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A general class of semilinear fractional evolution equations of mixed type with nonlocal conditions on infinite dimensional Banach
spaces is concerned. Under more general conditions, the existence of mild solutions and positive mild solutions is obtained by
utilizing a new estimation technique of the measure of noncompactness and a new fixed point theorem with respect to convex-
power condensing operator.

1. Introduction

In this paper, we use a new estimation technique of the
measure of noncompactness and fixed point theorem with
respect to convex-power condensing operator to discuss the
existence of mild solutions and positive mild solutions for
nonlocal problem of fractional evolution equations (NPFEE)
of mixed type with noncompact semigroup in Banach space
𝐸:

𝐶
𝐷
𝑞

𝑡
𝑢 (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝐺𝑢 (𝑡) , 𝑆𝑢 (𝑡)) , 𝑡 ∈ 𝐽,

𝑢 (0) = 𝑔 (𝑢) ,

(1)

where 𝐶𝐷
𝑞

𝑡
is the Caputo fractional derivative of order 𝑞; 0 <

𝑞 < 1, 𝐴 : 𝐷(𝐴) ⊂ 𝐸 → 𝐸 is a closed linear operator and −𝐴
generates a uniformly bounded 𝐶

0
-semigroup 𝑇(𝑡) (𝑡 ≥ 0) in

𝐸, 𝑓 : 𝐽 × 𝐸 × 𝐸 × 𝐸 → 𝐸 is a Carathéodory type function,
𝐽 = [0, 𝑎], 𝑎 > 0 is a constant, 𝑔mapping from some space of
functions to be specified later, and

𝐺𝑢 (𝑡) = ∫

𝑡

0

𝐾 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐽,

𝑆𝑢 (𝑡) = ∫

𝑎

0

𝐻(𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐽,

(2)

are integral operators with integral kernels 𝐾 ∈ 𝐶(Δ,R),
Δ = {(𝑡, 𝑠) | 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑎}, and𝐻 ∈ 𝐶(Δ 0,R), Δ 0 = {(𝑡, 𝑠) |

0 ≤ 𝑡, 𝑠 ≤ 𝑎}.
In recent years, fractional calculus has attracted many

physicists, mathematicians, and engineers, and notable con-
tributions have been made to both theory and applications
of fractional differential equations. It has been found that the
differential equations involving fractional derivatives in time
are more realistic to describe many phenomena in practical
cases than those of integer order in time. For more details
about fractional calculus and fractional differential equations
we refer to the books by Miller and Ross [1], Podlubny
[2], and Kilbas et al. [3] and the papers by Eidelman and
Kochubei [4], Lakshmikantham and Vatsala [5], Agarwal
et al. [6], Darwish and Ntouyas [7–10], and Darwish et al.
[11]. One of the branches of fractional calculus is the theory
of fractional evolution equations. Since fractional order
semilinear evolution equations are abstract formulations for
many problems arising in engineering and physics, fractional
evolution equations have attracted increasing attention in
recent years; see [12–26] and the references therein.

The study of abstract nonlocal Cauchy problem was
initiated by Byszewski and Lakshmikantham [27]. Since it
is demonstrated that the nonlocal problems have better
effects in applications than the traditional Cauchy problems,
differential equations with nonlocal conditions were studied
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bymany authors and some basic results on nonlocal problems
have been obtained; see [17–32] and the references therein
for more comments and citations. In the past few years, the
existence, uniqueness, and some other properties of mild
solutions to nonlocal problem of fractional evolution equa-
tions (1) with 𝑓(𝑡, 𝑢(𝑡), 𝐺𝑢(𝑡), 𝑆𝑢(𝑡)) = 𝑓(𝑡, 𝑢(𝑡)) have been
extensively studied by using Banach contraction mapping
principal, Schauder’s fixed point theorem and Krasnoselskii’s
fixed point theorem, when 𝑇(𝑡) (𝑡 ≥ 0) is a compact
semigroup. For more details on the basic theory of nonlocal
problem for fractional evolution equations, one can see the
papers of Diagana et al. [17], Wang et al. [18], Li et al. [19],
Zhou and Jiao [20],Wang et al. [21], Wang et al. [22], Wang et
al. [23], Chang et al. [24], Balachandran and Park [25], and
Balachandran and Trujillo [26]. However, for the case that
the semigroup 𝑇(𝑡) (𝑡 ≥ 0) is noncompact, there are very
few papers studied nonlocal problem of fractional evolution
equations; that only Wang et al. [14] discussed the existence
ofmild solutions for nonlocal problem of fractional evolution
equations under the situation that 𝑇(𝑡) (𝑡 ≥ 0) is an analytic
semigroup of uniformly bounded linear operators.

It is well known that the famous Sadovskii’s fixed point
theorem is an important tool to study various differential
equations and integral equations on infinite dimensional
Banach spaces. Early on, Lakshmikantham and Leela [33]
studied the following initial value problem (IVP) of ordinary
differential equation in Banach space 𝐸:

𝑢

(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐽,

𝑢 (0) = 𝑢0,

(3)

and they proved that if for any 𝑅 > 0, 𝑓 is uniformly
continuous on 𝐽 × 𝐵

𝑅
and satisfies the noncompactness

measure condition

𝛼 (𝑓 (𝑡, 𝐷)) ≤ 𝐿𝛼 (𝐷) , ∀𝑡 ∈ 𝐽, 𝐷 ⊂ 𝐵
𝑅
, (4)

where 𝐵
𝑅
= {𝑢 ∈ 𝐸 : ‖𝑢‖ ≤ 𝑅}, 𝐿 is a positive constant,

𝛼(⋅) denotes the Kuratowski measure of noncompactness in
𝐸, then IVP (3) has a global solution provided that 𝐿 satisfies
the condition

𝐿 <
1

𝑎
. (5)

In fact, there are a large amount of authors who studied
ordinary differential equations in Banach spaces similar to
(3) by using Sadovskii’s fixed point theorem and hypothesis
analogous to (4); they also required that the constants satisfy
a strong inequality similar to (5). Formore details on this fact,
we refer to Guo [34], Liu et al. [35] and Liu et al. [36].

It is easy to see that the inequality (5) is a strong
restrictive condition, and it is difficult to be satisfied in
applications. In order to remove the strong restriction on the
constant 𝐿, Sun and Zhang [37] generalized the definition of
condensing operator to convex-power condensing operator.
And based on the definition of this new kind of operator, they
established a new fixed point theoremwith respect to convex-
power condensing operator which generalizes the famous
Schauder’s fixed point theorem and Sadovskii’s fixed point

theorem. As an application, they investigated the existence
of global mild solutions and positive mild solutions for the
initial value problem of evolution equations in 𝐸:

𝑢

(𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐽,

𝑢 (0) = 𝑢
0
;

(6)

they assume that −𝐴 generate a equicontinuous 𝐶
0
-

semigroup; the nonlinear term 𝑓 is uniformly continuous
on 𝐽 × 𝐵

𝑅
and satisfies a suitable noncompactness

measure condition similar to (4). Recently, Shi et al.
[38] developed the IVP (6) to the case that the nonlinear
term is 𝑓(𝑡, 𝑢(𝑡), 𝐺𝑢(𝑡), 𝑆𝑢(𝑡)) and obtained the existence of
global mild solutions and positive mild solutions by using
the new fixed point theorem with respect to convex-power
condensing operator established in [37], but they also require
that the nonlinear term 𝑓 is uniformly continuous on
𝐽 × 𝐵𝑅 × 𝐵𝑅 × 𝐵𝑅.

We observed that, in [33–38], the authors all demand
that the nonlinear term 𝑓 is uniformly continuous; this is
a very strong assumption. As a matter of fact, if 𝑓(𝑡, 𝑢)
is Lipschitz continuous on 𝐽 × 𝐵

𝑅
with respect to 𝑢, then

the condition (4) is satisfied, but 𝑓 may not be necessarily
uniformly continuous on 𝐽 × 𝐵

𝑅
.

Motivated by the above mentioned aspects, in this paper
we studied the existence of mild solutions and positive mild
solutions for the NPFEE (1) by utilizing a new fixed point
theorem with respect to convex-power condensing operator
due to Sun and Zhang [37] (see Lemma 8). Furthermore,
we deleted the assumption that 𝑓 is uniformly continuous
by using a new estimation technique of the measure of
noncompactness (see Lemma 7).

