cyclic 𝜙-contractions in ordered metric spaces,”
TopologicalMethods in Nonlinear Analysis, vol. 37, no. 1, pp. 193–
202, 2011.
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