2. Preliminaries

In this section, we introduce some notations, definitions and
preliminary facts which are used throughout this paper.

Let 𝐸 be a real Banach space with the norm ‖ ⋅ ‖ . We
denote by 𝐶(𝐽, 𝐸) the Banach space of all continuous 𝐸-
value functions on interval 𝐽 with the supnorm ‖𝑢‖𝐶 =

sup
𝑡∈𝐽
‖𝑢(𝑡)‖, and by 𝐿1(𝐽, 𝐸) the Banach space of all 𝐸-value

Bochner integrable functions defined on 𝐽 with the norm
‖𝑢‖
1 = ∫
1

0
‖𝑢(𝑡)‖𝑑𝑡.

Definition 1 (see [3]). The fractional integral of order 𝑞 > 0

with the lower limit zero for a function 𝑢 ∈ 𝐿1(𝐽, 𝐸) is defined
as

𝐼
𝑞

𝑡
𝑢 (𝑡) =

1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑢 (𝑠) 𝑑𝑠, 𝑡 > 0, (7)

where Γ(⋅) is the Euler gamma function.
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Definition 2 (see [3]). The Caputo fractional derivative of
order 𝑞 > 0 with the lower limit zero for a function 𝑢 is
defined as

𝐶
𝐷
𝑞

𝑡
𝑢 (𝑡) =

1

Γ (𝑛 − 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝑞−1

𝑢
(𝑛)
(𝑠) 𝑑𝑠,

𝑡 > 0, 0 ≤ 𝑛 − 1 < 𝑞 < 𝑛,

(8)

where the function 𝑢(𝑡) has absolutely continuous derivatives
up to order 𝑛 − 1.

If 𝑢 is an abstract function with values in 𝐸, then the
integrals which appear in Definitions 1 and 2 are taken in
Bochner’s sense.

For 𝑢 ∈ 𝐸, define two operators T𝑞(𝑡) (𝑡 ≥ 0) and
S
𝑞
(𝑡) (𝑡 ≥ 0) by

T
𝑞 (𝑡) 𝑢 = ∫

∞

0

ℎ𝑞 (𝑠) 𝑇 (𝑡
𝑞
𝑠) 𝑢 𝑑𝑠,

S
𝑞 (𝑡) 𝑢 = 𝑞∫

∞

0

𝑠ℎ
𝑞 (𝑠) 𝑇 (𝑡

𝑞
𝑠) 𝑢 𝑑𝑠,

(9)

where

ℎ𝑞 (𝑠) =
1

𝜋𝑞

∞

∑

𝑛=1

(−𝑠)
𝑛−1

Γ (𝑛𝑞 + 1)

𝑛!
sin (𝑛𝜋𝑞) , 𝑠 ∈ (0,∞)

(10)

is the function of Wright type defined on (0,∞) which
satisfies

ℎ
𝑞 (𝑠) ≥ 0, 𝑠 ∈ (0,∞) , ∫

∞

0

ℎ
𝑞 (𝑠) 𝑑𝑠 = 1,

∫

∞

0

𝑠
V
ℎ
𝑞 (𝑠) 𝑑𝑠 =

Γ (1 + V)

Γ (1 + 𝑞V)
, V ∈ [0, 1] .

(11)

Let 𝑀 = sup
𝑡∈[0,+∞)

‖𝑇(𝑡)‖L(𝐸), where L(𝐸) stands for
the Banach space of all linear and bounded operators in 𝐸.
The following lemma follows from the results in [12, 13, 20].

Lemma 3. The operators T𝑞(𝑡) (𝑡 ≥ 0) and S𝑞(𝑡) (𝑡 ≥ 0)

have the following properties.

(1) For any fixed 𝑡 ≥ 0, T
𝑞
(𝑡) and S

𝑞
(𝑡) are linear and

bounded operators; that is, for any 𝑢 ∈ 𝐸,

T
𝑞 (𝑡) 𝑢


≤ 𝑀‖𝑢‖ ,


S
𝑞 (𝑡) 𝑢


≤

𝑞𝑀

Γ (1 + 𝑞)
‖𝑢‖ =

𝑀

Γ (𝑞)
‖𝑢‖ .

(12)

(2) For every 𝑢 ∈ 𝐸, 𝑡 → T
𝑞
(𝑡)𝑢 and 𝑡 → S

𝑞
(𝑡)𝑢 are

continuous functions from [0,∞) into 𝐸.
(3) The operators T𝑞(𝑡) (𝑡 ≥ 0) and S𝑞(𝑡) (𝑡 ≥ 0) are

strongly continuous, which means that, for all 𝑢 ∈ 𝐸

and 0 ≤ 𝑡

< 𝑡

≤ 𝑎, one has


T
𝑞
(𝑡

) 𝑢 −T

𝑞
(𝑡

) 𝑢


→ 0,


S
𝑞
(𝑡

) 𝑢 −S

𝑞
(𝑡

) 𝑢


→ 0 as 𝑡 − 𝑡 → 0.

(13)

Definition 4. A function 𝑢 ∈ 𝐶(𝐽, 𝐸) is said to be a mild
solution of the NPFEE (1) if it satisfies

𝑢 (𝑡) = T
𝑞 (𝑡) 𝑔 (𝑢) + ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×S
𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑠.

(14)

Next, we recall some properties of the measure of non-
compactness that will be used in the proof of our main
results. Since no confusion may occur, we denote by 𝛼(⋅)

the Kuratowski measure of noncompactness on both the
bounded sets of𝐸 and𝐶(𝐽, 𝐸). For the details of the definition
and properties of themeasure of noncompactness, we refer to
the monographs [39, 40]. For any 𝐷 ⊂ 𝐶(𝐽, 𝐸) and 𝑡 ∈ 𝐽, set
𝐷(𝑡) = {𝑢(𝑡) | 𝑢 ∈ 𝐷} ⊂ 𝐸. If 𝐷 ⊂ 𝐶(𝐽, 𝐸) is bounded, then
𝐷(𝑡) is bounded in 𝐸 and 𝛼(𝐷(𝑡)) ≤ 𝛼(𝐷).

Lemma 5 (see [39]). Let 𝐸 be a Banach space; let𝐷 ⊂ 𝐶(𝐽, 𝐸)

be bounded and equicontinuous. Then 𝛼(𝐷(𝑡)) is continuous
on 𝐽, and

𝛼 (𝐷) = max
𝑡∈𝐽

𝛼 (𝐷 (𝑡)) = 𝛼 (𝐷 (𝐽)) . (15)

Lemma 6 (see [41]). Let 𝐸 be a Banach space; let 𝐷 =

{𝑢𝑛} ⊂ 𝐶(𝐽, 𝐸) be a bounded and countable set. Then 𝛼(𝐷(𝑡))
is Lebesgue integral on 𝐽, and

𝛼({∫
𝐽

𝑢
𝑛 (𝑡) 𝑑𝑡 | 𝑛 ∈ N}) ≤ 2∫

𝐽

𝛼 (𝐷 (𝑡)) 𝑑𝑡. (16)

Lemma 7 (see [32, 42]). Let 𝐸 be a Banach space; let𝐷 ⊂ 𝐸 be
bounded. Then there exists a countable set 𝐷

0
⊂ 𝐷, such that

𝛼(𝐷) ≤ 2𝛼(𝐷
0
).

Lemma 8 (fixed point theoremwith respect to convex-power
condensing operator (see [37])). Let 𝐸 be a Banach space; let
𝐷 ⊂ 𝐸 be bounded, closed, and convex. Suppose 𝑄 : 𝐷 → 𝐷

is a continuous operator and 𝑄(𝐷) is bounded. For any 𝑆 ⊂ 𝐷

and 𝑥
0
∈ 𝐷, set

𝑄
(1,𝑥0)

(𝑆) ≡ 𝑄 (𝑆) ,

𝑄
(𝑛,𝑥0)

(𝑆) = 𝑄 (co {𝑄(𝑛−1,𝑥0) (𝑆) , 𝑥0}) , 𝑛 = 2, 3, . . . .

(17)

If there exist 𝑥
0
∈ 𝐷 and positive integer 𝑛

0
such that for any

bounded and nonprecompact subset 𝑆 ⊂ 𝐷,

𝛼 (𝑄
(𝑛0 ,𝑥0)

(𝑆)) < 𝛼 (𝑆) , (18)

then 𝑄 has at least one fixed point in𝐷.

Lemma 9. For 𝜎 ∈ (0, 1] and 0 < 𝑎 ≤ 𝑏, one has
𝑎
𝜎
− 𝑏
𝜎 ≤ (𝑏 − 𝑎)

𝜎
. (19)

3. Existence of Mild Solutions

In this section, we discuss the existence of mild solutions for
the NPFEE (1). We first make the following hypotheses.
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(H1) The function 𝑓 : 𝐽 × 𝐸 × 𝐸 × 𝐸 → 𝐸 satisfies the
Carathéodory type conditions; that is, 𝑓(⋅, 𝑢, 𝐺𝑢, 𝑆𝑢)
is strongly measurable for all 𝑢 ∈ 𝐸, and 𝑓(𝑡, ⋅, ⋅, ⋅) is
continuous for a.e. 𝑡 ∈ 𝐽.

(H2) For some 𝑟 > 0, there exist constants 𝑞
1
∈ [0, 𝑞), 𝜌

1
>

0 and functions 𝜑
𝑟
∈ 𝐿
1/𝑞1 (𝐽,R+) such that for a.e.

𝑡 ∈ 𝐽 and all 𝑢 ∈ 𝐸 satisfying ‖𝑢‖ ≤ 𝑟,
𝑓 (𝑡, 𝑢, 𝐺𝑢, 𝑆𝑢)

 ≤ 𝜑
𝑟 (𝑡) ,

lim inf
𝑟→+∞

𝜑𝑟
𝐿1/𝑞1 [0,𝑎]

𝑟
= 𝜌
1
< +∞.

(20)

(H3) There exist positive constants 𝐿
𝑖 (𝑖 = 1, 2, 3) such

that for any bounded and countable sets 𝐷𝑖 ⊂ 𝐸 (𝑖 =

1, 2, 3) and a.e. 𝑡 ∈ 𝐽:

𝛼 (𝑓 (𝑡, 𝐷
1
, 𝐷
2
, 𝐷
3
)) ≤

3

∑

𝑖=1

𝐿
𝑖
𝛼 (𝐷
𝑖
) . (21)

(H4) The nonlocal function 𝑔 : 𝐶(𝐽, 𝐸) → 𝐸 is continuous
and compact, and there exist a constant 𝜌

2
> 0 and a

nondecreasing continuous function Φ : R+ → R+

such that, for some 𝑟 > 0 and all 𝑢 ∈ Ω
𝑟
= {𝑢 ∈

𝐶(𝐽, 𝐸) : ‖𝑢‖
𝐶
≤ 𝑟},
𝑔 (𝑢)

 ≤ Φ (𝑟) ,

lim inf
𝑟→+∞

Φ (𝑟)

𝑟
= 𝜌2 < +∞.

(22)

Theorem 10. Let 𝐸 be a real Banach space; let 𝐴 : 𝐷(𝐴) ⊂

𝐸 → 𝐸 be a closed linear operator, and −𝐴 generate
an equicontinuous 𝐶

0
-semigroup 𝑇(𝑡) (𝑡 ≥ 0) of uniformly

bounded operators in𝐸. Assume that the hypotheses (H1), (H2),
(H3) and (H4) are satisfied, then the NPFEE (1) have at least
one mild solution in 𝐶(𝐽, 𝐸) provided that

𝑀𝜌2 +
𝑀𝜌
1𝑎
𝑞−𝑞1

Γ (𝑞)
(
1 − 𝑞1

𝑞 − 𝑞
1

)

1−𝑞1

< 1. (23)

Proof. Consider the operator 𝑄 : 𝐶(𝐽, 𝐸) → 𝐶(𝐽, 𝐸) defined
by

(𝑄𝑢) (𝑡) = T𝑞 (𝑡) 𝑔 (𝑢) + ∫
𝑡

0

(𝑡 − 𝑠)
𝑞−1

×S
𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽.

(24)

By direct calculation, we know that 𝑄 is well defined. From
Definition 4, it is easy to see that the mild solution of the
NPFEE (1) is equivalent to the fixed point of the operator
𝑄. In the following, we will prove 𝑄 has a fixed point by
applying the fixed point theorem with respect to convex-
power condensing operator.

Firstly, we prove that there exists a positive constant 𝑅,
such that 𝑄(Ω

𝑅
) ⊂ Ω

𝑅
. If this is not true, then for each

𝑟 > 0, there would exist 𝑢
𝑟
∈ Ω
𝑟
and 𝑡
𝑟
∈ 𝐽 such that

‖(𝑄𝑢
𝑟
)(𝑡
𝑟
)‖ > 𝑟. It follows from Lemma 3 (1), the hypotheses

(H2) and (H4) and Hölder inequality that

𝑟 <
(𝑄𝑢𝑟) (𝑡𝑟)



≤ 𝑀
𝑔 (𝑢𝑟)



+
𝑀

Γ (𝑞)
∫

𝑡𝑟

0

(𝑡
𝑟
− 𝑠)
𝑞−1

×
𝑓 (𝑠, 𝑢𝑟 (𝑠) , 𝐺𝑢𝑟 (𝑠) , 𝑆𝑢𝑟 (𝑠))

 𝑑𝑠

≤ 𝑀Φ (𝑟) +
𝑀

Γ (𝑞)
(∫

𝑡𝑟

0

(𝑡
𝑟
− 𝑠)
(𝑞−1)/(1−𝑞1)

𝑑𝑠)

1−𝑞1

×
𝜑𝑟

𝐿1/𝑞1 [0,𝑡𝑟]

≤ 𝑀Φ (𝑟) +
𝑀𝑎
𝑞−𝑞1

Γ (𝑞)
(
1 − 𝑞1

𝑞 − 𝑞
1

)

1−𝑞1
𝜑𝑟

𝐿1/𝑞1 [0,𝑎]
.

(25)

Dividing both sides of (25) by 𝑟 and taking the lower limit as
𝑟 → +∞, we get

𝑀𝜌
2 +

𝑀𝜌
1
𝑎
𝑞−𝑞1

Γ (𝑞)
(
1 − 𝑞
1

𝑞 − 𝑞
1

)

1−𝑞1

≥ 1, (26)

which contradicts (23).
Secondly, we prove that 𝑄 is continuous in Ω

𝑅. To this
end, let {𝑢

𝑛
}
∞

𝑛=1
⊂ Ω
𝑅
be a sequence such that lim

𝑛→+∞
𝑢
𝑛
= 𝑢

inΩ
𝑅
. By the continuity of𝑔 and theCarathéodory continuity

of 𝑓, we have

lim
𝑛→+∞

𝑔 (𝑢
𝑛
) = 𝑔 (𝑢) ,

lim
𝑛→+∞

𝑓 (𝑠, 𝑢
𝑛 (𝑠) , 𝐺𝑢𝑛 (𝑠) , 𝑆𝑢𝑛 (𝑠))

= 𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠)) , a.e. 𝑠 ∈ 𝐽.

(27)

From the hypothesis (H2), we get for each 𝑡 ∈ 𝐽

(𝑡 − 𝑠)
𝑞−1 𝑓 (𝑠, 𝑢𝑛 (𝑠) , 𝐺𝑢𝑛 (𝑠) , 𝑆𝑢𝑛 (𝑠))

−𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠))


≤ 2(𝑡 − 𝑠)
𝑞−1

𝜑
𝑅 (𝑠) .

(28)

Using the fact that the function 𝑠 → 2(𝑡 − 𝑠)
𝑞−1

𝜑𝑅(𝑠) is
Lebesgue integrable for 𝑠 ∈ [0, 𝑡], 𝑡 ∈ 𝐽, by (27) and (28) and
the Lebesgue dominated convergence theorem, we get that

(𝑄𝑢𝑛) (𝑡) − (𝑄𝑢) (𝑡)


≤ 𝑀
𝑔 (𝑢𝑛) − 𝑔 (𝑢)



+
𝑀

Γ (𝑞)
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× ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×
𝑓 (𝑠, 𝑢𝑛 (𝑠) , 𝐺𝑢𝑛 (𝑠) , 𝑆𝑢𝑛 (𝑠))

−𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠))
 𝑑𝑠 → 0

as 𝑛 → ∞.

(29)

Therefore, we know that

(𝑄𝑢𝑛) − (𝑄𝑢)
𝐶

→ 0 as 𝑛 → ∞, (30)

which means that 𝑄 is continuous.
Now, we demonstrate that the operator 𝑄 : Ω

𝑅
→ Ω
𝑅
is

equicontinuous. For any 𝑢 ∈ Ω
𝑅
and 0 ≤ 𝑡

1
< 𝑡
2
≤ 𝑎, we get

that

(𝑄𝑢) (𝑡2) − (𝑄𝑢) (𝑡1)

= T𝑞 (𝑡2) 𝑔 (𝑢) −T𝑞 (𝑡1) 𝑔 (𝑢)

+ ∫

𝑡2

𝑡1

(𝑡2 − 𝑠)
𝑞−1

S𝑞 (𝑡2 − 𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝑡1

0

((𝑡2 − 𝑠)
𝑞−1

− (𝑡1 − 𝑠)
𝑞−1

)

×S
𝑞 (𝑡2 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝑡1

0

(𝑡
1
− 𝑠)
𝑞−1

(S
𝑞
(𝑡
2
− 𝑠) −S

𝑞
(𝑡
1
− 𝑠))

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑠

= 𝐼
1
+ 𝐼
2
+ 𝐼
3
+ 𝐼
4
,

(31)

where

𝐼
1 = T𝑞 (𝑡2) 𝑔 (𝑢) −T𝑞 (𝑡1) 𝑔 (𝑢) ,

𝐼
2
= ∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)
𝑞−1

S
𝑞
(𝑡
2
− 𝑠)

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑠,

𝐼3 = ∫

𝑡1

0

((𝑡2 − 𝑠)
𝑞−1

− (𝑡1 − 𝑠)
𝑞−1

)

×S
𝑞
(𝑡
2
− 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑠,

𝐼
4
= ∫

𝑡1

0

(𝑡
1
− 𝑠)
𝑞−1

(S
𝑞
(𝑡
2
− 𝑠) −S

𝑞
(𝑡
1
− 𝑠))

× 𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠)) 𝑑𝑠.

(32)

It is obvious that

(𝑄𝑢) (𝑡2) − (𝑄𝑢) (𝑡1)
 ≤

4

∑

𝑖=1

𝐼𝑖
 . (33)

Therefore, we only need to check ‖𝐼
𝑖
‖ tend to 0 independently

of 𝑢 ∈ Ω
𝑅
when 𝑡

2
− 𝑡
1
→ 0, 𝑖 = 1, 2, . . . , 4.

For 𝐼
1
, by Lemma 3(3), ‖𝐼

1
‖ → 0 as 𝑡

2
− 𝑡
1
→ 0.

For 𝐼
2
, by the hypothesis (H2), Lemma 3(1), and Hölder

inequality, we have

𝐼2
 ≤

𝑀

Γ (𝑞)
∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)
𝑞−1

𝜑
𝑅 (𝑠) 𝑑𝑠

≤
𝑀

Γ (𝑞)
(∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)
(𝑞−1)/(1−𝑞1)

𝑑𝑠)

1−𝑞1

×
𝜑𝑅

𝐿1/𝑞1 [𝑡1 ,𝑡2]

≤

𝑀
𝜑𝑅

𝐿1/𝑞1 [0,𝑎]

Γ (𝑞)
(
1 − 𝑞
1

𝑞 − 𝑞1

)

1−𝑞1

(𝑡
2
− 𝑡
1
)
𝑞−𝑞1

→ 0

as 𝑡
2
− 𝑡
1
→ 0.

(34)

For 𝐼
3
, by the hypothesis (H2), Lemmas 3(1), and 9 and

Hölder inequality, we get that

𝐼3
 ≤

𝑀

Γ (𝑞)
∫

𝑡1

0

((𝑡1 − 𝑠)
𝑞−1

− (𝑡2 − 𝑠)
𝑞−1

) 𝜑𝑅 (𝑠) 𝑑𝑠

≤
𝑀

Γ (𝑞)
(∫

𝑡1

0

((𝑡
1
− 𝑠)
𝑞−1

−(𝑡
2
− 𝑠)
𝑞−1

)
1/(1−𝑞1)

𝑑𝑠)

1−𝑞1

×
𝜑𝑅

𝐿1/𝑞1 [0,𝑡1]

≤
𝑀

Γ (𝑞)
(∫

𝑡1

0

((𝑡
1
− 𝑠)
(𝑞−1)/(1−𝑞1)

−(𝑡
2
− 𝑠)
(𝑞−1)/(1−𝑞1)

) 𝑑𝑠)

1−𝑞1

×
𝜑𝑅

𝐿1/𝑞1 [0,𝑎]

≤

𝑀
𝜑𝑅

𝐿1/𝑞1 [0,𝑎]

Γ (𝑞)
(
1 − 𝑞
1

𝑞 − 𝑞
1

)

1−𝑞1

× (𝑡
(𝑞−𝑞1)/(1−𝑞1)

1
− 𝑡
(𝑞−𝑞1)/(1−𝑞1)

2

+(𝑡
2
− 𝑡
1
)
(𝑞−𝑞1)/(1−𝑞1)

)

1−𝑞1

≤

𝑀2
1−𝑞1𝜑𝑅

𝐿1/𝑞1 [0,𝑎]

Γ (𝑞)
(
1 − 𝑞
1

𝑞 − 𝑞1

)

1−𝑞1

(𝑡
2
− 𝑡
1
)
𝑞−𝑞1

→ 0 as 𝑡
2
− 𝑡
1
→ 0.

(35)
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For 𝑡
1
= 0, 0 < 𝑡

2
≤ 𝑎, it is easy to see that ‖𝐼

4
‖ = 0. For 𝑡

1
> 0

and 𝜖 > 0 small enough, by the hypothesis (H2), Lemma 3
and the equicontinuity of 𝑇(𝑡), we know that

𝐼4
 ≤ ∫

𝑡1−𝜖

0

(𝑡
1
− 𝑠)
𝑞−1

×

S
𝑞 (𝑡2 − 𝑠) − S𝑞 (𝑡1 − 𝑠)


𝜑
𝑅 (𝑠) 𝑑𝑠

+ ∫

𝑡1

𝑡1−𝜖

(𝑡
1
− 𝑠)
𝑞−1

×

S
𝑞
(𝑡
2
− 𝑠) −S

𝑞
(𝑡
1
− 𝑠)


𝜑
𝑅 (𝑠) 𝑑𝑠

≤ sup
𝑠∈[0,𝑡1−𝜖]


S
𝑞
(𝑡
2
− 𝑠) −S

𝑞
(𝑡
1
− 𝑠)



× ∫

𝑡1−𝜖

0

(𝑡1 − 𝑠)
𝑞−1

𝜑𝑅 (𝑠) 𝑑𝑠

+
2𝑀

Γ (𝑞)
∫

𝑡1

𝑡1−𝜖

(𝑡
1
− 𝑠)
𝑞−1

𝜑
𝑅 (𝑠) 𝑑𝑠

≤ sup
𝑠∈[0,𝑡1−𝜖]


S
𝑞
(𝑡
2
− 𝑠) −S

𝑞
(𝑡
1
− 𝑠)



⋅
𝜑𝑅

𝐿1/𝑞1 [0,𝑎]
(
1 − 𝑞
1

𝑞 − 𝑞
1

)

1−𝑞1

⋅ (𝑡
(𝑞−𝑞1)/(1−𝑞1)

1
− 𝜖
(𝑞−𝑞1)/(1−𝑞1))

1−𝑞1

+

2𝑀
𝜑𝑅

𝐿1/𝑞1 [0,𝑎]

Γ (𝑞)
(
1 − 𝑞1

𝑞 − 𝑞
1

)

1−𝑞1

𝜖
𝑞−𝑞1 → 0

as 𝑡2 − 𝑡1 → 0.

(36)

As a result, ‖(𝑄𝑢)(𝑡
2
)−(𝑄𝑢)(𝑡

1
)‖ tends to zero independently

of 𝑢 ∈ Ω
𝑅
as 𝑡
2
− 𝑡
1
→ 0, which means that 𝑄 : Ω

𝑅
→ Ω
𝑅

is equicontinuous.
Let 𝐹 = co 𝑄(Ω

𝑅
), where co means the closure of convex

hull. Then it is easy to verify that 𝑄 maps 𝐹 into itself and
𝐹 ⊂ 𝐶(𝐽, 𝐸) is equicontinuous. Now, we are in the position
to prove that 𝑄 : 𝐹 → 𝐹 is a convex-power condensing
operator. Take𝑢0 ∈ 𝐹; wewill prove that there exists a positive
integer 𝑛0 such that for any bounded and nonprecompact
subset𝐷 ⊂ 𝐹

𝛼 (𝑄
(𝑛0 ,𝑢0)

(𝐷)) < 𝛼 (𝐷) . (37)

For any𝐷 ⊂ 𝐹 and𝑢
0
∈ 𝐹, by (17) and the equicontinuity of𝐹,

we get that𝑄(𝑛,𝑢0)(𝐷) ⊂ Ω
𝑅
is also equicontinuous.Therefore,

we know from Lemma 5 that

𝛼 (𝑄
(𝑛,𝑢0)

(𝐷)) = max
𝑡∈𝐽

𝛼 (𝑄
(𝑛,𝑢0)

(𝐷) (𝑡)) , 𝑛 = 1, 2, . . . .

(38)

By Lemma 7, there exists a countable set𝐷
1
= {𝑢
1

𝑛
} ⊂ 𝐷, such

that

𝛼 (𝑄 (𝐷) (𝑡)) ≤ 2𝛼 (𝑄 (𝐷1) (𝑡)) . (39)

Thanks to the fact that

∫

𝑎

0

𝑢 (𝑠) 𝑑𝑠 ∈ 𝑎 co {𝑢 (𝑠) | 𝑠 ∈ 𝐽} , 𝑢 ∈ 𝐶 (𝐽, 𝐸) , (40)

we have

𝛼({∫

𝑡

0

𝐾 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 | 𝑢 ∈ 𝐷, 𝑡 ∈ 𝐽})

≤ 𝑎𝐾
0𝛼 ({𝑢 (𝑡) | 𝑢 ∈ 𝐷, 𝑡 ∈ 𝐽}) ,

𝛼 ({∫

𝑎

0

𝐻(𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 | 𝑢 ∈ 𝐷, 𝑡 ∈ 𝐽})

≤ 𝑎𝐻
0𝛼 ({𝑢 (𝑡) | 𝑢 ∈ 𝐷, 𝑡 ∈ 𝐽}) ,

(41)

where 𝐾
0
= max

(𝑡,𝑠)∈Δ
|𝐾(𝑡, 𝑠)|, 𝐻

0
= max

(𝑡,𝑠)∈Δ 0
|𝐻(𝑡, 𝑠)|.

Therefore, by (24), (39), and (41), Lemma 6 and the hypothe-
ses (H3) and (H4), we get that

𝛼 (𝑄
(1,𝑢0)

(𝐷) (𝑡))

= 𝛼 (𝑄 (𝐷) (𝑡)) ≤ 2𝛼 (𝑄 (𝐷
1
) (𝑡))

≤ 2𝛼 (T
𝑞 (𝑡) 𝑔 (𝑢

1

𝑛
)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S
𝑞 (𝑡 − 𝑠)

×𝑓 (𝑠, 𝑢
1

𝑛
(𝑠) , 𝐺𝑢

1

𝑛
(𝑠) , 𝑆𝑢

1

𝑛
(𝑠)) 𝑑𝑠)

≤
4𝑀

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

× 𝛼 (𝑓 (𝑠, 𝑢
1

𝑛
(𝑠) , 𝐺𝑢

1

𝑛
(𝑠) , 𝑆𝑢

1

𝑛
(𝑠))) 𝑑𝑠

≤
4𝑀

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

× [𝐿
1
𝛼 (𝐷
1 (𝑠)) + 𝐿2𝛼 ((𝐺𝐷1) (𝑠))

+𝐿3𝛼 ((𝑆𝐷1) (𝑠))] 𝑑𝑠

≤
4𝑀

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

× (𝐿
1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
) 𝛼 (𝐷

1 (𝑠)) 𝑑𝑠

≤
4𝑀(𝐿

1 + 𝑎𝐾0𝐿2 + 𝑎𝐻0𝐿3) 𝑡
𝑞

Γ (1 + 𝑞)
𝛼 (𝐷) .

(42)

Again by Lemma 7, there exists a countable set 𝐷
2
=

{𝑢
2

𝑛
} ⊂ co{𝑄(1,𝑢0)(𝐷), 𝑢

0
}, such that

𝛼 (𝑄 (co {𝑄(1,𝑢0) (𝐷) , 𝑢0}) (𝑡)) ≤ 2𝛼 (𝑄 (𝐷2) (𝑡)) . (43)
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Therefore, by (24), (41), and (43), Lemma 6, and the hypothe-
ses (H3) and (H4), we have that

𝛼 (𝑄
(2,𝑢0)

(𝐷) (𝑡))

= 𝛼 (𝑄 (co {𝑄(1,𝑢0) (𝐷) , 𝑢0}) (𝑡))

≤ 2𝛼 (𝑄 (𝐷
2
) (𝑡))

≤ 2𝛼(∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S
𝑞 (𝑡 − 𝑠)

×𝑓 (𝑠, 𝑢
2

𝑛
(𝑠) , 𝐺𝑢

2

𝑛
(𝑠) , 𝑆𝑢

2

𝑛
(𝑠)) 𝑑𝑠)

≤
4𝑀

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

× 𝛼 (𝑓 (𝑠, 𝑢
2

𝑛
(𝑠) , 𝐺𝑢

2

𝑛
(𝑠) , 𝑆𝑢

2

𝑛
(𝑠))) 𝑑𝑠

≤
4𝑀

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

× (𝐿
1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
) 𝛼 (𝐷

2 (𝑠)) 𝑑𝑠

≤
4𝑀(𝐿

1 + 𝑎𝐾0𝐿2 + 𝑎𝐻0𝐿3)

Γ (𝑞)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

⋅ 𝛼 (co {𝑄(1,𝑢0) (𝐷) , 𝑢0} (𝑠)) 𝑑𝑠

≤
[4𝑀 (𝐿

1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
)]
2

Γ (𝑞) Γ (1 + 𝑞)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑠
𝑞
𝛼 (𝐷) 𝑑𝑠

=
[4𝑀 (𝐿

1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
) 𝑡
𝑞
]
2

Γ (1 + 2𝑞)B (1 + 𝑞, 𝑞)

× ∫

1

0

(1 − 𝑠)
𝑞−1

𝑠
𝑞
𝑑𝑠 𝛼 (𝐷)

=
[4𝑀 (𝐿

1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
) 𝑡
𝑞
]
2

Γ (1 + 2𝑞)
𝛼 (𝐷) ,

(44)

where B(𝑝, 𝑞) = ∫
1

0
𝑠
𝑝−1

(1 − 𝑠)
𝑞−1

𝑑𝑠 is the Beta function.
Suppose that

𝛼 (𝑄
(𝑘,𝑢0)

(𝐷) (𝑡))

≤
[4𝑀 (𝐿

1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
) 𝑡
𝑞
]
𝑘

Γ (1 + 𝑘𝑞)
𝛼 (𝐷) , ∀𝑡 ∈ 𝐽.

(45)

Then by Lemma 7, there exists a countable set 𝐷
𝑘+1

=

{𝑢
𝑘+1

𝑛
} ⊂ co{𝑄(𝑘,𝑢0)(𝐷), 𝑢

0
}, such that

𝛼 (𝑄 (co {𝑄(𝑘,𝑢0) (𝐷) , 𝑢0}) (𝑡)) ≤ 2𝛼 (𝑄 (𝐷𝑘+1) (𝑡)) . (46)

From (24), (41), and (46), using Lemma 6, and the hypotheses
(H3) and (H4), we get that

𝛼 (𝑄
(𝑘+1,𝑢0)

(𝐷) (𝑡))

= 𝛼 (𝑄 (co {𝑄(𝑘,𝑢0) (𝐷) , 𝑢0}) (𝑡))

≤ 2𝛼 (𝑄 (𝐷
𝑘+1) (𝑡))

≤ 2𝛼(∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S𝑞 (𝑡 − 𝑠)

×𝑓 (𝑠, 𝑢
𝑘+1

𝑛
(𝑠) , 𝐺𝑢

𝑘+1

𝑛
(𝑠) , 𝑆𝑢

𝑘+1

𝑛
(𝑠)) 𝑑𝑠)

≤
4𝑀

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

× (𝐿
1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
) 𝛼 (𝐷

𝑘+1 (𝑠)) 𝑑𝑠

≤
4𝑀(𝐿

1 + 𝑎𝐾0𝐿2 + 𝑎𝐻0𝐿3)

Γ (𝑞)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝛼 (co {𝑄(𝑘,𝑢0) (𝐷) , 𝑢0} (𝑠)) 𝑑𝑠

≤
[4𝑀 (𝐿

1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
)]
𝑘+1

Γ (𝑞) Γ (1 + 𝑘𝑞)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑠
𝑘𝑞
𝛼 (𝐷) 𝑑𝑠

=
[4𝑀 (𝐿

1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
) 𝑡
𝑞
]
𝑘+1

Γ (1 + (𝑘 + 1) 𝑞)B (1 + 𝑘𝑞, 𝑞)

× ∫

1

0

(1 − 𝑠)
𝑞−1

𝑠
𝑘𝑞
𝑑𝑠 𝛼 (𝐷)

=
[4𝑀 (𝐿

1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
) 𝑡
𝑞
]
𝑘+1

Γ (1 + (𝑘 + 1) 𝑞)
𝛼 (𝐷) .

(47)

Hence, by the method of mathematical induction, for any
positive integer 𝑛 and 𝑡 ∈ 𝐽, we have

𝛼 (𝑄
(𝑛,𝑢0)

(𝐷) (𝑡)) ≤
[4𝑀 (𝐿1 + 𝑎𝐾0𝐿2 + 𝑎𝐻0𝐿3) 𝑡

𝑞
]
𝑛

Γ (1 + 𝑛𝑞)
𝛼 (𝐷) .

(48)

Consequently, from (38) and (48), we have

𝛼 (𝑄
(𝑛,𝑢0)

(𝐷)) = max
𝑡∈𝐽

𝛼 (𝑄
(𝑛,𝑢0)

(𝐷) (𝑡))

≤
[4𝑀 (𝐿1 + 𝑎𝐾0𝐿2 + 𝑎𝐻0𝐿3) 𝑎

𝑞
]
𝑛

Γ (1 + 𝑛𝑞)
𝛼 (𝐷) .

(49)

By the well-known Stirling’s formula, we know that

Γ (1 + 𝑛𝑞) = √2𝜋𝑛𝑞(
𝑛𝑞

𝑒
)

𝑛𝑞

𝑒
]/12𝑛𝑞

, 0 < ] < 1. (50)



8 Abstract and Applied Analysis

Thus,

[4𝑀 (𝐿
1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
) 𝑎
𝑞
]
𝑛

Γ (1 + 𝑛𝑞)

=
[4𝑀 (𝐿1 + 𝑎𝐾0𝐿2 + 𝑎𝐻0𝐿3) 𝑎

𝑞
]
𝑛

√2𝜋𝑛𝑞(𝑛𝑞/𝑒)
𝑛𝑞
𝑒]/12𝑛𝑞

→ 0 as 𝑛 → ∞.

(51)

Therefore, there exists a large enough positive integer 𝑛0 such
that

[4𝑀 (𝐿
1
+ 𝑎𝐾
0
𝐿
2
+ 𝑎𝐻
0
𝐿
3
) 𝑎
𝑞
]
𝑛0

Γ (1 + 𝑛
0
𝑞)

< 1. (52)

Hence, we get that

𝛼 (𝑄
(𝑛0 ,𝑢0)

(𝐷)) < 𝛼 (𝐷) . (53)

Thus, 𝑄 : 𝐹 → 𝐹 is a convex-power condensing operator.
It follows from Lemma 8 that 𝑄 has at least one fixed point
𝑢 ∈ 𝐹, which is just a mild solution of the NPFEE (1). This
completes the proof of Theorem 10.

If we replace the hypotheses (H2) and (H4) by the
following hypotheses:

(H2) there exist a function 𝜑 ∈ 𝐿
1/𝑞1(𝐽,R+), 𝑞

1
∈ [0, 𝑞) and

a nondecreasing continuous function Ψ : R+ → R+

such that

𝑓 (𝑡, 𝑢, 𝐺𝑢, 𝑆𝑢)
 ≤ 𝜑 (𝑡) Ψ (‖𝑢‖) , (54)

for all 𝑢 ∈ 𝐸 and a.e. 𝑡 ∈ 𝐽;

(H4) the nonlocal function 𝑔 : 𝐶(𝐽, 𝐸) → 𝐸 is continuous
and compact; there exist constants 0 < 𝑏 < 1/𝑀 and
𝑐 > 0 such that for all 𝑢 ∈ 𝐶(𝐽, 𝐸), ‖𝑔(𝑢)‖ ≤ 𝑏‖𝑢‖

𝐶
+ 𝑐;

we have the following existence result.

Theorem 11. Let 𝐸 be a real Banach space; let 𝐴 : 𝐷(𝐴) ⊂

𝐸 → 𝐸 be a closed linear operator and −𝐴 generate
an equicontinuous 𝐶

0
-semigroup 𝑇(𝑡)(𝑡 ≥ 0) of uniformly

bounded operators in 𝐸. Assume that the hypotheses (H1),
(H2), (H3), and (H4) are satisfied, then the NPFEE (1) has
at least one mild solution in 𝐶(𝐽, 𝐸) provided that there exists
a constant 𝑅 with

(𝑀𝑐 +
Ψ (𝑅)𝑀𝑎

𝑞−𝑞1

Γ (𝑞)
(
1 − 𝑞1

𝑞 − 𝑞
1

)

1−𝑞1
𝜑
𝐿1/𝑞1 [0,𝑎]

)

× (1 −𝑀𝑏)
−1
≤ 𝑅.

(55)

Proof. From the proof of Theorem 10, we know that the mild
solution of the NPFEE (1) is equivalent to the fixed point of
the operator𝑄 defined by (24). For any 𝑢 ∈ Ω

𝑅
, by (24), (55),

and the hypotheses (H2) and (H4), we have

‖(𝑄𝑢) (𝑡)‖ ≤ 𝑀
𝑔 (𝑢)



+
𝑀

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×
𝑓 (𝑠, 𝑢 (𝑠) , 𝐺𝑢 (𝑠) , 𝑆𝑢 (𝑠))

 𝑑𝑠

≤ 𝑀(𝑏‖𝑢‖𝐶 + 𝑐) +
Ψ (𝑅)𝑀

Γ (𝑞)

× (∫

𝑡

0

(𝑡 − 𝑠)
(𝑞−1)/(1−𝑞1)𝑑𝑠)

1−𝑞1
𝜑
𝐿1/𝑞1 [0,𝑡]

≤ 𝑀(𝑏𝑅 + 𝑐) +
Ψ (𝑅)𝑀𝑎

𝑞−𝑞1

Γ (𝑞)

× (
1 − 𝑞
1

𝑞 − 𝑞
1

)

1−𝑞1
𝜑
𝐿1/𝑞1 [0,𝑎]

≤ 𝑅,

(56)

which implies 𝑄(Ω
𝑅
) ⊂ Ω

𝑅
. By adopting completely similar

method with the proof of Theorem 10, we can prove that the
NPFEE (1) have at least one mild solution in 𝐶(𝐽, 𝐸). This
completes the proof of Theorem 11.

Similar withTheorem 11, we have the following result.

Corollary 12. Let 𝐸 be a real Banach space; let 𝐴 : 𝐷(𝐴) ⊂

𝐸 → 𝐸 be a closed linear operator and −𝐴 generate an
equicontinuous 𝐶

0
-semigroup 𝑇(𝑡) (𝑡 ≥ 0) of uniformly

bounded operators in 𝐸. Assume that the hypotheses (H1),
(H2), (H3) and (H4) are satisfied, then the NPFEE (1) have
at least one mild solution in 𝐶(𝐽, 𝐸) provided that

(∫

𝑎

0

𝜑
1/𝑞1

(𝑠) 𝑑𝑠)

𝑞1

< lim inf
𝑟→+∞

(𝑟 (1 −𝑀𝑏) +𝑀𝑐) Γ (𝑞)

Ψ (𝑟)𝑀𝑎𝑞−𝑞1

× (
𝑞 − 𝑞
1

1 − 𝑞1

)

1−𝑞1

.

(57)

4. Existence of Positive Mild Solutions

In this section, we discuss the existence of positive mild
solutions for theNPFEE (1). we first introduce somenotations
and definitions which will be used in this section.

Let 𝐸 be an ordered Banach space with the norm ‖ ⋅ ‖

and let 𝑃 = {𝑢 ∈ 𝐸 | 𝑢 ≥ 𝜃} be a positive cone in 𝐸 which
defines a partial ordering in𝐸 by𝑥 ≤ 𝑦 if and only if𝑦−𝑥 ∈ 𝑃,
where 𝜃denotes the zero element of𝐸.𝑃 is said to be normal if
there exists a positive constant𝑁 such that 𝜃 ≤ 𝑥 ≤ 𝑦 implies
‖𝑥‖ ≤ 𝑁‖𝑦‖; the infimum of all 𝑁 with the property above
is called the normal constant of 𝑃. For more definitions and
details of the cone 𝑃, we refer to the monographs [40, 43].
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Definition 13. A 𝐶
0
-semigroup 𝑇(𝑡) (𝑡 ≥ 0) in 𝐸 is called to

be positive, if order inequality𝑇(𝑡)𝑢 ≥ 𝜃 holds for each 𝑢 ≥ 𝜃,
𝑢 ∈ 𝐸 and 𝑡 ≥ 0.

For more details of the properties of positive 𝐶
0
-

semigroup, we refer to the monograph [44] and the paper
[45].

Lemma 14. If 𝑇(𝑡) (𝑡 ≥ 0) is a positive 𝐶
0
-semigroup in

𝐸, then T
𝑞
(𝑡) (𝑡 ≥ 0) and S

𝑞
(𝑡) (𝑡 ≥ 0) are also positive

operators.

Proof. Since the semigroup 𝑇(𝑡) (𝑡 ≥ 0) and the function
ℎ𝑞(𝑠) defined by (10) are positive, by (9) we can easily
conclude that the operators T𝑞(𝑡) (𝑡 ≥ 0) and S

𝑞
(𝑡) (𝑡 ≥ 0)

are also positive. This completes the proof.

Here, we will obtain positive mild solutions under the
following assumptions.

(A1) The function 𝑓 : 𝐽 × 𝑃 × 𝑃 × 𝑃 → 𝑃 satisfies the
Carathéodory type conditions.

(A2) There exist a constant 𝑞1 ∈ [0, 𝑞) and a function 𝜑 ∈

𝐿
1/𝑞1(𝐽,R+) such that, for all 𝑢 ∈ 𝑃 and a.e. 𝑡 ∈ 𝐽,
𝑓(𝑡, 𝑢, 𝐺𝑢, 𝑆𝑢) ≤ 𝜑(𝑡).

(A3) There exist positive constants 𝐿
𝑖
(𝑖 = 1, 2, 3) such that

for any bounded and countable sets𝐷
𝑖
⊂ 𝐶(𝐽, 𝑃) (𝑖 =

1, 2, 3) and a.e. 𝑡 ∈ 𝐽,

𝛼 (𝑓 (𝑡, 𝐷
1 (𝑡) , 𝐷2 (𝑡) , 𝐷3 (𝑡))) ≤

3

∑

𝑖=1

𝐿
𝑖
𝛼 (𝐷
𝑖 (𝑡)) . (58)

(A4) The nonlocal function 𝑔 : 𝐶(𝐽, 𝑃) → 𝑃 is continuous
and compact, and there exist constants 0 < b <

1/(NM) and c > 0 such that for all 𝑢 ∈ 𝐶(𝐽, 𝑃),
𝑔(𝑢) ≤ 𝑏𝑢 + 𝑐, where𝑁 is the normal constant of the
positive cone 𝑃.

Theorem 15. Let𝐸 be an ordered Banach space,𝑃 be a normal
positive cone with normal constant N, A : D(A) ⊂ E →

E be a closed linear operator, and −A generate a positive
and equicontinuous 𝐶0-semigroup 𝑇(𝑡) (𝑡 ≥ 0) of uniformly
bounded operators in 𝐸. Assume that the assumptions (A1),
(A2), (A3), and (A4) are satisfied, then the NPFEE (1) have at
least one positive mild solution in 𝐶(𝐽, 𝑃).

Proof. From the proof of Theorem 10, we know that the
positive mild solution of the NPFEE (1) is equivalent to the
fixed point of operator 𝑄 defined by (24) in 𝐶(𝐽, 𝑃). We
choose 𝑅 > 0 big enough such that

𝑅 ≥
𝑁𝑀

1 − 𝑁𝑀𝑏
[𝑐 +

𝑎
𝑞−𝑞1

Γ (𝑞)
(
1 − 𝑞
1

𝑞 − 𝑞1

)

1−𝑞1
𝜑
𝐿1/𝑞1 [0,𝑎]

] . (59)

Then for any 𝑢 ∈ Ω
𝑅
(𝑃) = {𝑢 ∈ 𝐶(𝐽, 𝑃) :‖ 𝑢‖

𝐶
≤ 𝑅}, by (24)

and the assumptions (A2) and (A4), we have that

𝜃 ≤ (𝑄𝑢) (𝑡)

≤ T
𝑞 (𝑡) (𝑏𝑢 + 𝑐)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S
𝑞 (𝑡 − 𝑠) 𝜑 (𝑠) 𝑑𝑠.

(60)

By the normality of the cone 𝑃, (59), (60), the assumption
(A4), and Hölder inequality, we get

‖(𝑄𝑢) (𝑡)‖ ≤ 𝑁𝑀(𝑏‖𝑢‖𝐶 + 𝑐)

+
𝑁𝑀

Γ (𝑞)
(∫

𝑡

0

(𝑡 − 𝑠)
(𝑞−1)/(1−𝑞1)𝑑𝑠)

1−𝑞1

×
𝜑
𝐿1/𝑞1 [0,𝑡]

≤ 𝑁𝑀(𝑏𝑅 + 𝑐) +
𝑁𝑀𝑎

𝑞−𝑞1

Γ (𝑞)
(
1 − 𝑞1

𝑞 − 𝑞
1

)

1−𝑞1

×
𝜑
𝐿1/𝑞1 [0,𝑎]

≤ 𝑅.

(61)

Thus,𝑄 : Ω
𝑅
(𝑃) → Ω

𝑅
(𝑃). Let 𝐹 = co 𝑄(Ω

𝑅
(𝑃)). Similar to

the proof of Theorem 10, we can prove that 𝑄 : 𝐹 → 𝐹 is a
convex-power condensing operator. It follows from Lemma 8
that 𝑄 has at least one fixed point 𝑢 ∈ 𝐹, which is just a
positive mild solution of the NPFEE (1). This completes the
proof of Theorem 15.

Theorem 16. Let𝐸 be an ordered Banach space,𝑃 be a normal
positive cone with normal constant 𝑁, 𝐴 : 𝐷(𝐴) ⊂ 𝐸 →

𝐸 be a closed linear operator and −𝐴 generate a positive
and equicontinuous 𝐶0-semigroup 𝑇(𝑡) (𝑡 ≥ 0) of uniformly
bounded operators in 𝐸. Assume that the assumptions (A1),
(A3) and the following assumptions:

(A2)∗ There exist nonnegative continuous functions 𝑔
1
(𝑡),

𝑔
2
(𝑡) and abstract continuous function ℎ : 𝐽 → 𝑃

such that
𝑓 (𝑡, 𝑢, V, 𝑤) ≤ 𝑔

1 (𝑡) 𝑢 + 𝑔2 (𝑡) V + ℎ (𝑡) ,

a.e. 𝑡 ∈ 𝐽, ∀𝑢, V, 𝑤 ∈ 𝑃,

(62)

(A4)∗ The nonlocal function 𝑔 : 𝐶(𝐽, 𝑃) → 𝑃 is continuous
and compact, and there exists a constant 𝑐 > 0 such
that, for any 𝑢 ∈ 𝐶(𝐽, 𝑃), 𝑔(𝑢) ≤ 𝑐,

are satisfied, then the NPFEE (1) have at least one positive mild
solution in 𝐶(𝐽, 𝑃).

Proof. From the proof of Theorem 10, we know that the
positive mild solution of the NPFEE (1) is equivalent to the
fixed point of operator 𝑄 defined by (24) in 𝐶(𝐽, 𝑃). Let

(𝐵𝑢) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S
𝑞 (𝑡 − 𝑠)

× [𝑔
1 (𝑠) 𝑢 (𝑠) + 𝑔2 (𝑠) 𝐺𝑢 (𝑠)] 𝑑𝑠, 𝑡 ∈ 𝐽.

(63)
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We can prove that 𝑟(𝐵) = 0, where 𝑟(⋅) denotes the spectral
radius of bounded linear operator. In fact, for any 𝑡 ∈ 𝐽, by
(63), we get that

‖(𝐵𝑢) (𝑡)‖

≤
𝑀

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×



𝑔
1 (𝑠) 𝑢 (𝑠)+𝑔2 (𝑠) ∫

𝑠

0

𝐾 (𝑠, 𝜏) 𝑢 (𝜏) 𝑑𝜏



𝑑𝑠

≤
𝑀𝐺
∗
(1 + 𝑎𝐾0) ‖𝑢‖𝐶

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑑𝑠

=
𝛽𝑡
𝑞
‖𝑢‖𝐶

Γ (1 + 𝑞)
,

(64)

where 𝐺∗ = max{max𝑡∈𝐽𝑔1(𝑡),max𝑡∈𝐽𝑔2(𝑡)}, 𝛽 = 𝑀𝐺
∗
(1 +

𝑎𝐾0). Further,

(𝐵
2
𝑢) (𝑡)



≤
𝑀𝐺
∗

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×



(𝐵𝑢) (𝑠) + ∫

𝑠

0

𝐾 (𝑠, 𝜏) (𝐵𝑢) (𝜏) 𝑑𝜏



𝑑𝑠

≤
𝑀𝐺
∗
𝛽‖𝑢‖𝐶

Γ (𝑞) Γ (1 + 𝑞)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

[𝑠
𝑞
+ ∫

𝑠

0

𝐾 (𝑠, 𝜏) 𝜏
𝑞
𝑑𝜏] 𝑑𝑠

≤
𝛽
2
‖𝑢‖𝐶

Γ (1 + 2𝑞)B (1 + 𝑞, 𝑞)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑠
𝑞
𝑑𝑠

=
𝛽
2
𝑡
2𝑞
‖𝑢‖𝐶

Γ (1 + 2𝑞)
.

(65)

By the method of mathematical induction, for any positive
integer 𝑛 and 𝑡 ∈ 𝐽, we obtain that

(𝐵
𝑛
𝑢) (𝑡)

 ≤
𝛽
𝑛
𝑡
𝑛𝑞
‖𝑢‖𝐶

Γ (1 + 𝑛𝑞)
. (66)

Therefore, we have

𝐵
𝑛𝐶

≤
𝛽
𝑛
𝑎
𝑛𝑞

Γ (1 + 𝑛𝑞)
. (67)

Thus, combining (50) we get that

𝑟 (𝐵) = lim
𝑛→∞

𝐵
𝑛

1/𝑛

𝐶
≤ lim
𝑛→∞

𝛽𝑎
𝑞

2𝑛
√2𝜋𝑛𝑞(𝑛𝑞/𝑒)

𝑞
𝑒]/(12𝑛

2
𝑞)
= 0.

(68)

Let 0 < 𝛾 < 1/𝑁. From [46] we know that there exists an
equivalent norm ‖ ⋅‖

∗ in 𝐸 such that

‖𝐵‖
∗
≤ 𝑟 (𝐵) + 𝛾 = 𝛾, (69)

where ‖𝐵‖∗ denotes the operator norm of 𝐵 with respect to
the norm ‖ ⋅‖

∗.
Let 𝑀

∗
= sup

𝑡∈[0,+∞)
‖𝑇(𝑡)‖

∗

L(𝐸) and ‖𝑢‖
∗

𝐶
=

sup
𝑡∈𝐽
‖𝑢(𝑡)‖

∗. Choose

𝑅
∗
=
𝑁𝑀
∗
(Γ (1 + 𝑞) 𝑐 + 𝑎

𝑞
‖ℎ‖
∗

𝐶
)

Γ (1 + 𝑞) (1 − 𝑁𝛾)
. (70)

For any 𝑢 ∈ Ω∗
𝑅
∗(𝑃) = {𝑢 ∈ 𝐶(𝐽, 𝑃) : ‖𝑢‖

∗

𝐶
≤ 𝑅
∗
}, by (24) and

the assumptions (A2)∗ and (A4)∗, we have that

𝜃 ≤ (𝑄𝑢) (𝑡)

≤ T
𝑞 (𝑡) 𝑔 (𝑢)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S
𝑞 (𝑡 − 𝑠)

× [𝑔
1 (𝑠) 𝑢 (𝑠) + 𝑔2 (𝑠) 𝐺𝑢 (𝑠) + ℎ (𝑠)] 𝑑𝑠

≤ T𝑞 (𝑡) 𝑐 + 𝐵 (𝑢) (𝑡)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S
𝑞 (𝑡 − 𝑠) ℎ (𝑠) 𝑑𝑠.

(71)

By the normality of the cone 𝑃, (69), (70), and (71), we have

‖(𝑄𝑢)(𝑡)‖
∗
≤ 𝑁(


T
𝑞
(𝑡)𝑐



∗

+ ‖(𝐵𝑢)(𝑡)‖
∗

+



∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S
𝑞
(𝑡 − 𝑠)ℎ(𝑠)𝑑𝑠



∗

)

≤ 𝑁(𝑀
∗
𝑐 + ‖𝐵‖

∗
‖𝑢‖
∗

𝐶
+
𝑀
∗
𝑎
𝑞
‖ℎ‖
∗

𝐶

Γ (1 + 𝑞)
)

≤ 𝑁𝑀
∗
𝑐 + 𝑁𝛾𝑅

∗
+
𝑁𝑀
∗
𝑎
𝑞
‖ℎ‖
∗

𝐶

Γ (1 + 𝑞)

= 𝑅
∗
.

(72)

Thus, we have proved that 𝑄 : Ω
∗

𝑅
∗(𝑃) → Ω

∗

𝑅
∗(𝑃). Let

𝐹 = co 𝑄(Ω
∗

𝑅
∗(𝑃)). Similar to the proof of Theorem 10, we

can prove that 𝑄 : 𝐹 → 𝐹 is a convex-power condensing
operator. It follows from Lemma 8 that 𝑄 has at least one
fixed point 𝑢 ∈ 𝐹, which is just a positive mild solution of
the NPFEE (1). This completes the proof of Theorem 16.

Remark 17. Positive operator semigroups are widely appear-
ing in heat conduction equations, neutron transport equa-
tions, reaction diffusion equations, and so on [47].Therefore,
using Theorems 15 and 16 to these partial differential equa-
tions are very convenient.

Remark 18. Analytic semigroup and differentiable semigroup
are equicontinuous semigroup [48]. In the application of
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partial differential equations, such as parabolic equations
and strongly damped wave equations, the corresponding
solution semigroup is analytic semigroup. Therefore, the
results obtained in this paper have broad applicability.
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